Kategorie-Archiv: Allgemein

Carpe diem

Jetzt ist es geschehen: Eine Unterstützerin der Crowdfunding-Kampagne, die ich 2011 für mein Buch durchgeführt habe, ist ihrer Krebserkrankung erlegen. Da ich nicht weiß, ob es ihr recht wäre, nenne ich keinen Namen. Vielleicht verlinke ich später auf einen Nachruf, der andernorts erscheint.

Ich bin traurig und erschüttet, und ich bedaure sehr, dass ich ihr die Prämie – das fertige Autoimmunbuch – nun auf ewig schuldig bleibe. Niemals hätte ich gedacht, dass sich das Lesen, Konzipieren, Schreiben und Zeichnen so lange hinziehen würden. Das Einzige, was ich tun kann: weitermachen.

Und nebenbei das Leben nicht vergessen, denn wir wissen nicht, wie viel Zeit uns vergönnt ist.

Wie Lymphknoten entstehen

Mit dem Werden und Vergehen des Thymus im Lebensverlauf habe ich mich bereits ausführlich beschäftigt, etwa hier. Im letzten Beitrag habe ich die Herkunft der Lymphgefäße skizziert. (Kurz: Sie entstehen größtenteils durch Abknospung von Endothel, also Blutgefäßwänden, aus einigen Hauptadern des Embryos; in einigen Organen und Geweben tragen aber auch andere embryonale Zellen zu den Lymphgefäßen bei.) Weiter geht es mit der Entstehung den Lymphknoten.

Wer Autoimmunerkrankungen verstehen will, sollte Lymphknoten nicht ignorieren

Warum interessiert mich das überhaupt? Das Lymphsystem erfüllt im Wesentlichen drei Aufgaben: Erstens schafft es Flüssigkeit, die aufgrund des Blutdrucks aus den Kapillaren austritt und das Gewebe anschwellen lässt, in die größeren Blutgefäße zurück – jeden Tag etwa drei Liter. Zweitens transportiert es Proteine und vor allem Fette, die unser Verdauungssystem aus der Nahrung gewonnen hat, aus der Darmschleimhaut in den Blutkreislauf. Und drittens – jetzt wird es relevant für’s Buch – führt es den Lymphknoten, gewissermaßen den Kontaktbörsen des Immunsystems, Antigene und Immunzellen zu, und es schickt die dort von den Antigenen aktivierten Immunzellen in das Blut zurück, von dem sie sich an ihre Einsatzorte verfrachten lassen.

Neben den normalen Lymphknoten, die während der Embryonalentwicklung an vordefinierten Stellen entstehen, bilden sich im Körper später auch bedarfsgesteuerte Strukturen: zum einen kurz nach der Geburt die sogenannten Peyer-Plaques in der Darmschleimhaut, die dem Management unserer Beziehungen zur Darmflora dienen. Und zum anderen ein Leben lang improvisierte Lymphknötchen in der Nähe von Entzündungsherden, sogenannte tertiäre lymphatische Organe (TLO). Sie verkürzen die Transportwege für Antigene und Immunzellen und machen so die Bekämpfung der Entzündungsauslöser effizienter. Für das Buch habe ich sie als Feldlager skizziert.

Bei einer akuten Infektion ist das gut – aber bei einer chronischen Autoimmunerkrankung verstärkt es leider die Reaktion des Immunsystems auf körpereigene Antigene. Zudem unterstützen TLOs bei vielen Autoimmunerkrankungen ausgerechnet die schädlichen autoreaktiven Immunzellen, während sie andere, nützliche Immunzellen abweisen (siehe „Ärger mit dem Passwort“). Solche tertiären Lymphstrukturen entstehen im Prinzip ähnlich wie die normalen Lymphknoten, nämlich durch einen Dialog von Immunzellen und lokalen Bindegewebszellen. Daher sehen wir uns zunächst die normalen Entwicklung während der Embryogenese an.

Es beginnt im zweiten Monat

Im menschlichen Embryo schnüren sich im zweiten Monat zunächst sechs sogenannte Lymphsäcke von den Kardinalvenen im oberen Bereich des Rumpfes ab. Aus diesen Ausbuchtungen wächst dann das Lymphgefäßsystem allmählich in die Peripherie hinein, wie im letzten Beitrag beschrieben. Wo das Netzwerk besonders dicht ist, etwa in der Nachbarschaft des künftigen Verdauungstrakts, nennt man es Lymphplexus. Am Ende durchzieht das System den gesamten Körper, ähnlich wie der Amazonas das ganze Amazonasbecken drainiert.

Erste Ansätze zu Lymphknoten finden sich etwa ab Tag 36 der Embryonalentwicklung in der Nähe des Zusammenflusses zweier paarig angelegter Kardinalvenen, die dort zur Vena cardinalis communis fusionieren. Die Lymphsäcke, die noch überwiegend aus Endothel bestehen, werden jetzt mit Mesenchymzellen durchsetzt, die zur charakteristischen Zonenbildung in den Lymphknoten beitragen (H bis J in dieser Zeichnung). Weitere Mesenchymzellen bilden die Bindegewebskapsel und die Stützwände der Knoten (E bis G).

