Kategorie-Archiv: Aus der Sekundärliteratur

Etablierung der Hautflora nach der Geburt: Ohne Tregs keine Toleranz

Eine aktuelle Arbeit, die genau zu dem Teil des Buches passt, den ich gerade schreibe, nämlich zur Entwicklung des Immunsystems rund um die Geburt:

T. C. Scharschmidt et al.: A Wave of Regulatory T Cells into Neonatal Skin
Mediates Tolerance to Commensal Microbes. Immunity 43, 1011–1021, November 17, 2015, doi: 10.1016/j.immuni.2015.10.016

Dazu auch Anna Azvolinsky: Birth of the Skin Microbiome

Unsere Haut ist eine der wichtigsten Barrieren zwischen der Außenwelt und unserem Körper und zugleich ein wichtiges Immunorgan. Ein Quadratzentimeter enthält über eine Million Lymphozyten und ist mit etwa einer Million Bakterien besiedelt. Das Mikrobiom der Haut unterscheidet sich grundlegend von der Flora etwa in unserem Darm oder in den Atemwegen, und die Ausbildung der Hautflora ist viel schlechter untersucht als die Etablierung der Darmflora. Unsere Haut ist vielschichtig und enthält zahlreiche Strukturen wie Haarfollikel oder schweiß- und Talgdrüsen, und sie wird im täglichen Leben häufig verletzt, wobei auch Bakterien in die tieferen Schichten eindringen – ohne dort normalerweise Entzündungen auszulösen.

Das kalifornische Forscherteam hat nun an Mäusen untersucht, wann und wie sich die Toleranz des Immunsystems gegenüber dem Bakterium Staphylococcus epidermis ausbildet, einem Kommensalen, der bei Mensch und Maus vorkommt. Bringt man die Bakterien auf die intakte Haut junger, aber ausgewachsener Mäuse auf, so kommt es zu einer gewissen T-Zell-Reaktion, aber nicht zu einer merklichen Entzündung. Kratzt man die Mäuse einige Wochen später und trägt erneut Bakterien auf die nunmehr verletzte Haut auf, so entzündet sie sich, es wandern viele Neutrophile (Zellen der angeborenen Abwehr) in die Haut ein, und die T-Zellen (Zellen der erworbenen Abwehr) reagieren stark auf die Eindringlinge. Das Immunsystem hat also durch den Erstkontakt keine Toleranz ausgebildet.

Anders, wenn man das Experiment mit eine Woche alten Mäusen beginnt, die vier Wochen später gekratzt und erneut mit den Bakterien konfrontiert werden: Bei ihnen werden dann nur wenige T-Zellen aktiv, und die Entzündung fällt sehr schwach aus. Der Organismus ist offenbar gegen Staphylococcus epidermis tolerant geworden. Dafür sind offenbar spezifische regulatorische T-Zellen oder Tregs vonnöten, die vor allem während der zweiten Lebenswoche der Mäuse recht abrupt in die Haut einwandern. Tregs aus dem Thymus sind auch in der Darmschleimhaut notwendig, um das Immunsystem gegen die Darmflora milde zu stimmen. Anders als im Darm beeinflusst die Zahl der Keime auf der Haut aber nicht die Zahl der Tregs.

Über 80 Prozent der CD4+-T-Zellen in der Haut von 1-2 Wochen alten Mäusen sind Tregs, während es bei erwachsenen Mäusen etwa 50 Prozent sind. Ihre Dichte in der Haut ist bei den Baby-Mäusen doppelt so hoch wie bei den ausgewachsenen Tieren, und sie sind hochgradig aktiviert – wiederum im Unterschied zu den Haut-Tregs erwachsener Mäuse. In tiefer liegenden Gewebeschichten kommt es nach der Geburt nicht zu einer Treg-Akkumulation; diese ist also hautspezifisch.

Behandelt man die neugeborenen Mäuse kurz vor dem ersten Auftragen von Staphylococcus epidermis mit einem Rezeptorantagonisten, der spezifisch die Auswanderung von Tregs aus dem Thymus unterbindet, so werden die Mäuse nicht tolerant gegen den Keim: nach dem Aufkratzen der Haut und dem zweiten Kontakt mit den Bakterien reagieren sie mit einer starken Entzündungsreaktion – anders als die Kontrollgruppe, in der die Wanderung der Tregs aus dem Thymus in die Haut nicht unterbunden wurde.

Außerdem enthält die Haut der Tiere mehr für Staphylococcus-Antigene spezifische Effektor-T-Zellen und weiterhin nur wenige für Staphylococcus-Antigene spezifische Tregs, obwohl die migrationshemmende Wirkung des vier Wochen zuvor verabreichten Rezeptorantagoisten längst abgeklungen ist und andere Tregs durchaus in der Haut vorkommen. Die Antigen-spezifischen Tregs müssen also im richtigen Zeitfenster – ein bis zwei Wochen nach der Geburt der Mäuse – aus dem Thymus in die Haut gelangen, um eine Toleranz gegen Kommensalen aus der Hautflora aufzubauen.

Anders als im Darm, in dem sowohl angeborene, direkt aus dem Thymus stammende Tregs (nTregs oder tTregs) als auch in der Peripherie durch Antigen-Präsentation induzierte Tregs (iTregs) an der peripheren Toleranz beteiligt sind, scheinen iTregs in der Haut nicht an der Etablierung der Toleranz gegen Kommensalen beteiligt zu sein – zumindest nicht in diesem frühen Zeitfenster. Auch die Mechanismen, über die Tregs andere Immunzellen tolerant stimmen, unterscheiden sich offenbar: Im Darm spielt das von den Tregs ausgeschüttete, entzündungshemmende Zytokin IL-10 eine große Rolle, während ein IL-10-Mangel das Gleichgewicht in der Haut nicht weiter zu stören scheint.

Auch die abrupte, massive Einwanderung hoch aktiver Tregs und während der zweiten Lebenswoche der Mäuse scheint hautspezifisch zu sein: Im Darm kommt es gar nicht zu einer solchen Welle, und in der Lunge ist sie erstens viel schwächer (Tregs stellen dort höchstens 15 Prozent der CD4+-T-Zellen statt über 80 Prozent) und zweitens offenbar nicht für die Ausbildung der Toleranz gegen Atemwegs-Kommensalen zuständig.

Auffällig ist, dass die Haarfollikel in der Haut der jungen Mäuse genau zur Zeit der Treg-Einwanderung entstehen. Tregs halten sich in der Haut von Mäusen wie Menschen bevorzugt an den Haarfollikeln auf. Vielleicht sondern die entstehenden Follikel ein Chemokin ab, das die Tregs anzieht. Da sich an den Haarwurzeln besonders viele Kommensalen ansiedeln, wäre es evolutionär von Vorteil, wenn auch die periphere Toleranzausbildung vor allem dort stattfände.

Da die Barrierefunktion der Haut nicht nur lokale, sondern (etwa bei der Entstehung von Asthma) auch systemische Auswirkungen hat, sollte man mit allem, was die Ausbildung einer normalen Hautflora und einer Toleranz des Immunsystems gegen diese Kommensalen beeinträchtigen könnte, sehr aufpassen – etwa mit Antibiotika-Behandlungen bei Neugeborenen.

Hunde, Vieh und Darmbakterien schützen vor Asthma

Die Durchsicht der seit Mitte September aufgelaufenen Wissenschafts-Newsletter hat ergeben: ausnahmsweise keine grundstürzenden Neuigkeiten auf dem Gebiet der Immunologie, insbesondere der Autoimmunerkrankungen. Zwei Arbeiten zum Asthma-Risiko haben Aufmerksamkeit erregt, obwohl sie nur bestätigen, was sich schon in den letzten Jahren abgezeichnet hat.

