Schlagwort-Archiv: angeborene Immunabwehr

T-Zellen mit Stoffwechselproblemen

Es geht, wie so oft, um Ressourcen-Allokation. Wir können jede Kalorie nur einmal ausgeben: zum Nachdenken, für die Vermehrung, im Dienste der Abwehr – am besten dort, wo sie im Moment am dringendsten benötigt wird. Und wenn gerade alles im Lot ist, lagern wir sie ein für kommende Notlagen.

Wohin die Energie fließt, das regelt der Stoffwechsel oder Metabolismus. Er umfasst sowohl biochemische Reaktionswege, auf denen einfachen Rohstoffe unter Energieeinsatz zu komplexeren Strukturen aufgebaut werden, als auch Pfade, auf denen komplexe Biomoleküle zu einfachen Komponenten zerlegt werden, wobei Energie frei wird. Kurz: Metabolismus = Anabolismus + Katabolismus. Damit sich diese Prozesse nicht in die Quere kommen, laufen sie oftmals in getrennten innerzellulären Räumen oder zu unterschiedlichen Zeiten ab.

P1180246_Stoffwechsel_T-Zellen_Energie_oder_Baustoff_650

Action und Substanz: Teile des Zellstoffwechsels machen aus dem Zucker Glukose Energiewährung wie ATP. Andere Zweige des Stoffwechsels produzieren Protein- und Lipidbausteine wie Amino- oder Fettsäuren.

Energie ist eine knappe Ressource; jede Investition in einen Lebensbereich wird mit einem Mangel in einem anderen Bereich erkauft. Das gilt zum einen für ganze Organismen und ihre Organe, etwa für Guppies. Ein Forscherteam hat einen Stamm dieser Aquarienfische über einige Generationen hinweg auf besonders große und besonders kleine Gehirne hin selektiert und dann die Stärke der Immunreaktionen auf transplantierte Guppy-Schuppen gemessen: Die angeborene Abwehr wird schwächer, wenn mehr Energie in die Ausbildung und den Unterhalt eines großen Gehirns fließt. Die erworbene Abwehr bleibt dagegen gleich stark (A. Kotrschal et al., 2016, PDF).

Das gilt aber auch für einzelne Zelltypen wie Tumorzellen oder die Zellen des Immunsystems, die mit Krebszellen einiges gemeinsam haben – etwa die Fähigkeit zur raschen Vermehrung, für die in kurzer Zeit viel Energie benötigt wird. Die Energiequelle ist Glukose oder Traubenzucker, der aus dem Blut in die Zellen gelangt. Naive, d. h. noch nicht mit einem passenden Antigen konfrontierte T-Zellen haben zunächst einen niedrigen Energieumsatz. Sobald sie aber ein zu ihren Rezeptoren passendes Antigen präsentiert bekommen und dadurch aktiviert werden, geht es los: Sie müssen sich massiv vermehren, u. U. weit und mühsam an ihren Einsatzort wandern und eine Menge Wirkstoffe wie Zytokine herstellen. Anschließend leben einige von ihnen als sogenannte Gedächtniszellen noch Jahre bis Jahrzehnte weiter, um bei einem erneuten Auftreten desselben Antigens, also der Rückkehr derselben Gefahr, sehr schnell wieder aktiv zu werden.

P1180246_Stoffwechsel_T-Zellen_naiv_aktiviert_Gedächtnis

Wird eine naive T-Zelle durch ein Antigen aktiviert (Blitz), kurbelt sie die Glykolyse (G) an, um als Effektor-T-Zelle schnell schlagkräftig zu werden und sich zu vermehren. Als langlebige Gedächtniszelle (M für memory) setzt sie sie danach stärker auf die oxidative Phosphorylierung (O).

Ihr Stoffwechsel passt sich dem Bedarf in diesen drei Lebensphasen an, wobei jede T-Zell-Subpopulation (etwa CD4+, CD8+ oder Treg) ein etwas anderes Programm verfolgt.