Dialoge zwischen Induktoren und Organisatoren

Doch woher wissen die Vorläuferzellen, wohin sie sich begeben sollen, mit welchen anderen Zellen sie sich wie zusammenlagern und welche genaue Funktion sie übernehmen sollen? Das wird über einen Austausch von Signalen organisiert. An einem Ort, der für einen Lymphknoten prädestiniert ist – einer sogenannten Anlage* -, wird zunächst ein Botenstoff namens TRANCE ausgeschüttet. Dieser lockt sogenannte lymphoid tissue inducer cells oder LTi-Zellen an. Das sind erste weiße Blutkörperchen, die eng mit den späteren Immunzellen verwandt sind. Über Rezeptoren auf ihrer Oberfläche nehmen sie Verbindung mit den Mesenchymzellen auf, die als lymphoid tissue organizer (LTo) bezeichnet werden. Die LTo-Zellen werden durch den Kontakt aktiviert: Sie überziehen sich mit Adhäsionsmolekülen, sozusagen Widerhaken oder Klebstoffen, und schütten sowohl entzündungstypische Botenstoffe (Zytokine) als auch Lockstoffe (Chemokine) aus. Durch diese positive Rückkopplung werden weitere Immunzellen rekrutiert, zur Ansiedlung ermuntert und aktiviert, ähnlich wie bei einer Entzündung.

Nach der Geburt

All dies geschieht im Embryo, also noch ohne Kontakt zu fremden Antigenen. Aber sobald nach der Geburt der Darm des Säuglings mit Mikroben besiedelt wird, erfährt die Entwicklung des Lymphgewebes noch einen Schub. Vor allem in der Darmschleimhaut bilden sich durch den Kontakt zur Darmflora tertiäre Lymphorgane, und zwar ähnlich wie eben beschrieben, also angestoßen durch LTi-Zellen und andere Immunzellen, die sich in der Darmschleimhaut niederlassen und mit ihren Nachbarzellen in Kontakt treten, um „Feldlager“ zu errichten. Mit diesen Strukturen kann das Immunsystem die Darmflora regelmäßig auf ihre Zusammensetzung prüfen und gegebenenfalls in ihre Schranken weisen.

Inwieweit auch die Bildung tertiärer Lymphorgane bei chronischen Entzündungen und Autoimmunerkrankungen der vorgeburtlichen Entstehung der Lymphknoten ähnelt und in welcher Hinsicht die beiden Prozesse voneinander abweichen, beschreibe ich im nächsten Beitrag.

 

* Auch in englischen Arbeiten heißen sie anlagen. In der Embryologie waren im 19. Jahrhundert deutsche Forscher führend, und die Fachsprache hat diesen Ausdruck übernommen.

Literatur:

Manuela Ferreira et al. (2012): Stroma cell priming in enteric lymphoid organ morphogenesis

Lucille Rankin et al. (2013): Diversity, function, and transcriptional regulation of gut innate lymphocytes

Zwillingsstudie: Chronischer Schlafmangel schwächt die Abwehr

Eine kleine Ergänzung zum Beitrag über die überraschend großen Unterschiede im Immunsystem eineiiger Zwillinge: Einer kürzlich veröffentlichten Studie zufolge sind bei Personen, die regelmäßig im Durchschnitt eine Stunde kürzer schlafen als ihre eineiigen Zwillingsgeschwister, etliche Gene des Immunsystems herunterreguliert, etwa jene für die Interleukine (Botenstoffe des Immunsystems) oder für die Aktivierung von Immunzellen. Dieser Befund unterscheidet sich deutlich von anderen Studien, in denen die Schlafdauer im Labor für kurze Zeit künstlich verringert wurde: Bei Probanden, die nicht aus freien Stücken und nicht dauerhaft besonders wenig schlafen, waren dieselben Immunsystem-Parameter erhöht.

Der Vorteil der neuen Studie ist das deutlich weniger künstliche Setting – aber um einen hohen Preis: Da es in der zugrunde liegenden Datenbank sehr wenig eineiige Zwillingspaare gab, bei denen sich die Schlafdauer deutlich unterschied und die auch sonst alle Einschlusskriterien (Nichtraucher, gesund usw.) erfüllten, konnten nur Daten von 11 Paaren, also 22 Personen ausgewertet werden. Ein weiterer Schwachpunkt: Die Immunsystem-Parameter wurden nur einmal täglich anhand einer Blutprobe analysiert. Dabei schwanken diese Parameter im Tagesverlauf deutlich. Für einen soliden Vergleich zwischen chronischem und akutem Kurzschlaf wären also erheblich aufwändigere Analysen nötig.

N. F. Watson et al. (2017): Transcriptional Signatures of Sleep Duration Discordance in
Monozygotic Twins

Krankheitsverhalten: kurzfristig heilsam – chronisch belastend

Anhedonie (Lustlosigkeit), verringerte Libido

Anhedonie: Lustlosigkeit, z. B. verringerte Libido

Wenn wir krank sind, uns ins Bett legen, fiebern und nichts essen mögen: ist das schlecht für uns? Ist es nur ein Zeichen dafür, dass es uns schlecht geht? Oder ist es vielmehr gut für uns, ein Teil unserer Genesung? Erstaunlich lange blieb diese Frage unbeantwortet. Erst 1988 veröffentlichte Benjamin L. Hart seine wegweisende Arbeit „Biological basis of the behavior of sick animals“, in der er das Krankheitsverhalten (sickness behavior) von Tieren als evolutionäre Anpassung zur effizienten Überwindung von Infektionskrankheiten darstellte.