Bereits 2012 hatte ich hier kurz von einer finnischen Untersuchung berichtet, der zufolge Hun­de­hal­tung im länd­li­chen Raum für ein gesün­de­res ers­tes Lebens­jahr von Klein­kin­dern sorgt: weni­ger Ohr­ent­zün­dun­gen und Schnup­fen, weni­ger Anti­bio­ti­ka­be­hand­lun­gen. Wichtig war, dass die Haustiere genug Zeit an der frischen Luft verbrachten, um mit den nötigen Keimen in Berührung zu kommen.

Vermittelt wird die Schutzwirkung vermutlich – zumindest teilweise – über das Enzym A20 in unseren Schleimhäuten, dessen Aktivität durch Endotoxine (Lipopolysaccharide aus Bakterienzellwänden) angeregt wird.

Nun hat ein schwedisches Forscherteam in einer landesweiten Kohortenstudie über 600.000 zwischen 2001 und 2010 in Schweden geborene Kinder auf Zusammenhänge zwischen Asthma und Kontakt zu Hunden oder Vieh untersucht. Dabei zeigte sich: Kinder, die im ersten Lebensjahr Kontakt zu einem Hund hatten, hatten im Kindergarten- und Grundschulalter ein verringertes Asthma-Risiko. Kontakt zu Bauernhoftieren verringerte das Risiko, später an Asthma zu erkranken, noch stärker als Hundekontakt.

Doch nicht nur Bakterien aus der Tierhaltung, sondern auch solche aus unsere eigenen Darmflora können vor Asthma schützen. Kanadische Wissenschaftler haben die Bakterien im Kot von drei Monate alten Kindern analysiert und in den nächsten drei Jahren verfolgt, ob die Kinder Ekzeme oder Atemgeräusche entwickelten, die als erste Anzeichen von Asthma gelten. In der Darmflora von Säuglingen, die später diese Anzeichen zeigten, waren die Bakteriengattungen Faecalibacterium, Lachnospira, Veillonella und Rothia signifikant schwächer vertreten als bei den anderen Säuglingen, und ihr Kot enthielt weniger Acetat als normal – eine der kurzkettigen Fettsäuren (SCFA), von denen hier schon öfter die Rede war: Stoffwechselprodukte, mit denen bestimmte Darmbakterien unser Immunsystem beeinflussen. Diese Dysbiose war transient; später normalisierte sich die Zusammensetzung der Darmflora.

Im Tierversuch ließ sich das Asthma-Risiko durch Animpfen keimfrei geborener Mäuse mit Darmbakterien aus asthmatischen Artgenossen erhöhen, durch Übertragung der vier genannten Bakteriengattungen dagegen verringern. Ob das auch bei Menschen funktioniert, muss sich noch erweisen. Weiter untersucht werden sollte auch, ob neben dem Asthma-Risiko auch das Risiko von Autoimmunerkrankungen durch eine vorübergehende Dysbiose kurz nach der Geburt erhöht wird.

Literatur:

T. Fall et al.: Early Exposure to Dogs and Farm Animals and the Risk of Childhood AsthmaJAMA Pediatr. 2015;169(11):e153219. doi:10.1001/jamapediatrics.2015.3219 (nur Abstract frei);

dazu auch: Hunde senken Asthmarisiko. Früher Kontakt mit Hunden schützt Kinder gegen die Überreaktion des Immunsystems

M.-C. Arrieta et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthmaScience Translational Medicine 30 Sep 2015: Vol. 7, Issue 307, pp. 307ra152, DOI: 10.1126/scitranslmed.aab2271 (nur Abstract frei);

dazu auch: Jef Akst: Gut Bacteria Linked to Asthma Risk. Four types of gut bacteria found in babies’ stool may help researchers predict the future development of asthma und Mit vier Bakterien gegen Asthma. Darmflora bei Säuglingen liefert vielversprechenden Ansatz für eine vorbeugende Therapie

Aus dem Bauch heraus: Mikrobiom beeinflusst Immunzellen im Gehirn

Unser Gehirn ist ein immunologisch privilegiertes Organ, in dem Immunreaktionen besonders strikt reguliert werden, um Kollateralschäden zu vermeiden. Dennoch enthält es Immunzellen, vor allem solche der angeborenen Abwehr – insbesondere Mikroglia.

Zu deren Aufgaben gehört das Pruning: das Wegschneiden überflüssiger Verbindungen (Synapsen) zwischen Nervenzellen, vor allem während der Kindheit und Adoleszenz. Mikroglia sind gewissermaßen die Gärtner des Gehirns, die die Sträucher regelmäßig zurückschneiden, bevor sie zu einem undurchdringlichen, dysfunktionalen Gestrüpp zusammenwuchern. Krankhaft überaktive Mikroglia übertreiben das Stutzen; sie zerstören auch Verbindungen zwischen Neuronen, die für die Gehirnfunktion notwendig sind. Andererseits sind auch erschöpfte, nicht hinreichend aktive Mikroglia schädlich, denn sie kommen mit dem Aufräumen, dem Entsorgen von Krankheitskeimen oder toten oder erkrankten Nervenbestandteilen nicht mehr hinterher. Abnorme Mikroglia werden unter anderem mit Multipler Sklerose, aber auch mit Alzheimer-Demenz und Schizophrenie in Verbindung gebracht.

Offenbar wird ihre Aktivität unter anderem von unserer Darmflora reguliert. Vermittelt wird diese Fernwirkung vermutlich über sogenannte kurzkettige Fettsäuren (short-chained fetty acids = SCFA), also Gärungsprodukte wie Essig-, Propion- und Buttersäure, die die Darmbakterien aus unserer Nahrung gewinnen. Diese durchdringen das Darmepithel und gelangen dann entweder selbst über das Blut ins Gehirn, oder sie regen in unserem Darmgewebe Zellen zur Ausschüttung von Botenstoffen an, die dann ihrerseits über die Adern ins Gehirn kommen.

Im Gehirn von Menschen, die ein hohes Schizophrenie-Risiko haben oder sich bereits in der Frühphase der Erkrankung befinden, ist die Konzentration von Zytokinen erhöht; ihre graue Materie geht zurück, und ihre Mikroglia sind überaktiv: Anzeichen für eine Entzündung. Je stärker ihre Mikroglia aktiviert sind, desto stärker sind die Schizophrenie-Symptome, wenn die Erkrankung schließlich ausbricht. Die zeitliche Abfolge lässt vermuten, dass die Mikroglia-Aktivierung nicht lediglich eine Folge einer bereits eingetretenen Störung im Gehirn ist, sondern diese mit verursacht. Dazu passt auch das Lebensalter, in dem Schizophrenie und weitere psychische Erkrankungen besonders häufig ausbrechen: während oder kurz nach der Adoleszenz – genau dann, wenn die Mikroglia im Frontalkortex viel Pruning betreiben.

Literatur:

D. Erny et al.: Host microbiota constantly control maturation and function of microglia in the CNSNature Neuroscience 18, 965–977 (2015), doi:10.1038/nn.4030 (nur Abstract frei)

Dazu auch Katrin Zöfel: Bakterien für ein gesundes Gehirn (09.10.2015)

P. S. Bloomfield et al.: Microglial Activity in People at Ultra High Risk of Psychosis and in Schizophrenia: An [11C]PBR28 PET Brain Imaging StudyAmerican Journal of Psychiatry, http://dx.doi.org/10.1176/appi.ajp.2015.14101358 (nur Abstract frei)

Dazu auch Mo Costandi: Brain’s immune cells hyperactive in schizophrenia (16.10.2015)

Entstehung und Niedergang des Thymus: Kalbsbries ja, Rinderbries nein

Wie bin ich noch gleich auf das Thema Thymus gekommen, damals im September? Ach ja: Ich wollte im Autoimmunbuch-Manuskript „mal rasch“ erklären, wann und wie der Thymus während der Embryonalentwicklung entsteht. Ha! Haha! Nach der einen oder anderen Abschweifung komme ich nun auf diese Frage zurück – und verfolge den Werdegang des Organs gleich bis ins hohe Alter.