Im Ruhezustand gewinnen die naiven T-Zellen Energie aus allen möglichen Quellen, nämlich Glukose, Fettsäuren und Aminosäuren, und zwar größtenteils in ihren Mitochondrien, den Kraftwerken unserer Zellen. Die darin ablaufenden Stoffwechselwege heißen Citratzyklus und oxidative Phosphorylierung, kurz OXPHOS. Sie sind sehr effizient, liefern also sehr viel von dem Energieträgermolekül ATP – das aber recht langsam: ideal für ruhende T-Zellen, die gemächlich durch die Blutgefäße und die Lymphknoten patrouillieren und auf die Präsentation eines Antigens warten, das zu ihren Rezeptoren passt.

Bei ihrer Aktivierung schalten die T-Zellen auf einen als Glykolyse bezeichneten Stoffwechselweg um, der stattdessen im Zellplasma abläuft und Glukose abbaut, um daraus möglichst rasch ATP und die einfachen Grundbausteine Pyruvat und Lactat zu gewinnen. Aus diesen Zwischenprodukten wird dann Zellsubstanz aufgebaut (im Wesentlichen Nukleinsäuren, Fette und Proteine) und die Zellteilung sowie die Wirkstoffproduktion angetrieben. Die Glykolyse hat eine schlechtere Energiebilanz als die Stoffwechselwege in den Mitochondrien, aber dafür ist sie schnell – und auf Tempo kommt es an, wenn eine T-Zelle ihr passendes Antigen erkannt hat und sich rasant vermehren muss, um die Gefahrenquelle zu bekämpfen, bevor der Körper großen Schaden nimmt.

Gedächtnis-T-Zellen sind dagegen wieder auf den Citratzyklus und OXPHOS angewiesen, denn sie müssen sehr lange überleben, um als Archiv für ehemalige Infektionen und andere überstandene Gefahren zu dienen. Sie müssen aber, solange sie nicht reaktiviert werden, kaum Immunsystem-Wirkstoffe herstellen oder einlagern, können also Aminosäuren und Fettsäuren aus nicht mehr benötigten Proteinen und Lipiden ruhig abbauen bzw. in Energieträgermoleküle umwandeln.

Ein Forscherteam um Zhen Yang ist 2015 der Frage nachgegangen, ob die autoreaktiven T-Zellen, die bei Autoimmunerkrankungen auftreten, womöglich einen charakteristisch veränderten Zellstoffwechsel aufweisen. Ihre Idee: Eine Stoffwechselstörung, etwa eine ständige Überproduktion von Energie, könnte die Immunzellen chronisch überaktiv machen – und eine chronische Entzündung unter Beteiligung autoreaktiver T-Zellen ist für Autoimmunerkrankungen typisch, etwa für rheumatoide Arthritis (RA) oder systemischen Lupus erythematodes (SLE). Dann könnte man diese Erkrankungen womöglich durch Eingriffe in den Stoffwechsel der T-Zellen bremsen oder gar heilen.

Das wäre natürlich zu schön gewesen. Leider stellt sich die Lage komplexer dar: Sowohl bei RA als auch bei SLE ist der Stoffwechsel der T-Zellen verändert – aber nicht gleichartig.

Bei RA fahren frisch stimulierte CD4+-T-Zellen die Glykolyse nicht so schnell hoch wie bei Gesunden; sie produzieren nicht so viel ATP und Lactat, teilen sich aber trotzdem lebhaft. Die Bremse ist ein Glykolyse-Enzym mit dem furchteinflößenden Namen 6-Phosphofructo-2-Kinase/Fructose-2,6-Bisphosphatase 3, das wir zum Glück PFKFB3 nennen dürfen. An diesem Enzym herrscht in den T-Zellen von Rheumatikern Mangel, da das entsprechende Gen viel zu schwach abgelesen wird. Die Zwischenprodukte, die sich vor diesem Nadelöhr in der Glykolyse anstauen, weichen auf einen anderen Stoffwechselweg aus: den Pentosephosphatweg. Das führt zu einem Mangel an sogenannten reaktiven Sauerstoffspezies (ROS). Ein ROS-Mangel wiederum geht mit starken Gelenkentzündungen einher; ROS schützt vor Arthritis.

