Archiv für den Monat: Mai 2014

Was hat es mit #screenonly auf sich?

And now for something completely different.

P1180996_Data_final_ohne_Logo

Lieutenant Commander Clinical Trial Data wundert sich: Man hat ihn eingesperrt. Dabei will er doch der Menschheit dienen.

Dass ich in den letzten Tagen nicht zum Bloggen und Buchweiterschreiben gekommen bin, liegt an einer kleinen Social-Media-Kampagne. Genau genommen: der allerersten Social-Media-Kampagne des Instituts für Qualität und Wirtschaftlichkeit im Gesundheitswesen (IQWiG), in dessen Kommunikationsressort ich auf einer halben Stelle arbeite.

Dass das Institut dieses Experiment wagt und meinen KollegInnen und mir dabei relativ freie Hand lässt, ist großartig und hat mich ein bisschen überrumpelt: Ich hatte mit Widerstand gerechnet. Und dann fanden’s einfach alle gut. Und jetzt muss ich liefern. Waaaah! 🙂

Wir starten von einer denkbar ungünstigen Ausgangslage:

  • So gut wie niemand weiß, was das IQWiG ist.
  • So gut wie niemand weiß, was die European Medicines Agency (EMA) ist.
  • So gut wie niemand hat mitbekommen, dass die EMA seit 2012 mehr Transparenz und einen leichteren Zugriff auf die klinischen Studiendaten verspricht, die Pharmaunternehmen bei ihr einreichen, um eine Zulassung für ihre Medikamente zu erhalten.
  • So gut wie niemand weiß, wie umfangreich klinische Studienberichte (clinical study reports, CSR) sind. Wie dringend sie für die Einschätzung des Nutzens und Schadens von Arzneimitteln benötigt werden. Und wie irrsinnig aufwändig ihre wissenschaftliche Auswertung ist.
  • So gut wie niemand außerhalb der engsten Fachkreise hat mitbekommen, dass die EMA in der vergangenen Woche eine gewaltige Rolle rückwärts vollführt hat:

Der finale Entwurf ihrer neuen Regeln zur Veröffentlichung von Studiendaten sieht vor, dass man die Daten nur am Bildschirm anstarren, sie aber nicht herunterladen, weiterverarbeiten oder auch nur ausdrucken darf.

P1180993_Staring_experiment

Allmählich beschleicht Rupert das Gefühl, dass die Daten zurückstarren.

Außerdem dürfen die Pharmaunternehmen in Zukunft zwei Versionen ihrer Studienberichte bei der EMA einreichen: eine vollständige Fassung für die Zulassung – und eine vorzensierte Fassung für die Öffentlichkeit. Darin dürfen zum Beispiel Angaben darüber fehlen, ob sich die Lebensqualität von Studienteilnehmern unter dem Einfluss des Medikaments verbessert oder verschlechtert hat.

Durch diesen Restriktionen werden die Studiendaten schlichtweg unbrauchbar für Wissenschaftler, die den Nutzen und Schaden von Arzneimitteln solide bewerten wollen. Das wollen wir mit unserer Kampagne illustrieren, bevor die EMA diese Regeln am 12. Juni beschließt.

In den ersten beiden Tagen habe ich ausschließlich Twitter und die institutseigene Kampagnenseite gefüttert. Die internationale Fachszene ist gestern bei Twitter schon ganz gut eingestiegen: Man amüsiert sich über die neuen Töne, die aus dem sonst so seriösen IQWiG zu vernehmen sind, retweetet unsere Beiträge und greift den Hashtag #screenonly auf.

Polly ist enttäuscht: Die wichtigsten Stellen bleiben verborgen.

Polly ist enttäuscht: Die wichtigsten Stellen bleiben verborgen.

Mal sehen, ob das ein Strohfeuer bleibt oder wir nächste Woche noch die eine oder andere Welle machen. Übers Wochenende möchte ich die Aktion auch in Facebook und Xing hineintragen. Also bitte nicht wundern, wenn ich seltsame Fotos und – natürlich! – AK-typische Zeichnungen poste.