Entstehung des Thymus

Der Thymus wird beim Menschen recht früh angelegt, und zwar nicht dort, wo sich das Organ später befindet (zwischen Brustbein und Herz), sondern weiter oben: in der Region der dritten Kiementasche am Hals des Embryos. Dass Säugetier-Embryonen zunächst Kiementaschen ausbilden, ist einer der zahlreichen Belege für unsere stammesgeschichtliche Verwandtschaft mit den Fischen, die ja ebenfalls zu den Wirbeltieren gehören und auch (mindestens) einen Thymus haben. (Haie haben fünf Thymi, Knochenfische nur einen, wie wir Säugetiere.)

Stammzellen aus dem Endoderm – dem innersten der drei Keimblätter im jungen Embryo, aus dem unter anderem der Verdauungstrakt, die Leber und die Lunge entstehen – entwickeln sich hier zu Epithelzellen. In manchen, durchaus auch neuen Lehrbüchern ist noch von einer Beteiligung eines zweiten Keimblatts die Rede, nämlich des Ektoderms, das unter anderem die Haut und das Nervensystem hervorbringt. Tatsächlich haben Thymuszellen mit diesen Organen einiges gemeinsam, etwa die Keratinproduktion oder die Kommunikation über Neuropeptide. Nach derzeitigem Wissensstand stammen sie dennoch alle aus dem Endoderm.

Anfangs ist noch kein Unterschied zwischen einer Rinde und einem Mark zu erkennen, und es fehlen die Hohlräume zwischen den Zellen sowie die Blutgefäße. Besiedelt wird der junge Thymus mit T-Zell-Vorläufern aus dem blutbildenden Knochenmark, das wiederum dem mittleren Keimblatt entstammt: dem Mesoderm, das neben Knochen und Blut auch die Muskeln, die Nieren und das Herz hervorbringt. Die Besiedlung beginnt etwa ab Tag 60 der Schwangerschaft. Die durch Lockstoffe (Chemokine) angezogenen und anfangs – mangels Blutgefäßen – direkt durch das Gewebe einwandernden T-Zell-Vorläufer regen den jungen Thymus zur Ausbildung seiner charakteristischen Schwammstruktur, zur Differenzierung in Rinde und Mark sowie zur Ausbildung von Blutgefäßen an, über die dann weitere Prä-Thymozyten nachkommen.

Die T-Zell-Produktion setzt weit vor der Geburt ein

Sobald die Architektur steht, setzen die positive und die negative Selektion ein. Ab der 9. Schwangerschaftswoche produziert der junge Thymus zunächst sogenannte γδ-T-Zellen, die bei Erwachsenen nur etwa fünf Prozent aller Lymphozyten ausmachen und vor allem in der Haut und den Schleimhäuten sehr schnell auf Gewebsveränderungen (etwa durch Infektionen) reagieren können, da sie bereits voraktiviert in das Gewebe einwandern. Ihre T-Zell-Rezeptoren bestehen aus einer Gamma- und einer Delta-Kette und weisen eine viel geringere Diversität auf als die später viel häufigeren αβ-T-Zellen.

Ab der 10. Woche werden auch T-Zellen mit Rezeptoren aus α- und β-Ketten hergestellt, also Helferzellen (CD4+), zytotoxische T-Zellen (CD8+) und regulatorische T-Zellen (Tregs). Die Nachfahren der Einwanderer aus dem Knochenmark vermehren sich dabei enorm, sowohl im Thymus als auch anschließend in der Peripherie. So ist jeder individuelle T-Zell-Rezeptor mit dem ihm eigenen Antigen-Erkennungsmuster, der die Selektion im Thymus bestanden hat, im menschlichen Körper auf schätzungsweise 1000 bis 10.000 naiven (d. h. noch nie mit „ihrem“ Antigen konfrontiert gewesenen) T-Zellen vertreten, die von einem einzigen Thymozyten abstammen, also einen Klon bilden. Wenn eine T-Zelle ein Antigen erkennt, setzt eine weitere starke Vermehrung ein, damit der expandierte Klon die Gefahr schnell und gründlich eindämmen kann.

Der Thymus schrumpft – relativ ab der Geburt, absolut spätestens ab der Pubertät

Im voll entwickelten Thymus kommen auf jede Thymus-Epithelzelle etwa 1000 Thymozyten, also künftige T-Zellen. Bei der Geburt des Kindes wiegt das Organ – nunmehr an seiner endgültigen Position vor dem Herzen angelangt – etwa 15 Gramm, in der Pubertät etwa 35 Gramm, mit 25 Jahren etwa 25 Gramm, bei 60-Jährigen höchstens noch 15 Gramm und mit 70 Jahren gelegentlich sogar weniger als 5 Gramm. Das relative Gewicht sinkt bereits von der Geburt an kontinuierlich.

Thymusgewicht_Schwangerschaft_nach_FitzSimmons1988_650

Das Thymusgewicht erreicht zur Geburt seinen vorläufigen Höhepunkt. In der Kindheit wächst der Thymus zwar weiter, aber langsamer als der Rest des Körpers. Nach FitzSimmons et al. (1988): Normal length of the human fetal gastrointestinal tract.

Schon mit etwa einem Jahr setzt beim Menschen die sogenannte Involution oder Atrophie des Thymus ein, die von außen nach innen voranschreitet: Thymus-Epithelzellen werden durch Adipozyten, also Fettzellen, sowie Bindegewebszellen ersetzt. Durch diesen Umbau kann das Gewicht noch einige Jahre weiter ansteigen, obwohl die Involution bereits in vollem Gange ist. Übrig bleiben schließlich in jedem Läppchen vereinzelte Inseln mit einem Rinden- und einem Mark-Anteil, getrennt durch nichtfunktionales Gewebe. Durch den Schwund des funktionalen Thymusgewebes sinkt auch der tägliche Output an neuen naiven T-Zellen.    Weiterlesen

Hassall-Körperchen: Friedhöfe oder Missionshelfer?

Im letzten Beitrag habe ich die späteren Phasen der Thymozytenreifung, die teils an der Grenze zwischen Rinde und Mark, teils im Mark selbst ablaufen, weitgehend ausgespart. Dabei gibt es auch im Mark rätselhafte Strukturen, deren Funktion noch nicht geklärt ist: die sogenannten Hassall-Körperchen (Hassall’s corpuscles), die aus zahlreichen konzentrisch aneinandergelagerten Zellen oder Zellüberresten bestehen und in Mikroskopaufnahmen oft an Rosenblüten erinnern, weil sie den roten Farbstoff Eosin sehr gut annehmen.

Die Körperchen wurden erstmals 1846 von dem Arzt Arthur Hill Hassall beschrieben. Sie bestehen, wie man heute weiß, aus alten medullären Thymus-Epithelzellen (mTECs) und sind bereits in Embryonen nachweisbar. Ihre Zahl steigt bis zur Pubertät an und sinkt anschließend mit dem altersbedingten Abbau des funktionsfähigen Thymusgewebes wieder. Mäuse und Ratten haben relativ wenige und kleine Hassall-Körperchen, was die Erforschung dieser Gebilde erschwert.

P1310468_Hassall-Körperchen_650

Wie die Bezeichnung „Thymus-Epithelzellen“ schon andeutet, haben mTECs viel mit den Epithelzellen in unserer Oberhaut, den Keratinozyten, gemeinsam: Beide können Keratin produzieren. Beide bilden Schichten aus, indem sie sich über sogenannte Desmosomen – scheibenförmige Kontaktflächen – mit benachbarten Zellen zusammenschweißen. Die Keratinozyten in unserer Oberhaut bilden flache Schichten, verhornen mit zunehmendem Alter und werden von jüngeren Zellen nach oben weggeschoben, bis sie abschilfern. Die alten mTECs in einem Hassall-Körperchen lagern sich dagegen in konzentrischen Schichten ab. Die Augen in der Zeichnung sollen andeuten, dass die Zellen in den äußeren Schichten noch Kerne haben und auch sonst intakt und lebendig sind. In den älteren, weiter innen abgelagerten Zellresten ist dagegen keine Struktur mehr zu erkennen.