Warum das Enzym PFKFB3 nicht richtig abgelesen wird, ist unklar. Die T-Zellen von RA-Patienten altern vorzeitig. Aber ob diese zelluläre Frühvergreisung durch Energiedefizite aufgrund des Enzymmangels zustande kommt oder umgekehrt das Enzym nicht richtig abgelesen wird, weil die Zellvergreisung das Erbgut schädigt und die Gen-Expression beeinträchtigt, weiß man nicht. Jedenfalls sterben T-Zellen, die nicht genug ATP produzieren, vorzeitig ab. Der dadurch drohende Lymphozyten-Mangel (Lymphopenie genannt) zwingt den Organismus, die Produktion neuer naiver T-Zellen zu beschleunigen. Das geschieht bei älteren Erwachsenen nicht etwa im Thymus, der sich ja bereits zurückgebildet hat, sondern durch verstärkte Teilung der schon im Körper kreisenden naiven T-Zellen: die sogenannte homöostatische T-Zell-Proliferation. Bei diesem Prozess scheinen sich autoreaktive T-Zellen bevorzugt zu vermehren, was zu einer Autoimmunerkrankung führen kann.

P1310948_Homöostatische_Proliferation_Oligonale_Expansion_n_650

Homöostatische T-Zell-Proliferation: Das Repertoire der naiven T-Zellen mit unterschiedlichen Rezeptoren (oberste Reihe: drei Zellklone) bleibt normalerweise bis ins Alter erhalten, weil Verluste durch Teilung der übrigen Zellen kompensiert werden. Bei einer Lymphopenie, also dem massenhaften vorzeitigen Sterben von T-Zellen, wird die homöostatische Proliferation verstärkt. Dabei können Klone verloren gehen (weiß) und autoreaktive T-Zellen (schwarz) sich so stark vermehren, dass eine Autoimmunerkrankung ausbricht.

Auch die T-Zellen von Lupus-Patienten haben einen auffälligen Stoffwechsel. Aber sie produzieren ihr ATP primär auf dem OXPHOS-Weg in den Mitochondrien, nicht durch Glykolyse. Sie produzieren mehr ROS als normale T-Zellen, nicht weniger. Ihre Energiegewinnung ist gestört; sie bauen weder Glukose noch Fettsäuren noch Aminosäuren so effizient ab wie normale T-Zellen. Vor allem freie Fettsäuren häufen sich wegen des gestörten Abbaus an. Der gestörte Fettstoffwechsel wirkt sich auch auf die Fähigkeit der T-Zell-Rezeptoren zur Wahrnehmung von Antigenen aus: Die Zellmembranen von SLE-Patienten enthalten übermäßig viele Glycosphingolipide, also Lipide mit außen anhängenden Zuckermolekülen. Diese speziellen Lipide lagern sich in der ansonsten nahezu flüssigen Zellmembran gerne zu festeren Regionen zusammen, sogenannten Lipid-Flößen, in die wiederum viele T-Zell-Rezeptoren eingebettet sind. Wohl daher nehmen die T-Zellen von Lupus-Patienten besonders leicht Autoantigen-Signale wahr und aktivieren dann ihrerseits B-Zellen, die Autoantikörper herstellen.