Zu diesem Krankheitsverhalten zählen etwa

  • Anorexie (verringerter Appetit)
Anorexie: verringerter Appetit

Anorexie: verringerter Appetit

  • Adipsie (wenig Durst)
Adipsie: verringerter Durst

Adipsie: verringerter Durst

  • Lethargie und Schläfrigkeit
Lethargie, viel Schlaf, Schonhaltung, Wärmeverlustminimierung

Schläfrigkeit, Schonhaltung, Wärmeverlust-Minimierung

  • Anhedonie (Lustlosigkeit, Unfähigkeit zur Freude, siehe oben: keinen Bock aufs Haserl!)
  • Rückzug und Asozialität (verringerte Revierverteidigung, Brutfürsorge, wechselseitige Körperpflege, sexuelle Aktivität usw.)
reduziertes Sozialverhalten, z. B. Brutpflege

reduziertes Sozialverhalten

  • Desinteresse am Erkunden der Umgebung, am Spielen und Lernen
  • Übelkeit, Unwohlsein
  • erhöhte Schmerzempfindlichkeit
  • bei Warmblütern Zittern zur Wärmeproduktion und bei wechselwarmen Tieren das Aufsuchen einer warmer Umgebung („behavioral fever“) sowie
"Verhaltensfieber" bei wechselwarmen Tieren

„Verhaltensfieber“ bei wechselwarmen Tieren

  • eine kompakte Körperhaltung, die den Wärmeverlust minimiert.

Hinzu kommen physiologische Veränderungen, etwa eine vom Hypothalamus im Gehirn angeordnete Erhöhung der Körpertemperatur (Fieber), Entzündungsreaktionen und eine träge Verdauung.

Noch immer glauben viele Menschen, Fieber sollte gesenkt werden und Brandwunden müsse man kühlen, weil die Wärme schädlich sei. Dabei dient beides „nur“ der Schmerzbekämpfung, nicht aber der Heilung – von Ausnahmen abgesehen. Zwar ist bei weitem nicht bei jeder Erkrankung klar, auf welchen Wegen Fieber uns nützt (Beschleunigung enzymatischer Reaktionen, Hemmung der Vermehrung hitzeempfindlicher Viren oder Bakterien, Entfernung des für Pathogene wichtigen Spurenelements Eisen aus unserem Blut …). Aber dass es eine Anpassungsleistung darstellt und in vielen Situationen das Überleben fördert, ist mittlerweile klar. So hatten in Tierexperimenten gezielt infizierte Wüstenleguane oder Zebrafische, die eine wärmere Umgebung aufsuchen konnten, eine deutlich höhere Überlebenswahrscheinlichkeit als Leidensgenossen, die man daran hinderte.

Viele der oben genannten Aspekte des Krankheitsverhaltens hängen miteinander zusammen. So rufen die Entzündungsreaktionen, mit denen unser Immunsystem Infektionen bekämpft, im Wachzustand Übelkeit, Abgeschlagenheit, Schmerz usw. hervor, die unsere Aktivitäten stören und riskanter machen können. Daher der Rückzug und der viele Schlaf. Der Rückzug von sozialen Aktivitäten könnte auch die Gefahr verringern, verwandte Artgenossen anzustecken. Andererseits kennen wir von vielen Tierarten Fürsorge für erkrankte Gruppenmitglieder, was darauf hindeutet, dass das verringerte Sozialverhalten und die Lethargie nicht dem Schutz der anderen, sondern der eigenen Genesung dienen, etwa der Konzentration der Energiereserven auf die kostspieligen Aktivitäten des Immunsystems.

Ob die verfügbare Energie eher in die Heilung oder doch in die kurzfristige Maximierung des Fortpflanzungserfolgs investiert wird, hängt wesentlich von der „life history“ und der Reproduktionsstrategie der Art ab: Kurzlebige kranke Säugetiermännchen paaren sich im Zweifel lieber noch einmal und kippen dann tot um. Langlebige Organismen schonen sich lieber; zur Not vernachlässigen sie ihre Jungen und setzen darauf, dass sie nach ihrer Genesung neuen Nachwuchs großziehen können.

Bei einer akuten Erkrankung fördert ein solches Krankheitsverhalten die Gesundung und damit die Chance, das Erbgut, in das dieses Verhalten eingeschrieben ist, in die nächsten Generationen weiterzutragen. So funktioniert natürliche Auslese. Bei chronischen Erkrankungen ist dasselbe Verhalten oftmals kontraproduktiv, denn ich kann nicht jahrelang hungern, die Tage verdämmern, enthaltsam leben und die sozialen Bedürfnisse meiner Mitgeschöpfe ignorieren, ohne mir selbst und meinen Verwandten zu schaden. Außerdem werden viele chronische Erkrankungen, etwa Autoimmunerkrankungen, wohl gar nicht durch Bakterien oder Viren verursacht, die sich durch ein solches Verhalten besiegen ließen.

Da aber etliche chronische Erkrankungen erst gegen Ende oder gar nach der Reproduktionsphase auftreten, hat die natürliche Auslese keinen Ansatzpunkt, um einem solchen „chronifizierten Krankheitsverhalten“ entgegenzuwirken. Das einmal entgleiste Immunsystem, das fälschlich meint, eine Infektion bekämpfen zu müssen, schüttet permanent entzündungsfördernde Botenstoffe wie Interleukin 1β (IL-1β), Interleukin 6 (IL-6) und Tumornekrosefaktor (TNF) aus, die dem Hypothalamus und anderen Schaltzentralen suggerieren, der Organismus müsse noch ein Weilchen kürzer treten und sich zurückziehen. Das könnte der Grund für ein Phänomen sein, das vielen chronisch Kranken nur allzu bekannt ist: Fatigue.