So abstrakt und fern das Thema auch scheint: Es geht uns alle an. Wirklich alle: jeden, der auf Medikamente angewiesen ist – oder in Zukunft angewiesen sein wird – oder Angehörige hat, die Arzneimittel nehmen müssen. Eben: jeden.

Lebensweg einer Darmepithelzelle

Wie die Darmschleimhaut aufgebaut ist, habe ich hier und hier schon mal gezeigt. Was in den alten Skizzen noch fehlte, ist die Dynamik des Epithels, durch die ständig Schäden in der Barriere repariert und alte, verbrauche Zellen ersetzt werden:

P1180516_Darmepithelzellen-Lebenszyklus_beschriftet_650

Tief in den Krypten, den engen Schluchten der Darmschleimhaut, liegen Stammzellen (*), aus denen alle Darmepithelzellen durch Teilung hervorgehen. (Den Talgrund nehmen überwiegend die Paneth-Zellen ein, hier mit J gekennzeichnet, die antimikrobielle Substanzen ausschütten.)

Die jungen Epithelzellen wandern zunächst an den Wänden der Krypten und dann an den Darmzotten oder Villi entlang. An den Spitzen der Zotten (Kreuz) schilfern die ältesten Zellen ab und werden vom Darminhalt mitgerissen. Reißt eine Infektion oder eine mechanische Verletzung irgendwo eine Lücke in das Epithel, wird diese durch nachrückende Zellen geschlossen (schwarzer Pfeil), damit keine Bakterien oder Fremdstoffe in die Lamina propria – das Bindegewebe der Darmschleimhaut – eindringen.

Nachgetragen sei auch noch eine Skizze zum Cordon sanitaire vor der Darmschleimhaut. Nähere Erläuterungen folgen im Buch:

P1180509_Cordon_Ausfall_gesamt_650

Von Dirigenten, Schlusssteinen und ungeladenen Gästen

Einen Mangel an Metaphern und Analogien kann man der Mikrobiom-Fachliteratur wahrlich nicht vorwerfen.

P1180498_Mikrobiom_Schlussstein_650

George Hajishengallis (2013) diskutiert zum Beispiel die Frage, ob das Bakterium Porphyromonas gingivalis bei Parodontitis den entzündlichen Knochenverlust wirklich verursacht oder eher dirigiert („orchestrates“). Ein anderes Bild für denselben Sachverhalt: So, wie erst der Schlussstein („keystone“) einen Trockenbau-Mauerbogen zusammenhält, ist dieses Bakterium ein zentraler Bestandteil der entzündlichen Mundflora, aber nicht die alleinige Ursache der Erkrankung.

Im Netzwerk der gegenseitigen Abhängigkeiten im Ökosystem eines dysbiotischen Mikrobioms sitzen solche „keystone species“ wie die Spinnen im Netz (schraffierter Kreis): Sie erleichtern vielen anderen Arten, die zur Krankheit beitragen, das Überleben und profitieren ihrerseits von vielen weiteren Organismen. Nur wenige Arten im System sind gar nicht auf andere Organismen angewiesen. Im Netzwerk rechts sind sie mit Sternchen markiert, im Torbogen links ruhen sie direkt auf dem Erdreich.

Kultivieren – und damit durch Standardtests eindeutig nachweisen – lassen sich bisher oft nur diejenigen Arten eines Mikrobioms, die nicht auf die anderen Organismen angewiesen und insofern für das Gesamtgefüge eher untypisch sind: eben die untersten Steine des Bogens.

Genau wie in einem dysbiotischen Mikrobiom (zum Beispiel dem Biofilm bei einer Parodontitis oder der Darmflora bei einer chronisch-entzündlichen Darmerkrankung) stabilisieren sich auch die Arten in einem homöostatischen Mikrobiom (zum Beispiel einer gesunden Mund- oder Darmflora) gegenseitig: Die Ausscheidungen der einen Art dienen der nächsten als Rohstoffe. Die Arten nutzen alle Ressourcen so gründlich, dass ein Eindringling schlechte Karten hat, weil es für ihn keine Nische gibt.

