Archiv für den Monat: August 2014

Die NK-Zell-Uhr

Neben der zentralen biologischen Uhr im Hypothalamus (siehe voriger Beitrag) schwingen auch im restlichen Körper viele Vorgänge im 24-Stunden-Takt. Dank dieser lokalen Uhren, die regelmäßig durch Impulse aus dem SCN synchronisiert werden, können sich die Zellen auf regelmäßig wiederkehrende Situationen einstellen. Natürliche Killerzellen (NK-Zellen) dienen z. B. der Bekämpfung von Pathogenen, die zumeist tagsüber während unserer aktiven Phase in den Körper eindringen.

P1200141_Stundenbuch_NK-Zelle_650

Die Halbkreise geben die Tageszeit (morgens, mittags, abends, nachts) an. Die obere Hälfte der vier Rechtecke stellt jeweils den Zellkern dar, die untere Hälfte das Zytoplasma, also den Zellbereich außerhalb des Kerns. Die Vorgänge sind extrem vereinfacht dargestellt; tatsächlich gibt es z. B. noch mehr Uhrgene, die der Stabilisierung des Rhythmus dienen.

Morgens werden die Uhrgene per, cry und ror abgelesen: Das Protein BMAL/CLOCK (die Uhr) hat an Sequenzen in deren Promotorbereichen angedockt und fördert so ihre Transkription. Außerdem fördert es die Ablesung zahlreicher anderer Gene, der sogenannten clock-controlled genes oder CCGs – in NK-Zellen zum Beispiel Gene, die für die Pathogenbekämpfung nötig sind. Die Transkriptionsprodukte (sogenannte Messenger-RNA oder mRNA) wandern aus dem Zellkern ins Zytoplasma und werden dort von den Ribosomen in Empfang genommen – den Proteinfabriken, die anhand der Bauanleitung in der mRNA Aminosäuren zu neuen Proteinen zusammensetzen.

Mittags haben die NK-Zellen große Mengen der Proteine hergestellt. Einen Teil davon scheiden die Zellen aus, um Viren, Bakterien und Krebszellen auszuschalten – zum Beispiel Giftstoffe aus ihren Granula (Membranbläschen) oder Botenstoffe wie den Tumornekrosefaktor (TNF). Die Proteine PER und CRY lagern sich dagegen zusammen, werden aktiviert und wandern – genau wie das Protein ROR – in den Zellkern ein. Diese Proteine sind Transkriptionsfaktoren; sie beeinflussen also die Ablesung von Genen – genau wie BMAL/CLOCK.

Abends werden die morgens fleißig transkribierten Gene nicht mehr abgelesen, da das Protein PER/CRY (Ampel) die Aktivierung durch BMAL/CLOCK (Uhr) unterbindet. Der Transkriptionsfaktor ROR hat dagegen an eine Sequenz im Promotor des Gens bmal gebunden und so dessen Ablesung eingeschaltet. Er zieht gewissermaßen die Zelluhr auf; daher der Schlüssel. Die bmal-mRNA wandert ins Zytoplasma und wird dort von Ribosomen in Empfang genommen.

Nachts haben die NK-Zellen so viel BMAL hergestellt, dass es sich mit seinem Gegenpart CLOCK zusammenlagern kann. Das Protein tritt in den Zellkern über und ersetzt dort alte, nicht mehr funktionstüchtige BMAL/CLOCK-Einheiten. PER/CRY hat ausgedient und wird von Enzymkomplexen, sogenannten Proteasomen, abgebaut (Hammer).

Damit schließt sich der Kreis. So werden die gefährlichen Wirkstoffe, deren Herstellung zudem viel Energie verbraucht, jeden Tag „just in time“ produziert: dann, wenn Pathogene in unseren Körper eindringen.

(Abbildung inspiriert durch Logan RW & Sarkar DK, „Circadian nature of immune function“, Molecular and Cellular Endocrinology 349 (2012) 82-90, und Gibbs JE & Ray DW, „The role of the corcadian clock in rheumatoid arthritis“, Arthritis Research & Therapy 2013, 15:205)

Wie erfährt Immunsystem, wie spät es ist?

Auf drei Wegen: über das Hormon Melatonin aus der Zirbeldrüse, über das Hormon Cortisol aus der Hypothalamus-Hypophysen-Nebennierenrinden-Achse und über das autonome Nervensystem, das Signale an die endokrinen Drüsen und an Lymphorgane wie Milz und Leber übermittelt:

P1200146_SCN_Nerven_Hormone_IS_schwarz_650

Alle drei Instanzen beziehen die zentrale Uhrzeit vom suprachiasmatischen Nucleus (SCN), einem Teil des Hypothalamus. Der circadiane Rhythmus im SCN wird regelmäßig durch Tageslicht nachjustiert, damit die zentrale Uhr nicht vor- oder nachgeht.

Auch das Immunsystem kann die zentrale Uhr verstellen, zum Beispiel, wenn der Körper bei einer Infektion Ruhe braucht. Dann senden die Immunzellen Zytokine aus, Botenstoffe, die im SCN die Ablesung der Uhr-Gene beeinflussen.