Früher hielt man die Hassall-Körperchen für Müllhalden oder Friedhöfe für alte mTECs oder aussortierte Thymozyten. Schließlich gehen im Rahmen der sogenannten negativen Selektion sehr viele der scheinbar ziellos im Mark herumirrenden Thymozyten zugrunde, wenn ihre Rezeptoren zu stark auf irgendein Autoantigen ansprechen, das ihnen die medullären Thymus-Epithelzellen, die Makrophagen oder die dendritischen Zellen präsentieren:

P1310777_Thymozytenreifung_sw_650_Klein2014_Paul2013_Parham189

Unter den dendritischen Zellen sind sowohl solche, die im Thymus entstanden sind und ihn nie verlassen haben, als auch eine Teilpopulation, die über die Blutgefäße aus anderen Teilen des Körpers in den Thymus eingewandert ist und von dort Autoantigene zur Präsentation mitgebracht hat. Medulläre Thymus-Epithelzellen dagegen stellen mithilfe ihres besonderen Transkriptionsfaktors Aire für kurze Zeit alle möglichen Autoantigene her, die sonst nur in bestimmten Organen oder Gewebetypen produziert werden. Hier noch einmal eine ältere Zeichnung, die zwei Thymozyten zeigt, die eines dieser aus dem Hut gezauberten Autoantigene erkennen – und sich damit disqualifiziert haben:

P1110584_Thymus_AIRE_zentrale_Toleranz_Zauberer_650

Aber wieso sollten die Hassall-Körperchen etwas mit der Entsorgung der autoreaktiven und damit disqualifizierten Thymozyten zu tun haben? Die Beseitigung schädlicher Zellen und Zellreste übernehmen normalerweise Fresszellen wie Makrophagen.

Doch auch wenn die Hassall-Körperchen nicht an der Beseitigung autoreaktiver T-Zellen beteiligt sind, dürften sie ihren Beitrag zur Etablierung der sogenannten zentralen Toleranz im Immunsystem leisten. Wie oben in der zweiten Zeichnung zu sehen, wandern nicht nur die einfach positiven, nunmehr reifen CD4+- oder CD8+-T-Zellen aus dem Thymusmark in die Blutgefäße aus, sondern noch ein dritter Zelltyp: die natürlichen regulatorischen T-Zellen oder nTregs.

Diese nTregs gehen aus autoreaktiven CD4+-T-Zellen hervor, die der negativen Selektion irgendwie entgehen – offenbar mit Hilfe bestimmter dendritischer Zellen, die wiederum von den Hassall-Körperchen unterstützt werden. Aber wie läuft diese Konversion potenziell gefährlicher, weil autoreaktiver CD4+-T-Zellen zu Friedensstiftern ab?

Die äußeren, lebendigen Epithelzellen in den Hassall-Körperchen produzieren kein Aire mehr und damit auch kaum noch präsentationsfähige Autoantigene. Stattdessen stellen sie den Botenstoff TSLP (thymic stromal lymphopoietin) her. Dieser hindert unreife dendritische Zellen in der Umgebung einerseits an der Produktion entzündungsfördernder Zytokine wie Interleukin 12 oder TNF-α, die für die meisten anderen dendritischen Zellen typisch sind, und regt dafür die Produktion anderer Zytokine wie TARC oder MDC an. Zum anderen steigert er die Herstellung von MHC-Klasse-II-Molekülen (den Antigen-Präsentiertellern, die für den Kontakt mit T-Zellen nötig sind) und startet in den dendritischen Zellen die Produktion der Kostimulatoren CD80 und CD86, die den mit ihnen in Kontakt tretenden T-Zellen Überlebenssignale senden.

Diese besondere Population dendritischer Zellen regt einfach positive CD4+-Thymozyten nicht nur zum Überleben, sondern auch zur Vermehrung und zur Expression des Treg-typischen Markers CD25 an. Die so entstandenen CD4+-CD25+-Thymozyten sind ausschließlich im Umfeld von Hassall-Körperchen tief im Inneren des Thymus anzutreffen und produzieren den Transkriptionsfaktor FoxP3, womit sie sich als regulatorische T-Zellen zu erkennen geben. Sie wandern dann in die Blutbahn aus und üben später im Körper einen besänftigenden Einfluss auf alle anderen T-Zellen in ihrer Nachbarschaft aus, sobald sie durch eine beginnende Autoimmunreaktion auf das Autoantigen aktiviert werden, das ihre T-Zell-Rezeptoren erkennen.

Die nTregs rekrutieren sich aus autoreaktiven Thymozyten, die von ihrer Autoantigen-Bindungsstärke her eigentlich zu normalen CD4+-T-Zellen (also Helferzellen) werden oder aber der negativen Selektion anheimfallen und im Thymus sterben müssten. Im folgenden Diagramm sind sie zwischen den beiden gestrichelten Linien angesiedelt:

Thymus_Kurve_positive_negative_Selektion_Tregs_TGF-beta_Paul_650

Lange hat man sich gefragt, wie identische Autoantigen-Bindungsstärken zu so unterschiedlichen Schicksalen führen können. Wie so oft in der Biologie dürfte die Lösung in der komplexen räumlichen Struktur des Organs liegen: Künftige nTregs mögen zwar ebenso stark reagierende T-Zell-Rezeptoren haben wie viele der Thymozyten, die zu normalen T-Helferzellen werden oder aber abgetötet werden – aber sie bewohnen eine andere ökologische Nische im Thymus: Sie haben andere Nachbarn, die ihre weitere Entwicklung mit ihren Zytokinen beeinflussen. Nur da, wo Hassall-Körperchen sind, können sie zu regulatorischen T-Zellen heranreifen.

Vermutlich sorgt eine fein austarierte Rückkopplung dafür, dass die nTregs – normalerweise etwa 10 Prozent aller CD4+-T-Zellen im Körper – nicht auf Kosten der T-Helferzellen überhand nehmen oder umgekehrt: Tregs produzieren den Botenstoff TGF-β, der im Immunsystem viele Aufgaben erfüllt, zum Beispiel Entzündungsreaktionen unterdrückt. Im Thymus scheint er die Weiterentwicklung alter mTECs zu Hassall-Körperchen zu hemmen. Solange der Thymus genug nTregs hervorbringt, sorgt deren TGF-β dafür, dass keine weiteren Hassall-Körperchen und damit keine neuen „Treg-Missionsschulen“ entstehen. Gibt es dagegen zu wenige Tregs, so sinkt die TGF-β-Konzentration im Thymusmark, sodass sich neue Hassall-Körperchen bilden, und so weiter.

Die mutmaßliche Funktion der Hassall-Körperchen als Treg-Missionsschulen schließt übrigens weitere Aufgaben, etwa in der negativen Selektion, nicht aus. So könnten die Proteine, aus denen die alten mTECs in den Hassall-Körperchen ihre scheibenförmigen Zellkontaktstellen (Desmosomen) herstellen, von benachbarten antigenpräsentierenden Zellen aufgenommen, zu Autoantigenen weiterverarbeitet und den im Mark umherwandernden Thymozyten präsentiert werden, um T-Zellen auszusortieren, die auf diese typischen Epithelzellen-Produkte ansprechen.

Wie schon das Ammenmärchen endet also auch dieser Beitrag offen: Die Fachwelt ist sich noch uneins, wozu Hassall-Körperchen wirklich gut sind. Dass sie reine Abfallprodukte sind, wage ich angesichts ihres Aufbaus, ihrer Lage im Thymus und ihrer regen Kommunikation mit den Zellen in ihrer Nachbarschaft aber auszuschließen.

