Archiv für den Monat: Dezember 2013

Positive und negative T-Zell-Selektion im Thymus

Noch eine Skizze zu den Vorgängen im Thymus, weil dabei auftretende Fehler wohl an vielen Autoimmunerkrankungen beteiligt sind:

P1170236_Thymus_negative_positive_Selektion_650Unreife T-Zellen wandern über die Blutbahn aus dem Knochenmark in die Thymus-Rinde ein, bewegen sich dann in Richtung Mark und durchlaufen dabei eine doppelte Selektion.

Im ersten Schritt prüfen die kortikalen Thymus-Epithelzellen, welche der T-Zellen in der Lage sind, an MHC-Moleküle zu binden. Das müssen sie können, um später Komplexe aus MHC-Molekülen und Antigenen auf antigenpräsentierenden Zellen zu erkennen und sich dadurch zu aktivieren. T-Zellen, die keine MHC-Moleküle erkennen, sind hier als große Kugeln dargestellt. Sie werden in der Thymus-Rinde ausgesiebt und beseitigt.

Im zweiten Schritt, den ich schon mal im Comic-Stil dargestellt hatte, prüfen die medullären Thymus-Epithelzellen, welche der übrig gebliebenen T-Zellen stark auf körpereigene Antigene (Autoantigene) ansprechen und damit später Autoimmunreaktionen auslösen würden. Solche T-Zellen – die dunklen Kügelchen, die von einem Magneten angezogen werden – müssen ebenfalls aussortiert werden.

Übrig bleiben nach dieser Etablierung der sogenannten zentralen Toleranz nur solche T-Zellen, die MHC-Komplexe binden können, aber bestenfalls schwach auf Autoantigene ansprechen. Sie vermehren sich bei ihrer Wanderung durch den Thymus und verlassen das Organ, indem sie in ein Blutgefäß übertreten.

Aufbau des Thymus

Skizze für das Kapitel über die Organe des Immunsystems in Teil 2 des Buches: ein Thymus-Läppchen, bestehend aus Rinde (Kortex) und Mark (Medulla); Vorlagen: Janeway’s, 7th edition, S. 274, und eine Abbildung auf embryology.ch

P1170230_Thymus_Feinbau_Kapsel_schwarz_650Außer der Kapsel und den Septen, in denen auch – nicht dargestellte – Blutgefäße verlaufen, sehen wir

  • den Saum aus subkapsulären Epithelzellen (die „Augen“)
  • thymic nurse cells (oben, schwarz)
  • kortikale Thymus-Epithelzellen (schraffiert, heller Kern)
  • medulläre Thymus-Epithelzellen (mTEC; schraffiert, schwarzer Kern)
  • Makrophagen aus dem Knochenmark (blumenförmig, schwarzer Kern)
  • dendritische Zellen aus dem Knochenmark (weiße Seesterne)
  • ein Hassall-Körperchen (mitten im Mark; Funktion unklar).

In den Hohlräumen des Netzwerks, das die Thymus-Epithelzellen aufspannen, drängen sich T-Zellen – besonders dicht in der Rinde. Um die Abbildung nicht zu unübersichtlich zu machen, habe ich sie im mittleren Thymus-Läppchen weggelassen und ihre Verteilung im angeschnittenen rechten Läppchen angedeutet. Die positive Selektion in der Rinde und die negative Selektion im Mark sorgen für eine starke Ausdünnung, die zum Teil durch die Teilungen der T-Zellen während ihrer Wanderung von der Rinde ins Mark kompensiert wird – siehe nächster Beitrag.

Die negative Selektion habe ich im Mai schon mal im Comic-Stil skizziert.

Knochenmark unter dem Mikroskop

Die Vorlage zu dieser Skizze kennt wohl jeder, der sich in der Wikipedia über das Knochenmark oder die Blutbildung schlau machen wollte: Sie stammt aus Gray’s Anatomy.