Was lehren uns diese gegensätzlichen Stoffwechseldefekte von T-Zellen bei zwei wichtigen Autoimmunerkrankungen aus dem rheumatischen Formenkreis? Dass die Erkrankungsmechanismen ganz verschieden sein können, auch wenn es sich in beiden Fällen um chronische Entzündungen handelt, bei denen das Immunsystem körpereigenes Gewebe angreift. Dass es daher vermutlich nicht das eine Heilmittel geben und überhaupt noch lange dauern wird, bis wir Autoimmunerkrankungen heilen können. Aber auch, dass man vor lauter Botenstoffen, Signalkaskaden und Erbinformationsableserei den Energiehaushalt des Immunsystems nicht außer Acht lassen darf: Das ist nicht etwa reine Information, die da zwischen und in den Zellen weitergeleitet wird. Es sind vielmehr Substanzen, deren Herstellung und Beseitigung zur rechten Zeit, am rechten Ort und in der rechten Menge Kraftakte und logistische Meisterleistungen des Zellstoffwechsels sind.

Das Immunsystem von der Wiege bis zur Bahre

Scan_Abwehrstärke_Grippetote_Altersverlauf_650

Reaktionsstärke der Hauptkomponenten des Immunsystems (oben) und Grippetote pro 1000 Personen (unten) im Lebensverlauf, nach Simon 2015

Übersichtsarbeiten, die die Entwicklung des Immunsystems von der Wiege bis zur Bahre vorstellen, sind erstaunlich selten; vermutlich ist das Thema „zu groß“. (Was soll ich da erst sagen: In meinem Manuskript ist das einer von fünf Teilen …) Im Folgenden werte ich eine 2015 erschienene Arbeit von A. Katharina Simon et al. aus: Evolution of the immune system in humans from infancy to old age.

1. Schwangerschaft und Geburt

1.1 Angeborene Abwehr

Reife neutrophile Granulozyten (kurz: Neutrophile) treten ab dem Ende des ersten Trimesters auf. Kurz vor der Geburt steigt ihre Zahl stark an, angeregt durch den Granulozyten-Kolonie-stimulierenden Faktor. Sie zeigen allerdings nur schwache Reaktionen auf Bakterien und Entzündungssignale, eine geringe Adhäsion an Endothelzellen und eine schwache Chemotaxis – insbesondere bei Frühchen.

Bei Frühchen und normalen Geburten gibt es anfangs nur wenige pulmonale Makrophagen, ihre Zahl steigt aber innerhalb weniger Tage auf Adult-Niveau an.

Neugeborene haben auch nur wenige dendritischen Zellen vom myeloiden Typ (mDCs), und diese weisen weniger HLA-Klasse-II-, CD80- und CD86-Oberflächenmarker auf als bei Erwachsenen. Daher fällt das Priming von Th1- und CD8+-T-Zellen schwächer aus, sodass Neugeborene empfindlicher für Vireninfektionen, Mycobacterium tuberculosis und Salmonellen sind als größere Kinder und Erwachsene.

Bei den plasmacytoiden dendritische Zellen (pDCs) von Neugeborenen ist die Ausschüttung von IFN-α/β nach viraler Stimulation gehemmt, was zu einer schwachen angeborenen Abwehr von respiratorischen Synzytial-Viren, Herpes simplex und Cytomegalovirus führt.

Natürliche Killerzellen (NK-Zellen) werden normalerweise durch inhibitorische Rezeptoren für HLA-A, -B, -C und -E reguliert. In der frühen Schwangerschaft reagieren sie aber kaum, wenn eine Zelle – etwa im Trophoblast – kein klassischen HLA-Klasse-I-Merkmale aufweist; außerdem lassen sie sich sehr leicht durch TGF-β supprimieren. Neonatale NK-Zellen sind weniger leicht durch IL-2 und IL-15 aktivierbar als adulte und stellen weniger IFN-γ her.

Im Serum von Neugeborenen sind fast alle Komponenten des Komplementsystems zu 10-80 % schwächer vertreten als bei Erwachsenen. Da es in Neugeborenen noch wenig Immunglobulin gibt, wird das Komplementsystem eher auf dem alternativem Weg oder auf dem Lektin-Weg aktiviert, getriggert durch Polysaccharide und Endotoxine.

Alles in allem reagiert die angeborene Abwehr bei der Geburt gedämpft. Sie muss wohl schwach ausfallen, um während der Schwangerschaft maternale Antigene und Umbaumaßnahmen zu tolerieren.