Ammenmärchen

Der Thymus ist ein unauffälliges Organ zwischen Brustbein und Herz; die meisten Menschen wissen nichts von seiner Existenz. Dabei kommt nicht um ihn herum, wer das Grundprinzip der sogenannten erworbenen Immunität verstehen will:

So, wie die Evolution nicht zielgerichtet voranschreitet, sondern über das Wechselspiel von Zufallsvarianten und Auslese, so richtet sich auch die erworbene Abwehr nicht gezielt gegen Krankheitserreger und andere Gefahren, sondern stellt einfach eine gigantische Auswahl an Rezeptor-Zufallsvarianten zur Verfügung, um auf alles zu reagieren, was nicht in den Körper hineingehört. Damit der Körper sich dabei nicht selbst bekämpft (was bei Autoimmunerkrankungen passiert), müssen alle T-Zellen, deren Rezeptoren stark an körpereigene Antigene binden, rechtzeitig ausgeschaltet oder zu Friedensstiftern umgebaut werden.

Anders geht es logischerweise nicht: Unser Körper weiß a priori nichts über die Welt und ihre Gefahren, die sich ja ständig verändern. Er weiß nur etwas über sich selbst; also bildet er die Differenz aus allen erdenklichen Erkennungsmustern und den Erkennungsmustern für die eigenen Bestandteile. Beide Aufgaben – die Generierung der immensen Vielfalt an T-Zell-Rezeptoren und die Eliminierung der stark autoreaktiven T-Zellen, die zu Autoimmunreaktionen führen würden – übernimmt der Thymus.

Thymus_Lage_im_Körper_500

Aus dem Knochenmark wandern ständig unreife T-Zellen oder Thymozyten in den Thymus ein, wo sie durch die sogenannte somatische Rekombination oder V(D)J-Rekombination aus einem begrenzten Satz an Genen eine Vielzahl individueller Rezeptoren erzeugen, die dann auf ihre Antigen-Bindungsfähigkeit getestet werden. Die dabei nicht aus dem Verkehr gezogenen, nunmehr reifen T-Zellen wandern aus dem Thymus in die anderen Teile des Lymphsystems, etwa die Milz, die Lymphknoten oder das Lymphgewebe des Verdauungstrakts, wo sie ihre Umgebung überwachen und Alarm schlagen, sobald ihre Rezeptoren an die passenden Antigene binden.

Die Entwicklung der künftigen T-Zellen im Thymus durchläuft mehrere Phasen, die teils mit starker Vermehrung durch Zellteilung, teils mit einem Rückgang der Zellzahl durch Verkümmern beim Ausbleiben von Überlebenssignalen oder durch die Einleitung eines kontrollierten Zelltods einhergehen. Anfangs sind die Thymozyten „doppelt negativ“ (DN), denn ihre Oberfläche weist noch keinen der beiden Korezeptoren CD4 – typisch für T-Helferzellen – und CD8 – typisch für zytotoxische T-Zellen – auf. (Welche Aufgabe diese Korezeptoren haben und wie ein T-Zell-Rezeptor aufgebaut ist, habe ich hier in der dritten Zeichnung dargestellt.)

Am Ende der ersten Vermehrungsphase werden zunächst die Gene für eine Hälfte des T-Zell-Rezeptors, β-Kette genannt, durch das Herausschneiden von Zwischensequenzen neu zusammengesetzt oder rekombiniert. Die daraufhin produzierte Rezeptorhälfte wird an einen provisorischen Platzhalter (pα) gekoppelt, der später durch die andere Rezeptorhälfte – die α-Kette – ersetzt wird. Nur diejenigen Thymozyten, deren β-Rezeptorhälften funktionstüchtig sind, also korrekt in die Zelloberfläche eingebaut werden und von dort Signale ins Zellinnere leiten können, erhalten von ihrer Umgebung im Thymus ein Überlebenssignal; die übrigen verkümmern im Rahmen der sogenannten β-Selektion.

Thymozyten-Entwicklung_bis_pos_Sel_650Paul2013_u_Parham187

Anschließend vermehren sich die überlebenden T-Zell-Vorläufer stark, und sie fangen an, beide Korezeptoren CD4 und CD8 herzustellen. Daher heißen sie nun „doppelt positiv“ (DP). Jetzt werden auch die Gene für die α-Kette des T-Zell-Rezeptors durch somatische Rekombination neu zusammengeschnitten, um ein möglichst breites Spektrum an Antigen-Bindungsfähigkeiten zu erzeugen.

Die DP-Thymozyten haben drei Tage Zeit, um einen funktionsfähigen T-Zell-Rezeptor herzustellen. Gelingt ihnen das nicht, so gehen sie durch das Ausbleiben von Überlebenssignalen aus ihrer Umgebung ein. Haben sie einen intakten Rezeptor erzeugt, der mehr oder weniger gut an die Antigen-MHC-Komplexe bindet, die ihm von den kortikalen Thymus-Epithelzellen (cTEC) präsentiert werden, so überleben sie diese sogenannte positive Selektion und wandern aus der Thymus-Rinde ins Thymus-Mark weiter. Dort müssen die Zellen, die mittlerweile nur noch einen der beiden Korezeptoren herstellen und damit einfach positiv (single positive = SP) sind, noch die negative Selektion bestehen, in der autoreaktive T-Zellen ausgesondert werden. Dazu in einem der folgenden Beiträge mehr; wir verweilen heute in Kortex, in der Rinde des Thymus.

P1310777_Thymozytenreifung_sw_650_Klein2014_Paul2013_Parham189

Bereits in den 1980er-Jahren fiel den Forschern eine Kuriosität auf: Ein Teil der kortikalen Thymus-Epithelzellen stellt offenbar das Hormon Oxytocin her; jedenfalls wird das Oxytocin-Gen in ihnen abgelesen. Und die doppelt positiven Thymozyten stellen einen Oxytocin-Rezeptor her und reagieren auf Oxytocin mit starker Zellteilungsaktivität. Alles deutete also auf eine hormonelle Kommunikation zwischen diesen beiden Zelltypen hin. Seltsamerweise ließ sich aber in der Flüssigkeit aus den Hohlräumen zwischen den Thymuszellen selbst mit sehr empfindlichen Nachweismethoden nie auch nur der leiseste Hauch Oxytoxin aufspüren.

Des Rätsels Lösung: Das Oxytocin gelangt nicht in die Flüssigkeit zwischen den Zellen, weil es nicht ausgeschüttet wird, sondern nur bei direkten Zellkontakten zum Einsatz kommt. Die Oxytocin-produzierenden kortikalen Thymus-Epithelzellen, thymic nurse cells (TNC) oder Ammenzellen genannt, sind erheblich größer als die Thymozyten, binden diese mithilfe des Hormons eng an ihre Oberfläche und nehmen bis zu 50 (nach einigen Quellen sogar bis zu 200) Thymozyten im DP-Stadium vorübergehend in sich auf. Unter dem Mikroskop sieht man die kleinen Thymozyten oft geradezu bienenwabenartig in den Ammenzellen angeordnet (o.). Aus anderer Perspektive (u.) erkennt man, dass die Ammenzellen nur an einer Seite Thymozyten aufnehmen. Ob sie diese wirklich komplett in Vesikel, also Bläschen einschließen oder sie nur mit ihren Zellmembranlappen eng umarmen, ist umstritten.

P1310778_TNC_Aufsicht_Seitensicht_Aufnahme_Prä-T-Zelle_500

Klar ist dagegen, dass die Thymozyten nicht etwa passiv verschlungen werden, sondern aktiv an ihrer Aufnahme in die Ammenzellen teilnehmen: Wie in der Zeichnung unten rechts angedeutet, verformen sich die Thymozyten und bewegen sich auf die Ammenzelle zu, während die Membranausstülpungen der Ammenzelle immer länger werden und die Thymozyten umschließen.