 

Müdigkeiten

Ich habe sie alle:

Die normale Müdigkeit, die sich einstellt, wenn man in der Nacht zu wenig geschlafen hat. Sie beunruhigt mich nicht; dann ist man eben mal nicht ganz so leistungsfähig; das schläft sich aus.

Die unerklärliche Müdigkeit, die mich ins Bett zwingt, wenn ich nachmittags aus dem Büro nach Hause komme, obwohl ich normal geschlafen habe. Sie ist ärgerlich, weil sie verhindert, dass ich das wenige Tageslicht nutze, das der Winter bietet.

Die körperliche Schwere, das Grippegefühl ohne Grippe, die verdoppelte Gravitation. Immer wieder mal, bei normalem Blutbild, unauffälligen Thyroxin- und TSH-Werten, nicht weiter alarmierendem Schilddrüsen-Ultraschall und -Szintigramm und harmlosem Magenspiegelungsbefund. Vitamin D kommt bisher nicht dagegen an.

Die Erschöpfung, die sich einstellt, wenn eine halbe Stelle ausufert. Belastend, weil man trotz aller Überstunden doch nie schafft, was man sich vorgenommen hat. Beschämend zudem, da die andere Hälfte meiner Zeit und Energie in dieses Projekt fließen sollte und ich den Unterstützern immer noch ein Buch schulde.

Und, let’s face it, die Depression. Die Doppelverglasung zwischen meiner Umwelt und mir. Lange als Winterblues durchaus korrekt beschrieben und mit einer Tageslichtlampe in die Schranken verwiesen. Dieses Jahr reicht das nicht mehr. Wie in der Hypothyreose vor einigen Jahren, kurz vor der Hashimoto-Diagnose, kostet bereits das Aufstehen an manchen Tagen mehr Kraft, als mir zur Verfügung steht. Kleine Widrigkeiten reichen dann, um mich bis zum späten Mittag auszuschalten. Freundschaften und Bekanntschaften leiden unter der Passivität; es fehlen belebende Begegnungen und Sinneseindrücke; man merkt das und kann gerade drum nicht aus seinem Schneckenhaus: der alte Teufelskreis.

Am Samstag beginnt, weit weg von hier, die „Zeit zwischen den Jahren“, in der ich nichts leisten muss. Im Januar sehen wir weiter: Die Tage werden länger; die halbe Stelle wird zurückgestutzt; Buch und Blog kommen zu ihrem Recht. Und vielleicht fällt meiner Ärztin noch etwas ein.

Phase-2-Studie zur Stammzelltransplantation bei MS-Patienten: Der Lourdes-Effekt

Viel kann ich gar nicht schreiben zu der Studie, über die seit einigen Tagen allerorten berichtet wird, etwa bei der BBC oder im Guardian. Denn das Lancet-Paper von Harold L. Atkins et al. steckt hinter einer Bezahlschranke. Die Ergebnisse sind in der Tat vielversprechend, die Zustandsverbesserungen zum Teil atemberaubend – und sehr medienwirksam: Vom Rollstuhl auf die Skipiste, das hat was von Lourdes.

Aber man bedenke, dass die Studie sehr klein ist und die Therapieform hochriskant: Einer der 24 Teilnehmer ist an der Kombination aus aggressiver Chemotherapie und Antikörperbehandlung, mit der das Immunsystem komplett ausgeschaltet wurde, und der anschließenden Wiederbesiedlung durch die eigenen blutbildenden Zellen gestorben. Solche Therapien führt man aus guten Gründen bisher nur an praktisch austherapierten Patienten durch, sei es bei Krebserkrankungen oder nun eben bei weit fortgeschrittener schubförmig-remittierender Multipler Sklerose: Bis sich das Immunsystem erholt hat, ist die Gefahr groß, an Infektionen zu sterben.

Die Studienautoren vermeiden es, von einer echten Heilung der überlebenden Patienten zu sprechen. Aber die dramatischen Verbesserungen der Lebensqualität, das Ausbleiben von Rückfällen bis zu 13 Jahre nach der Behandlung und die Abwesenheit neuer Läsionen in den Gehirnen der Teilnehmer stimmen optimistisch, dass ein solcher Reset des Immunsystems zumindest ein Fortschreiten der Erkrankung dauerhaft stoppen kann – vielleicht weil die Behandlung die autoreaktiven Gedächtnis-T-Zellen in ihren Überlebensnischen im Knochenmark abtötet und so den fatalen Dauerbefehl an das Immunsystem auslöscht, die eigenen Nerven anzugreifen.

Nachtrag: Diese Form der Therapie ist übrigens so ziemlich das Gegenteil der zielgerichteten Ansätze, die ich hier kürzlich skizziert habe. Es wäre gute, wenn man die langlebigen autoreaktiven Gedächtnis-T-Zellen irgendwann treffsicher erledigen könnte, statt das ganze Immunsystem zu vernichten.

Das Immunsystem indigener Gruppen und das ethische Dilemma des Erstkontakts

Vor einem Jahr erschien eine Arbeit über das Mikrobiom unkontaktierter Yanomami, die ich damals nur kurz besprechen konnte. Jetzt habe ich sie noch einmal gelesen, obwohl sie immunologisch unergiebig ist: Die Entnahme von Blutproben, die Aufschluss über den Zustand des Immunsystems dieser Menschen hätte geben können, war bei einem Erstkontakt selbstverständlich unmöglich. Man muss schon froh sein, dass sie Abstriche aus ihrer Mundschleimhaut und das Einsammeln von Stuhlproben gestattet haben – vermutlich nicht, ohne sich über dieses merkwürdige Verhalten zu amüsieren.