1.2 Erworbene Abwehr

Einfach positive CD4+- und CD8+-T-Zellen treten im menschlichen Thymus bereits ab Woche 15 auf und sind auch in der Peripherie schon lange vor Geburt zahlreich vertreten. Die T-Zellen funktionieren allerdings anders als später: Zur Geburt sind etwa 3% der peripheren T-Zellen Tregs (viel mehr als bei Erwachsenen); das Immunsystem hat insgesamt ein entzündungshemmendes Profil. Wird das fetale oder neonatale Immunsysteme durch fremde Antigene aktiviert, kommt es vor allem zu einer Th2-Antwort, verstärkt durch die neonatalen DCs.

Bei der Geburt sind fast alle T-Zellen naiv (d. h. noch ohne Antigen-Kontakt). In Neugeborenen treten viele T-Zellen mit γδ-T-Zell-Rezeptoren (TCRs) sowie „innate-like“ αβ-TCR-T-Zellen auf, die zwischen angeborener und erworbener Abwehr angesiedelt sind – darunter invariant natural killer T cells (iNKT), die schnell IFN produzieren, mucosal-associated invariant T cells (MAIT) und CXCL8-absondernde naive T-Zellen.

MAIT-Zellen entwickeln sich im Thymus; ihre Reifung können sie schon vor der Mikrobiom-Kolonisation in fetalen Schleimhäuten durchlaufen. CXCL-8-produzierende T-Zellen können in Neugeborenen antimikrobielle Neutrophile und γδ-T-Zellen aktivieren; sie sind vor allem in den Schleimhautbarrieren von Frühchen und normalen Neugeborenen aktiv. γδ-T-Zellen können nach schneller polyklonaler Expansion viel IFN-α herstellen und so die Unreife der klassischen Th1-Reaktion bei Neugeborenen ausgleichen.

B-Zellen: B1-Zellen schütten spontan schwach affines IgM aus, das eine eingeschränkte AG-Spezifität (gegen die gängigsten bakteriellen Polysaccharide) hat, außerdem IL-10 und TGF-β. So wird eine Th2-Antwort gefördert. Bei der Geburt sind etwa 40% der peripheren B-Zellen B1-Zellen; der Anteil der B2-Zellen nimmt später zu. [Achtung: B1/B2 sind beim Menschen noch immer nicht eindeutig belegt!]

Die meisten Antikörperreaktionen sind auf T-Zell-Hilfe angewiesen; diese wird aber durch den Mangel an Korezeptoren auf den neonatalen B-Zellen erschwert. Auch für das Komplement-Fragment C3d gibt es nur wenige Rezeptoren, sodass die Reaktion auf Polysaccharid-Komplement-Komplexe schwach ausfällt. Insgesamt ist die humorale Abwehr schwach, es gibt wenig Ig-Klassenwechsel, aber es entstehen schon Gedächtnis-B-Zellen. Bei bis zu zwei Monate alten Babys gibt es wenig somatische Hypermutation und wenig Affinitätsreifung der Antikörper. Das Knochenmark-Stroma ist noch nicht imstande, Plasmablasten lange zu unterstüzen und zu Plasmazellen reifen zu lassen; daher nimmt die Konzentration von IgG nach einer Immunisierung rasch ab. Entsprechend hoch ist die Neugeborenensterblichkeit in Populationen mit hoher Pathogenbelastung.

2. Kinder und Erwachsene

Ein wichtiger frühkindlicher Schutz gegen Infektionen, die die Mutter schon hatte, ist mütterliches IgG. Diese Antikörper werden durch die Plazenta und nach der Geburt mit der Milch übertragen. Auch 20-30 Jahre nach der Infektion der Mutter werden noch genug Antikörper übertragen, um das Kind zu schützen. Sobald das mütterliche IgG zurückgeht, sind die Kinder besonders empfindlich, da ihre eigene Antikörperproduktion noch nicht ausreicht. Heutzutage stimuliert man das kindliche Immunsystem durch Impfungen.