Die Bezeichnung „Ammenzelle“ soll zum Ausdruck bringen, dass zumindest ein Teil der Thymozyten von diesem innigen Kontakt profitiert; sie werden von den Ammenzellen versorgt oder geschützt.

P1310465_Ammenzelle_Thymus_650

Dass Säugetierzellen andere Zellen desselben Organismus aufnehmen und später lebendig wieder ausscheiden können, statt sie zu verdauen, stieß in der Fachwelt auf ungläubiges Staunen. Außerdem war und ist die Funktion der Ammenzellen umstritten. Die mutmaßlich Oxytocin-gelenkte Kommunikation der beiden Zelltypen führte zunächst zu der Hypothese, dass die Ammenzellen unser Immunsystem mit unserem Hormonsystem verknüpfen und dafür sorgen, dass die T-Zellen später nicht Alarm schlagen, wenn sie im Körper mit Hormonen konfrontiert werden.

Diese Hypothese wurde zu einem Modell ausgebaut, demzufolge die Ammenzellen die internalisierten DP-Thymozyten generell auf die Stärke der Bindung zwischen T-Zell-Rezeptor und MHC-Antigen-Komplex prüfen und alle allzu bindungsfreudigen Thymozyten (in der nächsten Zeichnung links) absterben lassen. Schließlich sind alle Antigene, die den Thymozyten im Thymus auf einem MHC-Klasse-I- oder MHC-Klasse-II-Molekül präsentiert werden, notgedrungen Autoantigene, nämlich von körpereigenen Zellen selbst hergestellte Antigene.

Die Beseitigung der abgestorbenen Thymozyten scheinen Makrophagen zu übernehmen, die sich in der Nähe der Ammenzellen aufhalten und oft sogar im Inneren der Thymozyten-haltigen Höhlen in den Ammenzellen zu sehen sind, in denen sie womöglich ähnliche Dienste verrichten wie Putzerfische im Maul großer Raubfische. Nur Thymozyten, deren Rezeptoren zwar in der Lage sind, Autoantigen-beladene MHC-Moleküle zu erkennen, aber maßvoll darauf reagieren (rechts), werden intakt in die Freiheit entlassen.

P1310778_TNC_veraltetes_Modell_Pezzano_SW_korr_500

Demnach würden sich die Ammenzellen an der negativen Selektion beteiligen. Gegen dieses Modell spricht, dass die meisten Forscher Ammenzellen ausschließlich in der Thymusrinde finden, vor allem in deren Außenbereich direkt unter der Bindegewebskapsel, nicht aber an der Grenze zwischen Rinde und Mark oder gar im Mark, wo sich die negative Selektion nach vorherrschender Meinung abspielt. Manche Forscher widersprechen dem: Sie finden entweder auch im Mark Ammenzellen oder auch in der Rinde Indizien für eine negative Selektion. Aber auch sie sind der Ansicht, dass die Ammenzellen primär an der positiven Selektion beteiligt sind, die der negativen Selektion vorgeschaltet ist.

Ein japanisches Team (Y. Nakagawa et al.) brachte 2012 ein alternatives Modell ins Gespräch. Die Forscher hatten festgestellt, dass in den Ammenzellen DP-Thymozyten angereichert sind, die nach einer misslungenen ersten somatischen Rekombination ihrer Rezeptor-α-Kette eine weitere Neuanordnung dieser Gene durchlaufen haben. Die Ammenzellen wären demnach weder für die positive noch für die negative Selektion unentbehrlich, würden aber den Anteil der Thymozyten erhöhen, die die positive Selektion überleben.

Während der somatischen Rekombination der α-Ketten-Gene wird ein Modul V (für „variabel“) mit einem Modul J (für joint, also „Gelenk“) verbunden. Nur wenn das passgenau gelingt, kann von dem Gen eine Messenger-RNA abgelesen werden, die als Bauanleitung für die α-Kette dient. Häufig führt der erste Versuch zu einer aus dem Takt geratenen DNA-Sequenz, von der die Zelle keine brauchbaren Informationen mehr ablesen kann. Dann erhält die Zelle eine zweite, bei Bedarf auch eine dritte oder vierte Chance, bis schließlich alle V- und J- Module verbraucht sind oder aber ein intaktes Kombi-Modul entstanden ist.

 

P1310780_TCR-alpha-Rearrangements_Parham_Janeways_650

Dafür brauchen die Thymozyten offenbar einen Rückzugsort, an dem sie vor einem vorzeitigen Absterben geschützt sind. Die Höhlen in den Ammenzellen könnten dieser Ort sein: gewissermaßen Klosterzellen für Thymozyten, die sich in Ruhe neu erfinden wollen.

P1310782_TNC_als_Kloster_650

Warum solche Schutzräume nur bei der Neuanordnung der α-Ketten-Gene angeboten werden und nicht schon bei der somatischen Rekombination der β-Ketten, darüber kann ich nur wild spekulieren: Vielleicht hat der Organismus zu diesem Zeitpunkt schon so viel Energie und Zeit in die DP-Thymozyten investiert, dass es verschwenderisch wäre, sie nach dem ersten Fehlversuch absterben zu lassen. DN-Thymozyten könnten dagegen „billiger“, also bei einer gescheiterten β-Ketten-Rekombination mit weniger Aufwand zu ersetzen sein.

Mäuse, bei denen man durch genetische Eingriffe verhindert, dass ein Teil der kortikalen Thymus-Epithelzellen zu Ammenzellen heranreift, haben ein unauffälliges T-Zell-Profil; offenbar gelingt die Thymozyten-Reifung einschließlich der positiven und der negativen Selektion auch ohne Ammenzellen – vielleicht einen Hauch weniger effizient.

Diese vorläufige Lösung des Rätsels um die Ammenzellen ist zugegebenermaßen etwas unbefriedigend. Sie ist längst nicht allgemein anerkannt und kann schon morgen durch ein Revival des Selektionsmodells oder das Aufkommen eines dritten Modells überholt sein. Vor allem aber klingt sie arg unspektakulär angesichts der wildromantischen Verheißungen, die das Wort Oxytocin heraufbeschwört, und der Ungeheuerlichkeit, die das Verschlingen und Ausspeien lebender Zellen darstellt: Wenn Säugetierzellen ein so spektakulären Trick grundsätzlich beherrschen – wieso machen sich nicht häufiger von ihm Gebrauch?

Ikonografie des Thymus: Wie einfach ist zu einfach?

Vorab: Im Unterschied zu den meisten anderen Artikeln enthält dieser Beitrag Abbildungen, die ich nicht selbst erstellt habe, als Bildzitate. Sie stehen nicht unter der sonst hier üblichen CC-Lizenz (siehe „Über dieses Blog“).

Der Thymus ist seit der Antike bekannt, wenn auch seine Funktion lange unklar blieb. Seine Histologie ist bereits in Gray’s Anatomy korrekt dargestellt: Zwischenwände aus Bindegewebe (Trabekel oder Septen) unterteilen jeden Lappen in mehrere Läppchen, die größtenteils mit dunkler Rinde (Cortex) gefüllt sind, während das hellere Mark (Medulla) die Mitte einnimmt. In den Trabekeln verlaufen Blutgefäße.

01_Gray1179_Thymus

aus: Henry Gray (1918) Anatomy of the Human Body

In der folgenden Abbildung von der Website des OpenStax College ist eine Schemazeichnung mit fünf Zelltypen enthalten:

  • Thymozyten – die aus dem Knochenmark stammenden, über die Blutgefäße in den Thymus eingewanderten Vorläufer der T-Zellen,
  • Rinden-Epithelzellen,
  • Mark-Epithelzellen,
  • dendritische Zellen und
  • Makrophagen.