Knochenmark_Gray_Kerne_650Unter dem Mikroskop fällt im roten Knochenmark zunächst das Fett (weiße Bereiche) auf. Die vielkernige Zelle links ist ein Megakaryozyt: eine Riesenzelle, von der sich später zahlreiche Blutplättchen (Thrombozyten) abschnüren. Die übrigen schraffierten kernhaltigen Zellen sind verschiedene weiße Blutkörperchen (Leukozyten) und deren Vorläuferzellen. Unter ihnen finden sich einige vesikelgefüllte Granulozyten, z. B. ganz oben rechts. Die kleinen weißen kernhaltigen Zellen sind frühe Vorläufer roter Blutkörperchen (Erythrozyten). Wenn sie ihren Kern verlieren, werden sie zu Retikulozyten, also jungen Erythrozyten. Zwischen den Zellen sehen wir Bindegewebsfasern.

Rotes Knochenmark

Noch eine nachgeholte „langweilige“ Skizze für den Buchteil über den Aufbau des Immunsystems:

P1170225_Statistik_rotes_Knochenmark_650

Die Knochen eines Menschen enthalten zusammen etwa 400 Gramm rotes Knochenmark. Davon sind etwa 180 Gramm mit der Produktion roter Blutkörperchen (Erythrozyten) und ebenfalls 180 Gramm mit der Produktion weißer Blutkörperchen (Leukozyten), also Immunzellen, beschäftigt. Die restlichen 40 Gramm stellen Blutplättchen her, die für die Gerinnung benötigt werden.

Bei Kindern enthalten die Röhrenknochen noch rotes Knochenmark. Bei Erwachsenen ist es durch gelbes Knochenmark ersetzt, das vor allem aus Fettzellen besteht. Bei ihnen stellt daher nur noch das Mark der Schulterblätter und der Beckenknochen Blutzellen her.

Lage der Autoimmun-Risikogenorte im Humangenom

Skizze fürs Buch, nach Janeway’s (7th edition), S. 561; dort nach Cookson W Nat Rev Immunol 2004, 4: 978-988.

Humangenom_AIE_und_Asthma-Genorte_Janeways561_große_Augen_650Schwarze Punkte hinter den Chromosomen: gut etablierte Risikogenorte für Autoimmunerkrankungen. Kreise vor den Chromosomen: gute etablierte Risikogenorte für Asthma. Auf den Chromosomen 1, 6, 7, 11 und 16 gibt es deutliche Überschneidungen. Auf dem kurzen Arm von Chromosom 6 liegen die Gene des Haupthistokompatibilitätskomplexes (MHC). Weitere wichtige Autoimmun-Risikogenorte auf den Chromosomen 1 (langer Arm), 10, 12, 14, 17, 18 und 20.

Einzugsgebiete

Skizze fürs Buch: die Organe des Immunsystems. Die Lymphgefäße leiten den Lymphknoten Lymphe und damit Informationen über Infektionen in ihren jeweiligen Einzugsgebieten zu.

Lymphsystem_Flusseinzugsgebiete_sw_ergänzt_650Die Tonsillen oder Mandeln bilden den lymphatischen Rachenring, in dem vor allem Infektionen der oberen Atemwege entdeckt werden. Die auf Infektionen des Verdauungstrakts spezialisierten Ansammlungen von Lymphknoten in der Darmschleimhaut, vor allem im Ileum oder Krummdarm und im Appendix oder Wurmfortsatz, werden als Peyer-Plaques bezeichnet. Weitere Lymphknoten-Ansammlungen finden sich in der Leistengegend und unter den Achseln, also dort, wo die Gliedmaßen in den Rumpf übergehen.

Neue Literatur bis einschließlich Dezember 2013, Teil 4

Der Rest, wieder unkommentiert und noch nicht verschlagwortet:

T cells and Transplantation: Drug-resistant immune cells protect patients from graft-versus-host disease after bone marrow transplant. T3

Bile Compound Prevents Diabetes in Mice: A chemical prevalent in the bear gallbladder abates a cellular stress response and stalls the progression of type 1 diabetes in rodents. T3

Matarese G et al. (2013): Hunger-promoting hypothalamic neurons modulate effector and regulatory T-cell responses (Open Access) T3
Dazu auch Neurons Govern Immunity: Hunger-associated molecules in the hypothalamus suppress inflammation.