In einem stabilen Mikrobiom beeinflussen die Teilnehmer außerdem ihre Umwelt so, dass die Bedingungen für ihr eigenes Gedeihen und das Gedeihen ähnlicher Organismen ideal sind (pH-Wert, Nährstoffe, Sauerstoffgehalt usw. – siehe Gleich und gleich gesellt sich gern). Ein Eindringling, der andere Bedürfnisse hat (hier: Pathogen = Biertrinker), hat so lange schlechte Karten, wie die übrige Gemeinschaft (hier: Kommensalen = Weintrinker) stabil bleibt.

P1180503_Party_Homöostase_Wein_500

Wird die etablierte Gemeinschaft aber destabilisiert, beispielsweise durch Antibiotika, durch Attacken des Immunsystems oder durch eine hartnäckige Diarrhö, können sich Eindringlinge ausbreiten und ein neues Beziehungsgeflecht aufbauen – sozusagen eine Biertrinker-Kultur. Jessica Ferreyra et al. (2014) sprechen von „Party Crashers“, also ungeladenen Gästen. Auf einmal sind die alten Kommensalen in der Minderheit, und sie kommen mit den neuen Umweltbedingungen nicht zurecht, sodass sie die Hegemonie nicht einfach zurückerobern können.

P1180503_Party_Dysbiose_Bier_500

Jetzt befindet sich das System im rechten tiefen Tal in der untersten Abbildung im Artikel über die Resilienz, und es bedürfte einer erneuten „Kulturrevolution“, um es wieder in den homöostatischen Zustand zurückzubewegen – sofern das überhaupt möglich ist.

Polygenie der Autoimmunerkrankungen

Zwei neue Skizzen fürs Buch, inspiriert durch An Goris und Adrian Liston, „The immunogenetic architecture of autoimmune disease„, 2012 (Open Access):

P1180505_Genetik_AIE_Voodoopuppe_NOD-Maus_650

Nur wenige Autoimmunerkrankungen folgen einem einfachen Mendel’schen Erbgang. Meist sind zahlreiche Genvarianten beteiligt, die das Erkrankungsrisiko für sich genommen – wenn überhaupt – nur minimal steigern und erst gemeinsam zum Ausbruch führen. Dabei tragen einige Genvarianten zur allgemeinen Neigung des Immunsystems zu Überreaktionen bei (Voodoo-Nadeln), und andere legen fest, welches Organ betroffen sein wird (Zielscheiben).

NOD-Mäuse wurden als Typ-1-Diabetes-Modell gezüchtet; normalerweise wird ihre Bauchspeicheldrüse durch Autoimmunreaktionen zerstört (Zielscheibe auf dem Rumpf). Wenn man ihr Diabetes-Risikoallel H2g7, das zum HLA-Komplex gehört, durch die Genvariante H2h4 ersetzt, bleiben die Tiere nicht etwa gesund: Sie bekommen eine Schilddrüsen-Autoimmunerkrankung (Zielscheibe am Hals). Auch beim Menschen scheinen die meisten HLA- oder MHC-Klasse-II-Varianten auf dem 6. Chromosom festzulegen, welche Autoantigene und damit welche Organe angegriffen werden, während Risikogenorte an anderen Stellen im Genom darüber entscheiden, ob das Immunsystem überhaupt zu Autoimmunstörungen neigt.

P1180507_AIE_polygen_650

Die Genetik der Autoimmunerkrankungen ist ein etwas undankbares Forschungsfeld, auf dem man nicht hoffen darf, die eine Genvariante zu entdecken, die für einen Großteil der Erkrankungen verantwortlich ist, und daraus eine simple Therapie abzuleiten. Stattdessen kann es sein, dass jemand chronisch krank wird, weil