02_Commons_Wikimedia_2206_The_Location_Structure_and_Histology_of_the_Thymus

By OpenStax College [CC BY 3.0 (http://creativecommons.org/licenses/by/3.0)], via Wikimedia Commons

Alles schön übersichtlich, alles passt zur Erzählung: Die Rinden-Epithelzellen sind für die positive Selektion zuständig, vermitteln also nur solchen Thymozyten ein Überlebenssignal, die nach der Neuanordnung ihrer T-Zell-Rezeptor-Gene schwach an die ihnen präsentierten MHC-Autoantigen-Komplexe binden. Dann wandern die überlebenden Thymozyten weiter in das Mark, wo die Mark-Epithelzellen und die klassischen antigenpräsentierenden Zellen die negative Selektion vornehmen: Sie sondern alle Thymozyten aus, die zu stark an die präsentierten Autoantigene binden und daher später Autoimmunreaktionen auslösen könnten. So wird die sogenannte zentrale Toleranz des Immunsystems hergestellt. Anschließend wandern die verbliebenen T-Zellen über die Blutgefäße in den Körper aus, wo sie ständig nach Antigenen suchen, die zu ihren Rezeptoren passen, und bei einer entsprechenden Begegnung eine Immunreaktion auslösen.

Ähnliche Abbildungen finden sich in fast jedem Lehrbuch der Immunologie, angefangen vermutlich mit der ersten Auflage des Janeway’s. Hier die Version aus der siebten Auflage:

03_Murphy_Janeways_2008_Fig7-15_identisch_1998

K. M. Murphy, P. Travers, M. Walport: Janeway’s Immunobiology. Taylor & Francis, 7. Auflage, 2008; Abb. 7-15 (S. 274)

Die Epithelzellen mit ihren langen Ausläufern bilden ein lockeres Netz, dessen Hohlräume in der Rinde nahezu vollständig mit Thymozyten angefüllt sind. Im Mark herrscht weniger Gedränge, da viele Thymozyten bereits in der Rinde eingegangen sind. Dafür findet sich hier nun ein neues Objekt: das Hassall-Körperchen, von dem es im Text lapidar heißt, es sei vermutlich an der Vernichtung der aussortierten Thymozyten beteiligt.

Dieselbe Zeichnung wird auch in Peter Parhams The Immune System (2015) verwendet, was kein Wunder ist, da dieses Buch auf dem Janeway’s aufbaut:

04_Parham_2015_Fig7-3

P. Parham: The Immune System. GarlandScience, 4. Auflage, 2015; Abb. 7.3, S. 179

Auch andere Verlage bedienen sich dieser Vorlage, so Wiley in dem Titel Immunologie für Dummies:

05_Häcker_2014_Abb3-2

B. Häcker: Immunologie für Dummies. Wiley-VCH, 1. Auflage, 2014; Abb. 3.2 (S. 58)

Nicht, dass ich mich über diese schlichte Nachzeichnung empören möchte: Ich selbst habe es nicht anders gemacht. Allerdings habe ich außer Janeway’s auch diese Vorlage von der Website Embryology.ch herangezogen, die um einen weiteren Zelltyp ergänzt ist, nämlich die gelben Sternchen an der Außenwand des Läppchens (Nr. 2): die thymic nurse cells, zu Deutsch: Ammenzellen.

06_thymusaufbauohneT_embryologych

Quelle: http://www.embryology.ch/allemand/qblood/lymphat03.html#anchaut

Hier das Ganze noch einmal mit Thymozyten in den Hohlräumen zwischen den Epithelzellen:

06b_thymusaufbaumitT_embryologych

Quelle: http://www.embryology.ch/allemand/qblood/lymphat03.html#anchaut

In meiner Zeichnung habe ich die Thymozyten im zentralen Läppchen weggelassen, damit sie nicht zu unruhig wird, und dafür rechts nur die Thymozyten dargestellt:

07_P1170230_Thymus_Feinbau_Kapsel_schwarz_650_Kopie

Die mysteriösen Ammenzellen werden ganz unterschiedlich dargestellt, weil man noch Jahrzehnte nach ihrer Entdeckung wenig über sie weiß: In Thymus-Präparaten sind sie optisch nicht von den anderen Rinden-Epithelzellen zu unterscheiden, und wenn man sie in Kultur hält, runden sie sich ab. Auch wo sie im Thymus zu finden sind, scheint nicht endgültig geklärt. In dieser Zeichnung hält sich ein Teil von ihnen am Außenrand des Läppchens auf und eine andere Population im inneren Rindenbereich:

08_Pezzano_2001_Questionable_TNCs_Fig1

M. Pezzano et al. (2001): Questionable Thymic Nurse Cell. MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, DOI: 10.1128/MMBR.65.3.390–403.2001; Abb. 1

Kurioserweise scheinen sie Thymozyten zu enthalten. Tatsächlich zeichnet genau das Ammenzellen aus: Sie können andere Zellen aufnehmen und lebend wieder ausscheiden. Das hat auch T. V. Rao in seiner Zeichnung darzustellen versucht, wobei die nurse cells hier wiederum nur am äußeren Rand der Rinde angesiedelt sind:

09_Dr_TV_Rao_structure-and-functions_Thymus

Quelle: Dr. T. V. Rao, MD; http://image.slidesharecdn.com/immunesystem-pptbestfile-120108004634-phpapp01/95/immune-system-structure-and-functions-44-728.jpg?cb=1325984729

Eine französische Quelle gibt der cellule nourricière (links) eine unregelmäßigere Kontur; ihre Ausläufer umfangen Thymozyten und verschlingen sie, während die Rinden-Epithelzelle (rechts) die Thymozyten zwischen ihren „Strahlen“ nur äußerlich bindet:

10_Affaireweb_immunopourdebutants_thymus1

Quelle: http://www.affaireweb.promety.net/

Ganz gleich, wie man sie nun darstellt: Die Existenz von Thymus-Ammenzellen ist inzwischen ebenso gesichert wie die der Hassall-Körperchen, und wir dürfen annehmen, dass beide Strukturen im Thymus wichtige Aufgaben übernehmen. Dass ihre Aufgaben noch nicht genau bekannt sind, sollte nicht dazu verleiten, sie in den Schemazeichnungen zu unterschlagen, um die schöne, glatte Erzählung vom „Bildungsweg“ der Thymozyten im Thymus zu retten. Vielleicht trägt die Aufklärung ihrer Funktion Entscheidendes zum Verständnis von Autoimmunerkrankungen bei.

Wie thymic nurse cells unter dem Elektronenmikroskop aussehen, welche Rolle sie eindeutig nicht und welche sie mutmaßlich wohl spielen und wie sie überhaupt entdeckt wurden, beschreibe ich im nächsten Beitrag. Dass der „Ammenmärchen“ heißen wird, ist ja wohl klar! Kleiner Teaser: Das neuerdings in der Populärliteratur zum „Kuschelhormon“ avancierte Neuropeptid Oxytocin spielt darin eine große Rolle. Es hat mit den Forschern Verstecken gespielt.

11_640px-Oxytocin_color_commons.svg

Oxytocin (Grafik gemeinfrei)

 

 

Knut und der ganze Rest: Urlaubsnachlese

Knut hat es postum noch ein vermutlich letztes Mal geschafft, das Sommerloch zu füllen: Während meines Urlaubs ging die Nachricht um, dass der Eisbär an einer Autoimmunerkrankung zugrunde gegangen ist, nämlich an einer Anti-NMDA-Rezeptor-Encephalitis. Hier der entsprechende Forschungsartikel von H. Prüss et al.: Anti-NMDA Receptor Encephalitis in the Polar Bear (Ursus maritimus) Knut.

Weitere Immunsystem-Meldungen und -Fachartikel der letzten Wochen; über einige davon werde ich demnächst noch bloggen:

Mikrobiom

Antibiotics and the Gut Microbiome
Antibiotics given to infant mice may have long-term effects on the animals’ metabolism and gut microbiota.