Die Hauptergebnisse: Die Bakteriengemeinschaften auf der Haut und im Stuhl dieser mutmaßlich seit über 11.000 Jahren isolierten Menschen sind erheblich artenreicher als unsere – und auch als die Mikrobiome anderer naturnah lebender Völker. Die sogenannte Alpha-Diversität ihrer Mikrobiome ist also sehr hoch, vermutlich, weil sie nie mit antimikrobiellen Substanzen zu tun hatten und weil sie in ständigem Kontakt mit ihrer Umwelt leben. In ihrer Darm- und Hautflora leben zum Beispiel Bakterien, die man bislang für reine Bodenbakterien gehalten hat. Zugleich sind die Unterschiede in der Mikrobiom-Zusammensetzung zwischen den 34 Yanomami, von denen die Proben stammen, viel geringer als zwischen denen zweier Menschen aus einer Gruppe aus unserem Kulturkreis. Die sogenannte Beta-Diversität ist mithin sehr klein – wohl wegen des engen Zusammenlebens, der hygienischen Verhältnisse und der gleichartigen Lebensweise und Ernährung aller Gruppenmitglieder.

Unter den Genen dieser Bakterien, und zwar überweigend den Genen von zuvor unbekannten Stämmen des Darmbakteriums Escherichia coli, finden sich 28, die Antibiotika-Resistenzen vermitteln – sogar gegen einige neue, synthetische Antibiotika. Allerdings werden diese Gene in den Bakterien nicht abgelesen, sie sind „stummgeschaltet“ (silenced), sodass die Bakterien anfangs dennoch auf die Antibiotika ansprechen würden. Aber man muss damit rechnen, dass sie sehr bald wirklich Resistenzen entwickeln würden, und zwar gleich gegen mehrere Antibiotika. In Weltgegenden und Kulturen, in denen die sogenannte Therapietreue (die regelmäßige Einnahme des Medikaments über den kompletten notwendigen Zeitraum) vermutlich gering ist, geht das umso schneller.

Erstkontakt: Es gibt keinen Weg zurück

Dem Forscherteam war bewusst, dass die Probensammlung beim Erstkontakt eine einmalige Gelegenheit ist, ein Mikrobiom-Archiv anzulegen, das vermutlich große strukturelle und funktionale Ähnlichkeiten mit dem Mikrobiom unserer altsteinzeitlichen Vorfahren hat – auch wenn sich die einzelnen Bakterien-Arten und -Stämme natürlich auf dem Weg ihrer Wirte nach und durch Südamerika weiterentwickelt haben. 11.000 Jahre entsprechen ungefähr 100 Millionen Bakteriengenerationen. Zugleich begann mit dieser Begegnung zwischen der bislang isolierten Dorfgemeinschaft und den Medizinern und Wissenschaftlern unwiderruflich der Niedergang dieser Diversität – spätestens mit der ersten Antibiotika-Gabe.

Die Autoren schreiben in ihrer Danksagung: „Wir sind auch den Leuten in dem neu kontaktierten Dorf dankbar für ihr Vertrauen und für unser gemeinsamen Wunsch, dass der unvermeidliche Kontakt mit unserer Kultur ihrem Volk gesundheitliche Vorteile und Schutz bringen möge.“ Ist das nicht ein arg frommer Wunsch angesichts der bisherigen Erfahrungen mit der gesundheitlichen und sozialen Entwicklung neu kontaktierter, kleiner indigener Gruppen?  Weiterlesen

Viele Köche

Skizzen zu den Arbeiten von Klein et al. und Stoeckle et al., die ich im vorigen Beitrag vorgestellt habe:

Wie bereits früher dargestellt, präsentieren medulläre Thymus-Epithelzellen (mTECs) den künftigen T-Zellen im Zuge der negativen Selektion alle möglichen Autoantigene, um diejenigen Thymozyten auszusondern, die zu Autoimmunreaktionen neigen. Dazu müssen die Autoantigene im Inneren der mTECs zunächst aufbereitet werden – so, wie Speisen in einer Restaurantküche durch viele Hände gehen, bevor sie den Kunden auf Serviertellern präsentiert werden.

P1320224_Cathepsin_S_Koch_MBP_Wurst_650

In allen antigenpräsentierenden Zellen (APCs) zerlegen Proteasen, also Protein-verdauende Enzyme, die Antigene, damit diese auf die MHC-Klasse-II-Moleküle (die Servierteller) passen. Bei der Autoantigen-Präsentation durch die mTECs im Thymus kommen dabei andere Proteasen zum Einsatz als in den APCs in der Peripherie, die später den T-Zellen alle möglichen aufgeschnappten Antigene vorführen.

Daher kann es passieren, dass die zentrale Toleranz lückenhaft bleibt. Die Protease Cathepsin S (CatS) etwa schneidet das wichtige Autoantigen MBP, gegen das unser Immunsystem bei der Autoimmunerkrankung Multiple Sklerose reagiert, an bestimmten Stellen in der Aminosäurekette durch – hier in der Mitte der Wurst (gepunktete Linie):

P1320224_MBP_Wurst_zwei_Proteasen_650

So entstehen kürzere Aminosäureketten oder Proteinstücke, die nach ihrer weiteren Bearbeitung durch andere Enzyme auf den MHC-Klasse-II-Molekülen der APCs präsentiert werden. In unserem Beispiel werden im Thymus linke und rechte Wursthälften präsentiert, und alle Thymozyten, die auf deren Erkennungsmuster (etwa die Wurstzipfel) zu stark reagieren, werden im Rahmen der negativen Selektion aussortiert, um dem Körper Autoimmunreaktionen zu ersparen.