(Abbildungsvorlage aus Mavroudis PD et al., Systems biology of circadian-immune interactions. J Innate Immun 2013; 5:153-162)

Offiziell alt

Vor einigen Monaten fragte der Verlag „Handwerk und Technik“ bei mir an, ob er eines der hier veröffentlichten Fotos meiner idiopathischen peripheren Fazialislähmung in einem Handbuch der Altenpflege verwenden dürfe. Ja, wieso nicht; schöner werden wir mit den Jahren schließlich alle nicht. Letzte Woche traf das Belegexemplar ein – mit gut 1300 Seiten ein richtiger Backstein:

Lehrbuch_Altenpflege

Schnappschuss gegen Buch: ein guter Deal, wie ich finde.

Immunologische Schlafforschung: Es ist zum Mäusemelken.

P1200127_Mensch_tagaktiv_Maus_nachtaktiv_650

Bei der Behandlung von Autoimmunerkrankungen, aber auch Krebs, Adipositas, Gefäßerkrankungen usw. rücken die circadiane Rhythmik und der Einfluss des Schlafs allmählich stärker in den Fokus. Um eine Behandlung wirksamer zu machen, Nebenwirkungen zu reduzieren oder die Selbstheilungskräfte des Organismus optimal zu nutzen, kommt es oft auf den Zeitpunkt der Verabreichung eines Wirkstoffs an und auf eine ausreichende Schlafdauer. In einem Versuch war beispielsweise ein Impfschutz noch nach einem Jahr signifikant stärker, wenn die Versuchspersonen in der ersten Nacht nach der Impfung ausreichend Schlaf bekommen hatten.

Die Erforschung der genauen Zusammenhänge zwischen innerer Uhr, Schlaf und Immunsystem wird durch die vielen Rückkopplungen und gegenseitigen Abhängigkeiten des Systems erschwert. So wird das Schlafzentrum, das viele Abläufe im Immunsystem regelt, seinerseits durch das Immunsystem beeinflusst. Das merkt man z. B. am erhöhten Schlafbedürfnis bei einer Infektionserkrankung oder auch an der ständigen Abgeschlagenheit (Fatigue) bei vielen Autoimmunerkrankungen.

Um die Rhythmen in der Vermehrung und Aktivierung der einzelnen Immunzelltypen und in der Produktion von Hormonen, Zytokinen und anderen Botenstoffen zu erforschen, zapft man Versuchspersonen über mindestens 24 Stunden hinweg regelmäßig etwas Blut ab, das dann analysiert wird. Dabei sollte der Schlaf der Personen nicht gestört werden, weshalb man einen Dauer- oder Verweilkatheter verwendet, der vom Nebenraum aus bedient werden kann. Aber ist die Konzentration eines Stoffes oder eines Zelltyps im Blut überhaupt repräsentativ für die Verhältnisse in dem Organ, das einen eigentlich interessiert?

Bei manchen Zelltypen definitiv nicht: Wenn man im Blut zu einem Zeitpunkt beispielsweise besonders wenige T-Helferzellen findet, heißt das nicht, dass sie plötzlich „ausgestorben“ sind: Sie sind u. U. nur ins Knochenmark gewandert. Antigenpräsentierende Zellen wie Makrophagen und dendritische Zellen halten sich fast rund um die Uhr im Gewebe auf, um Antigene aufzustöbern. Daher werden an ihrer Stelle ihre Vorläufer gezählt, zum Beispiel Monozyten anstelle von Makrophagen. Denn Monozyten müssen nach ihrer Entstehung im Knochenmark über die Blutbahn ins Gewebe wandern.

Um die Auswirkungen der circadianen Rhythmik und des Schlafs auseinanderzuhalten, muss man mit Schlafentzug arbeiten. An Menschen lässt sich das ethisch nur für eine Nacht vertreten, um Dauerschäden zu vermeiden. (Allerdings weiß man aus der Untersuchung von z. B. alkoholismus- oder depressionsbedingten Schlafstörungen, dass ein länger anhaltender Schlafmangel die Zytokinproduktion von einer Th1- zu einer Th2-Antwort verschiebt.)

Versuche an Mäusen und Ratten haben gezeigt, dass ein längerer Schlafentzug das Immunsystem schon bald so schwächt, dass der Organismus von Bakterien überrannt wird und das Tier an einer Sepsis stirbt. Die Ergebnisse solcher und ähnlicher Versuche hängen dabei vom verwendeten Versuchstierstamm ab, denn Schlafmuster haben eine starke erbliche Komponente. Das erschwert den Vergleich von Studien.

Noch schwieriger ist die Übertragung von Erkenntnissen, die an Mäusen oder Ratten gewonnen wurden, auf den Menschen. Abgesehen von vielen anderen Unterschieden sind Menschen tagaktiv und Nagetiere nachtaktiv (s. Abbildung). Bei ihnen laufen die Regelvorgänge, die ich im vorigen Artikel erläutert habe, daher ganz anders ab.