The Sum of Our Parts
Putting the microbiome front and center in health care, in preventive strategies, and in health-risk assessments could stem the epidemic of noncommunicable diseases.

How Fats Influence the Microbiome
Mice fed a diet high in saturated fat show shifts in their gut microbes and develop obesity-related inflammation.

Skin Microbes Help Clear Infection
In a small study, researchers find a link between an individual’s skin microbiome and the ability to clear a bacterial infection.
Die Studie (Open Access): The Human Skin Microbiome Associates with the Outcome of and Is Influenced by Bacterial Infection

Genetics, Immunity, and the Microbiome
The makeup of an individual’s microbiome correlates with genetic variation in immunity-related pathways, a study shows.
Die Studie (Open Access): Host genetic variation impacts microbiome composition across human body sites

Thymus

Nur 160 Plätze für T-Vorläuferzellen im Thymus frei
Abstract (Rest hinter Paywall): Multicongenic fate mapping quantification of dynamics of thymus colonization.

Lymphgewebe

Rethinking Lymphatic Development
Four studies identify alternative origins for cells of the developing lymphatic system, challenging the long-standing view that they all come from veins.

Brain Drain
The brain contains lymphatic vessels similar to those found elsewhere in the body, a mouse study shows.

Krebs und Autoimmunität

Body, Heal Thyself
Reviving a decades-old hypothesis of autoimmunity
Review (Open Access): Cancer-Induced Autoimmunity in the Rheumatic Diseases

Autoimmun-Uveitis

Bacteria to Blame?
T cells activated in the microbe-dense gut can spark an autoimmune eye disease, a study shows.

Multiple Sklerose

Melatonin for MS?
Improvements in multiple sclerosis symptoms correlate with higher levels of the sleep hormone, a study finds.

Taufliegen: Erhöhung der genetischen Vielfalt zur Pathogenabwehr

Fending Off Infection in Future Generations
Female fruit flies challenged with infection during their lifetimes have offspring with greater genetic diversity.

Plazenta

The Prescient Placenta
The maternal-fetal interface plays important roles in the health of both mother and baby, even after birth.

Asthma

Wie Bauernhöfe vor Asthma schützen
Spezifisches Protein senkt Überreaktionen des Immunsystems ab

Selbstmedikation von Affen bei Peitschenwurm-Infektionen

Sickness behaviour associated with non-lethal infections in wild primates (Abstract)

Die Tücken der L-Thyroxin-Produktion

P1300108_L-Thyrox_100_abgelaufenIch habe gerade festgestellt, dass das lebenswichtige Medikament, das ich schlucke, abgelaufen ist. Noch nicht lange, und die Packung ist auch bald leer, aber zu denken gibt es mir doch. Dass ich überhaupt das Ablaufdatum überprüft habe, liegt an diesem Apotheke-adhoc-Artikel vom 4. August, den ich vorgestern zufällig entdeckt habe: Albtraum Levothyroxin.

Wenn man die implizite Lindopharm-Werbung ausblendet, liefert der Artikel interessante Hintergrundinformationen zu einem Phänomen, mit dem ich schon öfter konfrontiert wurde, wenn ich eine neue Packung L-Thyroxin brauchte: Bestimmte Konzentrationen waren in den Apotheken in meiner Umgebung nicht vorrätig und konnten zum Teil auch nicht kurzfristig beschafft werden. Außerdem waren die Apothekerinnen nicht gut auf den Hersteller zu sprechen, weil er in letzter Zeit oft Packungen geschickt hat, deren „Restlaufzeit“ so kurz war, dass sie praktisch unverkäuflich waren. Im Frühjahr hat Hexal die Lieferengpässe auch selbst eingeräumt und mit einer Erweiterung der Fertigungskapazitäten begründet, was mir damals nicht recht eingeleuchtet hat.

Im neuen Artikel wird das nun erklärt: „Das Molekül besteht als konjugiertes Tyrosin-Derivat aus einer tetrajodierten, phenolischen Grundstruktur. Das macht den Wirkstoff sauerstoff-, licht- und temperaturempfindlich. Er ist reaktiv und kann leicht radikalisieren. Durch Licht beispielsweise können relativ leicht Iod-Atome abgespalten werden. Die entstehenden Radikale können durch das aromatische System des Wirkstoffs stabilisiert werden, wodurch der Wirkstoff polymerisieren kann. Auch Phenole bilden unter entsprechenden Bedingungen leicht Radikale.“

Bei der Produktion müssen also Sauerstoff, Lichteinfall und Wärme ausgeschlossen werden. Auch darf die Oberflächenbeschichtung der Maschinen keine Schäden haben, weil sonst Kunststoffe oder Stahl mit dem Medikament wechselwirken können, und so weiter. Wird eine neue Produktionsanlage in Betrieb genommen, so muss man am Anfang mit viel Ausschuss rechnen.

Ich nehme derzeit im Drei-Tage-Takt zwei 115-µg-Tabletten und eine 100-µg-Tablette, da ich auf durchgängig 115 µg mit Hyperthyreose-Symptomen wie extremer Unruhe am Abend reagiert habe und auf durchgängig 100 µg mit Hypothyreose-Symptomen wie Antriebslosigkeit und depressiver Verstimmung. Das heißt aber, dass ich zehn Monate brauche, um eine 100-µg-Packung mit 100 Tabletten zu verbrauchen. Meine bereits gekaufte nächste Packung ist verwendbar bis April 2016: drei Monate zu kurz, um sie rechtzeitig zu verbrauchen. Da steht wohl ein Gespräch mit meiner Ärztin an. Vielleicht versuche ich es doch noch einmal mit durchgängig 115 µg.

An Vorratshaltung ist bei diesem Produkt jedenfalls nicht zu denken. Gerade in diesen Wochen wird einem ja oft bewusst, wie dünn der Lack unserer Zivilisation ist und wie außergewöhnlich lang die Phase der gesellschaftlichen und wirtschaftlichen Stabilität, in der wir bisher gelebt haben, und wie anders es außerhalb dieser Demokratie- und Wohlstandsblase zugeht. Wenn man auf ein lebenserhaltendes Medikament angewiesen ist, das innerhalb kurzer Zeit nach seiner hoch komplizierten Herstellung verbraucht werden muss, bekommt dieser Gedanke noch einmal eine andere Intensität.

Peter Parham: The Immune System (4. Auflage)

Parham01

Kurzbesprechung: gutes Buch.

Etwas länger: Im Dezember 2014 habe ich hier einige immunologische Lehrbücher vorgestellt. Mit dem „Janeway’s“ bin ich nie recht warm geworden, und die mir vorliegende 7. Auflage ist hoffnungslos veraltet. Um mich terminologisch und konzeptionell auf den neusten Stand zu bringen, habe ich mir die Ende 2014 (laut Verlagswebsite) bzw. Anfang 2015 (laut Impressum) erschienene 4. Auflage von Peter Parhams „The Immune System“ zugelegt – mit nicht allzu hohen Erwartungen, da dieses Werk auf dem ebenfalls bei Garland Science verlegten „Janeway’s“ basiert. Es richtet sich an Studentinnen und Studenten, die die Immunologie nicht zu ihrem Schwerpunkt machen wollen, und kommt daher mit gut 500 Seiten plus Anhang schlanker daher.

In Rezensionen der Vorauflage wurde der Aufbau kritisiert, den ich auch beim „Janeway’s“ verwirrend fand. Aber die mir vorliegende 4. Auflage ist einleuchtend gegliedert. Zahlreiche klare Abbildungen und Tabellen erleichtern das Verständnis und die Einordnung des Stoffs. Der Härtetest: Lässt sich der Parham als Hauptinformationsquelle für die Anlage und Überarbeitung immunologischer Wikipedia-Artikel verwenden? Ja, das funktioniert – und das lässt sich von meinen anderen Lehrbüchern nicht behaupten.   Weiterlesen