P1320225_Präsentation_MBP-Wursthälften_neg_Selektion_650

Aber was, wenn APCs außerhalb des Thymus das Protein MBP mit ihren Proteasen anders zerlegen – etwa an den gestrichelten Stellen, sodass auch Mittelstücke ohne Zipfel entstehen?

P1320223_Präsentation_MBP-Wurstmitte_Peripherie_AI-Reaktion_650

Im Thymus wurden keine Wurstmittelstücke präsentiert. Daher kann es passieren, dass T-Zellen mit Wurtstmittelstück-Rezeptoren, die im Körper patrouillieren, bei der Präsentation Alarm schlagen: eine Autoimmunreaktion von T-Zellen, die der negativen Selektion im Thymus entwischt sind.

Patienten mit PBC zur Beurteilung einer Übersetzung gesucht

Eine Übersetzerin bat mich, auf dieses Lokalisierungsprojekt aufmerksam zu machen:

Gesucht werden fünf deutschsprachige Menschen mit primärer biliärer Zirrhose (PBC), die gegen eine Aufwandsentschädigung eine Übersetzung eines Textes über diese Autoimmunerkrankung prüfen und sich dazu persönlich interviewen lassen. Über die Auftraggeber weiß ich nichts; ich gebe die Information aber gerne weiter.

Alles Weitere steht auf der Projektseite.

Die X-Chromosom-Inaktivierung

Zum Ausgleich für die letzten Beiträge gibt es diesmal viele Skizzen. Wie bereits erwähnt, sind die Körper weiblicher Säugetiere Mosaiken aus Zellkolonien, in denen das von der Mutter geerbte X-Chromosom stillgelegt ist, und solchen, in denen das vom Vater geerbte X-Chromosom inaktiviert wurde. Die Entscheidung fällt während der frühen Embryogenese, und zwar zufällig, und sie wird von allen Tochterzellen dieser Embryonalzellen übernommen. Nur zur Verdopplung vor einer Zellteilung werden die kompakten inaktivierten X-Chromosomen (Xi oder Barr-Körperchen genannt) kurz dekomprimiert, damit Polymerasen und andere an der Replikation beteiligte Moleküle an die DNA-Stränge herankommen. Die Zelle merkt sich aber durch epigenetische Markierungen, dass diese X-Chromosomen anschließend wieder stillgelegt werden müssen.

Schildpattkatze_X-Inaktivierung_650
Unserem Körper sieht man nicht an, dass er ein solcher Flickenteppich ist. Bei Hauskatzen mit dem sogenannten Schildpatt-Muster ist das anders. Ihre Fellfarbe (rötlich oder schwarz) ist nämlich auf dem X-Chromosom codiert. Daher gibt es fast nur weibliche Schildpatt-Katzen, denn nur diese haben zwei X-Chromosomen, von denen in einigen Teilen der Haut das mütterliche und in anderen Hautpartien das väterliche Exemplar aktiv bleibt. (Die weißen – genauer: unpigmentierten – Schecken vieler Schildpatt-Katzen sind an einer anderen Stelle im Genom codiert.)

Dass die Inaktivierung eines der X-Chromosomen und damit das Schildpatt-Muster epigenetisch und nicht genetisch festgelegt ist, sieht man an der ersten geklonten Katze der Welt, die 2001 geboren wurde. Sie trägt den schönen Namen CC (für copy cat), ist genetisch mit einer Schildpatt-Katze identisch und hat dennoch ein anders gemustertes Fell.

Wie läuft die Inaktivierung ab, und wie sehr unterscheidet sich das Xi von den übrigen Chromosomen im Zellkern? Um das zu verstehen, muss man ein Missverständnis überwinden, das aus Schulzeiten stammt. Im Biologieunterricht lernt man beim Thema Zellkernteilung oder Mitose das folgende Schema auswendig, das die Phasen einer solchen Teilung zeigt. Es beginnt mit der Prophase (bei 1 Uhr) und läuft über die Metaphase (3 Uhr) und die Anaphase (7 Uhr) zur Telophase (8 Uhr). In diesen Phasen ist die Kernhülle aufgelöst, damit die Spindeln die Tochterchromatiden auseinander ziehen können. Anschließend schnürt sich die Zelle durch, und beide Tochterzellen bauen wieder Kernhüllen auf. In der Zeit zwischen zwei Zell- und Zellkernteilungen, der Interphase (12 Uhr, Sternchen), liegen die Chromosomen nicht in der uns so vertrauten, kompakten Transportform vor, sondern als dünne Schnüre, die den ganzen Kern ausfüllen.