  • eine MHC-Klasse-II-Variante auf Chromosom 6 zu einer schlechten Präsentation eines Autoantigens im Thymus führt, sodass das Immunsystem diesem Autoantigen später nicht gänzlich tolerant gegenüberstehen wird (geknicktes Tablett),
  • ein anderes MHC-Klasse-II-Molekül, das auf demselben Chromosom codiert ist, ein Autoantigen besonders stabil bindet, sodass dieses Autoantigen den T-Zellen im Lymphgewebe besonders häufig und lange präsentiert wird, womit die Gefahr einer T-Zell-Aktivierung steigt (tiefes Tablett),
  • eine seiner Genvarianten zu besonders scharfsichtigen T-Zell-Rezeptoren führt, sodass die T-Zellen bei einer Präsentation des passenden Autoantigens besonders leicht aktiviert werden (Brille),
  • eine andere Genvariante die regulatorischen T-Zellen (Tregs), die überzogene Immunreaktionen normalerweise ausbremsen, träge oder blind macht (Schlafmaske),
  • ein weiteres Risikoallel in aktivierten Immunzellen zu einer ungewöhnlich starken Produktion entzündungsfördernder Zytokine führt, die dann immer weitere Immunzellen anlocken (Megafon),
  • wieder ein anderes Risikoallel die Expression bestimmter Autoantigene im Thymus schwächt, sodass das Immunsystem ihnen gegenüber nicht tolerant gestimmt wird (geschrumpftes AAG) und
  • eine Genvariante an noch einem anderen Genort die Wundheilung in einem Organ hemmt, das durch einen Autoimmunprozess beschädigt wurde (Pflaster).

Auch diese Darstellung der Polygenie der Autoimmunerkrankungen ist noch stark vereinfacht – von den Wechselwirkungen zwischen unseren Genprodukten und dem Mikrobiom, unserer Nahrung, Krankheitserregern und weiteren Umweltfaktoren einmal ganz abgesehen.

Wenn also der nächste Wunderheiler um die Ecke kommt, der behauptet, man müsse nur ein bestimmtes Vitamin weglassen oder ein Mineralpräparat zu sich nehmen, um von einer nahezu beliebigen Autoimmunerkrankung geheilt zu werden: bitte auslachen.

Homing: Organspezifische Moleküle sorgen für den richtigen Passierschein

Nachdem ich in den letzten Wochen im Manuskript von Teil 3 typische Immunreaktionen im Darm und in der Haut geschildert habe, fasse ich hier noch mal grafisch zusammen, wie die T-Zellen, die in den jeweiligen lokalen Lymphorganen aktiviert werden, nach ihrer Rezirkulation durch den Körper an ihren Einsatzort finden:

P1180496_Homing_Darm_Haut_Vitamine_650Oben: Darmzellen – und nur sie – stellen aus unserer Nahrung Vitamin A bzw. Retinsäure her. Dieses Molekül löst in den örtlichen dendritischen Zellen die Herstellung bestimmter Zytokine aus, die wiederum in den T-Zellen, die von den dendritischen Zellen aktiviert werden, die Produktion darmspezifischer Lockstoff-Rezeptoren bewirken. Der Darm wird diesen T-Zellen gewissermaßen als Heimatort in den Pass eingetragen, und wenn sie bei ihrer Wanderung durch die Blutgefäße in eine Gegend kommen, die die entsprechenden Lockstoffe herstellt, beenden sie ihre Reise und nehmen ihre Arbeit auf.

Unten: In den Hautzellen – und nur in ihnen – entsteht durch die UV-B-Strahlung Vitamin D3. Dieses Molekül löst in den dendritischen Zellen der Haut die Herstellung von Substanzen aus, die dann in den aktivierten T-Zellen die Produktion hautspezifischer Lockstoff-Rezeptoren bewirken. In den Pass dieser T-Zellen wird also die Heimat Haut eingetragen. Entsprechend beenden sie ihre Reise durch die Blutgefäße, sobald sie hautspezifische Chemokine wahrnehmen.

Nach diesem Prinzip gelangen auch alle anderen T-Zellen an ihren jeweiligen Einsatzort. Durch die Rezirkulation nach ihrer Aktivierung können die T-Zellen organ- oder gewebespezifischen Pathogene nicht nur in der engsten Umgebung ihres Aktivierungsorts bekämpfen, sondern im gesamten Organ oder Gewebe. Und dass sie ihre Heimatadresse chemisch wiedererkennen, verhindert, dass sie an völlig falschen Orten ihr Pulver verschießen oder gar Schaden anrichten.

(Nachtrag: Wie die T-Zellen beim Homing vorgehen, habe ich hier schon mal skizziert.)