Schichtarbeit: Der Tag-Nacht-Rhythmus von Immunreaktionen

Neulich las ich, dass selbst schwaches Nachtlicht eine Brustkrebstherapie u. U. wirkungslos machen kann, weil das Licht die nächtliche Melatoninproduktion stört, was wiederum die Tumorzellen stärkt. Beim Nachrecherchieren führte eins zum anderen, und zack: Schon muss das Autoimmunbuch um ein Kapitel erweitert werden. Wie die sogenannte circadiane Rhythmik – das Schwingen aller möglicher Abläufe in unserem Körper mit einer Periode von etwa 24 Stunden – und der nächtliche Schlaf unser Immunsystem regeln, ist nämlich hochspannend und auch für Autoimmunerkrankungen relevant.

Von dem Dutzend Arbeiten, die ich zum Thema gelesen habe, empfehle ich vor allem die Übersicht „T Cell and Antigen Presenting Cell Activity During Sleep“ von Tanja Lange und Jan Born (2011), auf der die meisten der folgenden Abbildungen basieren.

Wie stellt das Immunsystem sicher, dass sich entzündungsfördernde und entzündungshemmende Signale, die angeborene und die erworbene Abwehr sowie der Th1- und der Th2-Arm der erworbenen Abwehr nicht ins Gehege kommen? Durch räumliche und zeitliche Trennung: Der Tag gehört den entzündungshemmenden Signalen, der angeborenen Abwehr und denjenigen Zellen der erworbenen Abwehr, die Pathogene unmittelbar bekämpfen: den zytotoxischen T-Zellen. Und in der Nacht – vor allem, wenn man schläft und nicht durchwacht – dominieren Entzündungsreaktionen, die uns tags bei lebensnotwendigen Aktivitäten stören würden. Außerdem wird nachts durch die Kontakte zwischen antigenpräsentierenden Zellen und T-Helferzellen das immunologische Gedächtnis angelegt.

Hormone aus der Zirbeldrüse und der Hypophyse im Gehirn sowie aus der Nebennierenrinde, deren Ausschüttung von der zentralen inneren Uhr im Hypothalamus gesteuert wird, sorgen dafür, dass die richtigen Zellpopulationen zu jeder Zeit am richtigen Ort sind – also im Blut, im Lymphsystem, im peripheren Gewebe oder im Knochenmark. Die zentrale innere Uhr basiert auf einer Handvoll Gene, deren Ableseprodukte (die Proteine PER, CRY, REV-ERB, ROR, CLOCK und BMAL) wechselseitig ihre eigene Ablesung ein- und ausschalten. Ohne äußere Impulse oszilliert diese Rückkopplung mit einer Periode von etwas mehr als 24 Stunden. Durch Tageslichtsignale – von Nervenzellen in der Netzhaut an den Hypothalamus übermittelt – wird sie auf genau 24 Stunden eingestellt.

Die zentrale Uhrzeit wird vor allem durch das Zirbeldrüsen-Hormon Melatonin an die Zellen im gesamten Körper übermittelt. Die Melatoninkonzentration ist mitten in der Nacht am höchsten, fällt noch in der Nacht steil ab und bleibt tags sehr niedrig, bis sie abends wieder anzusteigen beginnt:

TagNacht_Melatonin_beschriftet_Quelle_Netz_650In dieser und den folgenden Abbildungen ist die Konzentration im Blut während etwas mehr als 24 Stunden dargestellt, beginnend mit dem Abend eines Tages bis zum Abend des nächsten Tages.  Die beiden senkrechten Linien markieren die Nacht, in der man idealerweise zwischen 23 und 7 Uhr schläft. In der ersten Nachthälfte gerät man in den Tiefschlaf, hier wegen der englischen Bezeichnung slow-wave sleep als SWS bezeichnet. Diese Schlafphase ist für die Regelung des Immunsystems entscheidend.

Weiterlesen

Bildergalerie

Da ich im Moment nicht zum ausführlichen Bloggen komme, stelle ich hier einfach die neuesten Abbildungen fürs Buch vor: unkommentiert – und damit wohl auch unverständlich. Aber das eine oder andere Element spricht vielleicht doch für sich selbst:

P1200120_IFN_und_AIE_1000

P1200095_U-Form_1_Grundtonus_nach_Casadevall_650

P1200100_U-From_2_entzündungshemmend_nach_Casadevall_650

P1200105_U-Form_3_entzündungsfördernd_nach_Casadevall_650

P1190917_Wahren-Herlenius_Autoimmunität_Risiken_650

Wahren-Herlenius_Rückkopplung_angeb_erw_Abwehr_AIE_650

  Primär_Sekundärantwort_IgM_IgG_650

Zeitverlauf_klonale_Expansion_Kontraktion_CD4_CD8_650n

Und jetzt weiter im Text – oder vielmehr im Bild: Die nächste Zeichnung dreht sich um die circadiane Rhythmik des Immunsystems, also die Schwankungen von Zell- und Stoffkonzentrationen sowie -funktionen im Tagesverlauf.