Zyklus_Mitose_und_Interphase_650

Diese Interphase ist viel, viel länger, als es das Diagramm suggeriert: Von den etwa 19,5 Stunden eines menschlichen Zellteilungszyklus entfallen etwa 18,5 Stunden auf die Interphase, in der der Zellkern wie eine Fadennudelsuppe aussieht. Nur während einer einzigen Stunde sind unsere Chromosomen so eng zusammengepackt, dass sie wie ein I oder (vor der Trennung der beiden im Zentromer zusammengehaltenen Chromatiden) wie ein X aussehen:

Länge_Interphase_Mitose_500

Der DNA-Faden wird in der Mitose um den Faktor 50.000 komprimiert, und zwar in mehreren Schritten bzw. Ebenen: von der DNA-Doppelhelix über die Perlenschnur, in der die DNA um puckförmige Proteinscheiben, sogenannte Nukleosomen, gewickelt ist, über Schlaufen erster und zweiter Ordnung bis hin zum kompletten Chromosom, das 700-mal dicker ist als eine Doppelhelix:

DNA_Komprimierung_Faktor_50000_650

In dieser stark komprimierten Form ist das Erbgut für die Transkriptionsmaschinierie völlig unzugänglich; die Gene können also nicht abgelesen werden. In der langen Interphase sieht das anders aus: Die nun wieder lockere DNA eines jeden Chromosoms nimmt einen großen Bereich im Zellkern ein und steht an dessen Rändern mit den Nachbarchromosomen in Kontakt. Ich habe hier, damit es nicht zu unübersichtlich wird, nur ein einziges Chromosom (unten) als Faden dargestellt und von den übrigen nur die Grenzen zwischen den Regionen angedeutet:Kern_mit_Chromosomen-Regionen_650

Chromosomenbereiche mit vielen Genen liegen im Allgemeinen eher in der Mitte des Zellkerns, an Genen arme Abschnitte eher in der Peripherie. Außerdem führen die Chromosomen im Kern einen komplizierten Tanz auf – wobei sie allerdings nicht so kompakt aussehen wie in dieser garantiert echten, jüngst auf einem Dachboden entdeckten Matisse-Vorstudie:

P1090479_Chromosomentanz_500

Die Chromosomen können die Position wechseln. So gelangen Gene, die gerade abgelesen werden müssen, aus der Peripherie in die Mitte, wo auch die nötigen Enzyme und Rohstoffe in höherer Konzentration vorliegen als am Rand.

Auch die meisten unsere Geschlechtschromosomen sind die meiste Zeit keineswegs X- oder Y-förmig. Ihre Namen verdanken sie elektronenmikroskopischen Aufnahmen von Chromosomen während der Mitose. Dann sieht das bereits verdoppelte X-Chromosom mit seinem Zentromer (der Einschnürung) und seinen langen und kurzen Armen den übrigen Chromosomen recht ähnlich. Beim viel kleineren Y-Chromosom sind die Arme so kurz, dass sie kaum zu unterscheiden sind:

Kondensiertes_X_und_Y_500

An den Enden der kurzen und der langen Arme beider Geschlechtschromosomen liegen sogenannte pseudoautosomale Regionen oder PARs. Hier sind X und Y einander so ähnlich, dass es zwischen ihnen während der Entwicklung der Keimzellen zum Austausch von Material, dem sogenannten Crossing-over kommen kann – genau wie zwischen den beiden Exemplaren eines normalen Chromosoms oder Autosoms; daher die Bezeichnung „pseudoautosomal“.

Da jede Zelle, ob männlich oder weiblich, über zwei Geschlechtschromosomen und damit über zwei PAR1 und zwei PAR2 verfügt, ist für diese Teile des X-Chromosoms keine Inaktivierung vonnöten: Ob die hier liegenden Gene nun von zwei X-Chromosomen oder von einem X- und einem Y-Chromosom abgelesen werden, ist gleichgültig. Anders sieht es mit der nicht-pseudoautosomalen X-Chromosom-Region (NPX) aus: Auf ihr liegen andere Gene als auf ihrem Pendant auf dem Y-Chromosom, MSY (für male-specific region of Y chromosome).

X_Y_Chromosom_PAR_500

Würden diese Teile auf beiden X-Chromosomen einer weiblichen Zelle normal abgelesen, lägen ihre Genprodukte in der Zelle in doppelt so hoher Konzentration vor wie in einer männlichen Zelle. Das mag bei bestimmten Genen, die an geschlechtsspezifischen Eigenschaften mitwirken, notwendig sein. Bei vielen anderen wichtigen Genen auf dem X-Chromosom, die nichts mit dem Geschlecht zu tun haben, wäre es dagegen fatal. Daher wird ein Großteil der Gene (etwa 85 Prozent) auf einem der beiden X-Chromosomen ausgeschaltet.

Die Inaktivierung geht vom sogenannten X-Inaktivierungs-Zentrum (XIC) auf dem langen Arm des Chromosoms (Xq) aus. Dieser lange Arm wird auch als XCR (für X conserved region) bezeichnet, weil er evolutionär alte, stark konservierte Gene und Steuerungssequenzen enthält. Im Inaktivierungs-Zentrum liegt das Gen Xist, das kein Protein codiert, sondern eine RNA, die sich an alle möglichen Teile des X-Chromosoms anlagert, die sich in ihrer Nähe befinden – wobei „Nähe“ hier nicht eindimensional (benachbarte Sequenzen auf der DNA), sondern dreidimensional zu verstehen ist (im Einflussbereich liegende Schlaufen des X-Chromosom-Fadenknäuels).