Yu X et al. (2013): TH17 Cell Differentiation Is Regulated by the Circadian Clock (Abstract; PDF aber an anderer Stelle erhältlich) T3, T4
Dazu auch Time for T cells: Circadian rhythms control the development of inflammatory T cells, while jet lag sends their production into overdrive.

Scher JU et al. (29139: Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis (Open Access) T4
Dazu auch Gut Microbes May Impact Autoimmunity: Researchers show that the prevalence of one genus of bacteria correlates with the onset of rheumatoid arthritis.

Zhong W et al. (2013): Immune anticipation of mating in Drosophila: Turandot M promotes immunity against sexually transmitted fungal infections (Open Access) T4
Dazu auch Frisky Fruit Flies: Researchers show that Drosophila females upregulate an immune gene for protection against sexually transmitted infections before copulation.

Simmonds MJ et al. (2013): Skewed X chromosome inactivation and female preponderance in autoimmune thyroid disease: an association study and meta-analysis (Abstract) T4

Alexandraki KI et al. (2013): Are patients with autoimmune thyroid disease and autoimmune gastritis at risk of gastric neuroendocrine neoplasms type 1? (Abstract) T3

Leskela S et al. (2013) Plasmacytoid Dendritic Cells in Patients With Autoimmune Thyroid Disease (Abstract) T3

Ioannou M et al. (2013): In Vivo Ablation of Plasmacytoid Dendritic Cells Inhibits Autoimmunity through Expansion of Myeloid-Derived Suppressor Cells (Open Access) T3

Simmonds MJ et al. (2013): GWAS in autoimmune thyroid disease: redefining our understanding of pathogenesis (Abstract) T3

Rege S, Hodgkinson SJ (2013): Immune dysregulation and autoimmunity in bipolar disorder: Synthesis of the evidence and its clinical application (Abstract) T3?

Neue Literatur bis einschließlich Dezember 2013, Teil 3

Und weiter. Erläuterungen s. Teil 1 und 2.

Castillo-Morales A et al. (2013): Increased brain size in mammals is associated with size variations in gene families with cell signalling, chemotaxis and immune-related functions (Open Access) T5

Sachs JL et al. (2013): Evolutionary origins and diversification of proteobacterial mutualists (Abstract) T5

Castro LF et al. (2013): Recurrent gene loss correlates with the evolution of stomach phenotypes in gnathostome history (Abstract) T5

Liu B et al. (2013): Maternal hematopoietic TNF, via milk chemokines, programs hippocampal development and memory (Abstract) T4
Dazu auch: Breast Milk Programs Memory Skills

Palmer C (2013): Ye Old Parasites – Evidence of early-13th-century intestinal worms found in a medieval castle latrine yields clues about the lives and deaths of crusaders. T5

Kretschmer A (2013): Wirtskörper mit Vollpension. Endoparasiten genießen sichere Unterkunft und unbegrenzte Nahrung T3, T5

Vence T (2013): Gut Flora Boost Cancer Therapies. Germ-free or antibiotic-treated mice fare worse than those with rich gut microbiomes during cancer treatment, two studies show. T4

Raghavan M et al. (2013): Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans (Abstract) T5
Dazu auch: Europäer als Urahnen der Indianer? Genanalyse eines 24.000 Jahre alten sibirischen Kindes wirft Amerikas Vorgeschichte durcheinander. T5

Kokolus KM et al. (2013): Baseline tumor growth and immune control in laboratory mice are significantly influenced by subthermoneutral housing temperature (Open Access) T3
Dazu auch: Temperature-Dependent Immunity. Scientists show that mice housed at room temperature are less able to fight tumors.