Das können durchaus auch DNA-Schlaufen vom anderen Arm des X-Chromosoms sein, der jenseits des Zentromers liegt: Xp, auch XAR (für X added region) genannt, weil hier evolutionär jüngere Gene und Steuerungssequenzen liegen, die das Chromosom erst lange nach der Auseinanderentwicklung von X- und Y-Chromosom erworben hat. Auf diesem Arm liegen auch Gene, die mit einer ganzen Reihe von Autoimmunerkrankungen in Verbindung gebracht werden, etwa FoxP3 oder eine Reihe von Genen in der Region Xp22. Womöglich tragen Fehler bei der X-Chromosom-Inaktivierung zur höheren Prävalenz vieler Autoimmunerkrankungen bei Frauen bei, denn dann liegen die Produkte der fälschlich nicht inaktivierten Gene in weiblichen Zellen in stark überhöhter Konzentration vor.

Humanes_X-Chromosom_Aufbau_Xist_usw_500_n

Vorlage: W. H. Brooks, Y. Renaudineau (2015), doi: 10.3389/fgene.2015.00022

Wie das X-Chromosom trotz der Barriere, die das Zentromer darstellt, so zügig inaktiviert werden kann, war der Forschung lange ein Rätsel. Studien an Mäusen helfen bei der Aufklärung (wieder einmal) nicht weiter, da deren X-Chromosom zwar ähnlich lang ist wie das der Menschen, aber kein echtes Zentromer hat, sondern eine Zentromer-ähnliche Struktur an einem Ende. Hier gibt es also keine Barriere, die von der im XIC abgelesenden RNA überwunden werden müsste:

X-Chromosom_Mensch_Maus_500

Vorlage: W. H. Brooks, Y. Renaudineau (2015), doi: 10.3389/fgene.2015.00022

Wie sich die Xist-RNA und die von ihr rekrutierten übrigen Inaktivierungsfaktoren über das X-Chromosom ausbreiten, davon hat man erst seit kurzem eine genaue Vorstellung. Demnach bilden die RNA-Moleküle (dünne geschwungene Linien mit Schlaufe) in der Umgebung des Xist-Gens (dicker schwarzer Pfeil) eine regelrechte Wolke und lagern sich an so ziemlich alle X-chromosomalen DNA-Stränge (dicke Linien) an, die in diese Wolke hineinragen. Die Histone, die die Xist-RNA nach ihrer Bindung an die DNA rekrutiert (schraffierte Scheiben und anhängende schwarze Punkte), wickeln die DNA dann eng und ordentlich zusammen:

X-Inaktivierung_Xist-RNA_Histone_650

Vorlage: Engreitz et al. 2013, doi: 10.1126/science.1237973

Durch das Aufwickeln der DNA zieht der Komplex immer weitere X-chromosomale Sequenzen in die Xist-Wolke hinein. So kann sich die Inaktivierung schnell und von mehreren, nahezu beliebigen Startstellen aus über das gesamte X-Chromosom ausbreiten.

Die nunmehr stark komprimierte DNA ist nicht mehr ablesbar – genau wie in den übrigen Chromosomen während der Mitose. Allerdings ist der Komprimierungsmechanismus ein anderer als bei den Autosomen, der Komprimierungsgrad ist noch höher, und vor allem wird die Komprimierung auch während der Interphase aufrecht erhalten.

Das Xi bleibt allerdings nicht „von selbst“ inaktiv, sondern muss ständig überwacht und ggf. erneut epigenetisch markiert und verdichtet werden. Daher liegt es meist auch nicht am Rand des Kerns, sondern in unmittelbarer Nachbarschaft zum Nucleolus, einer besonders aktiven Kernregion:

P1270847_links_Xi_außerhalb_Nucleolus_500

Vorlage: W. H. Brooks, Y. Renaudineau (2015), doi: 10.3389/fgene.2015.00022

Einer derzeit beliebten Hypothese zufolge können Infektionen (zum Beispiel mit Viren) Autoimmunerkrankungen auslösen, indem sie den Nucleolus anschwellen lassen: Viren kapern bekanntlich die Reproduktionsmaschinerie unserer Zellen und lassen unseren Stoffwechel in großem Stil neue Kopien ihrer selbst anfertigen. Der erhöhte Bedarf an Ribosomen und anderen Teilen der Reproduktionsmaschine führt zu einer Vergrößerung des Nucleolus. So gerät das benachbarte inaktivierte X-Chromosom in weiblichen Zellen ins Innere des Nucleolus mit seinem lebhaften Stoffwechsel: 

P1270847_rechts_Nucleolus_geschwollen_n_500

Vorlage: W. H. Brooks, Y. Renaudineau (2015), doi: 10.3389/fgene.2015.00022

Substanzen im Nucleolus, insbesondere Polyamine und RNA-Polymerase III, könnten die Inaktivierung aufheben und zum Beispiel eine massenhafte Ablesung der vielen Alu-Sequenzen im PAR1 auf dem Xp-Arm auslösen. Die so in großer Menge erzeugte Alu-RNA könnte klassische Zellkern-Proteine wie Ro und La binden und modifizieren, wodurch sich diese Proteine in Autoantigene verwandeln würden. Tatsächlich werden im Serum von Lupus-, Sjögren- oder Rheuma-Patienten häufig Anti-Ro- und Anti-La-Antikörper nachgewiesen.

Aber bislang ist das wirklich nur eine weitere Hypothese: Dass die höhere Prävalenz vieler Autoimmunerkrankungen bei Frauen auf eine unvollständige X-Inaktivierung und diese wiederum auf eine infektionsbedingte Vergrößerung des Nucleolus zurückzuführen ist, klingt plausibel, ist aber nicht belegt.

 

Literatur und Abbildungsvorlagen muss ich noch nachtragen. Jetzt: Urlaub!