Während der Kindheit geht der Anteil der Tregs zurück; dafür kommen Gedächtnis-, Th1-, Th17- und Th2-Zellen hinzu, bis diese zusammen etwa so zahlreich sind wie die naiven T-Zellen. Viele der Gedächtnis-T-Zellen wurden durch das Mikrobiom geprimed, können aber später auf Pathogen-Antigene (auch aus Viren, z. B. HIV-1) kreuzreagieren, da die Antigen-Erkennungssequenzen für die T-Zell-Rezeptoren sehr kurz sind.

Ein Schutz durch die erworbene Abwehr hält nach einmaliger Infektion meist lebenslang. Gedächtnis-B-Zellen werden im Knochenmark am Leben gehalten. Teils bleiben auch die Antigene jahrelang in den Lymphknoten erhalten und werden von follikulären DCs präsentiert, die so für eine gelegentliche Teilung und Antikörper-Ausschüttung der passenden B-Zellen sorgen.

3. Weibliches Immunsystem in der Schwangerschaft

Mechanismen auf der mütterlichen Seite der Plazenta verhindern die Abstoßung des Fetus, z. B. über nicht klassische, nicht polymorphe HLA-Antigene, die örtliche Suppression durch infiltrierte NK-Zellen, Monozyten und Tregs sowie die Verhinderung der T-Zell-Aktivierung durch Tryptophan-Entzug.

Das mütterliche Immunsystem verschiebt sich während der Schwangerschaft von Th1 zu Th2 (siehe Abb.). Oft geht das mit einer Remission von Autoimmunerkrankungen einher.

4. Krebs und Autoimmunerkrankungen

Das Immunsystem bekämpft nicht nur Pathogene, sondern auch mutierte Zellen, die sich zu einem Tumor auswachsen könnten. Viele Tumoren schalten Tumor-Antigen-spezifische T-Zellen ab, indem sie an Checkpoint-Rezeptoren wie PD-1 oder CTLA4 binden. Therapien, die das verhindern, können Autoimmunerkrankungen auslösen – ebenso wie ein passiver Transfer von Anti-Krebs-T-Zellen. Überreaktionen wie Autoimmunerkrankungen oder Allergien sind der Preis, den wir für die Krebsbekämpfung durch T-Zellen zahlen.

Der Balanceakt zwischen Immunreaktionen, die Tumoren bekämpfen, und Autoimmunerkrankungen misslingt vor allem im Alter: Ein Drittel aller alten Menschen in den westlichen Ländern bekommt Krebs, 5-10% entwickeln Autoimmunerkrankungen.

Mikroorganismen wie EBV, Hepatitis B und C, HPV und Helicobacter pylori verursachen etwa ein Viertel aller Krebserkrankungen. Die chronischen Infektionen werden von spezifischen T-Zellen in Schach gehalten; im Alter kann diese Abwehr versagen kann.

5. Alter

Im hohen Alter steigt das Risiko akuter viraler und bakterieller Infektionen, außerdem ist die Sterblichkeit unter Infizierten im Alter dreimal so hoch wie bei jüngeren Erwachsenen. Bei einer normalen Grippewelle sind etwa 90% der Toten über 65 Jahre alt (s. Abb.).

Das Gleichgewicht zwischen Mikrobiom und Wirt kann durch ein nachlassendes Immunsystem gestört werden. Eine reduzierte mikrobielle Vielfalt im Darm korreliert mit Clostridium-difficile-assoziierter Diarrhö, die oft bei Alten in Krankenhäusern auftritt. Proinflammatorische Pathobionten nehmen im hohen Alter zu, immunmodulierende Arten ab.

Autoimmunerkrankungen werden im Alter häufiger, evtl. durch Lymphopenie, den Rückgang von Tregs und/oder die nachlassender Aufräumtätigkeit der Makrophagen. Der Thymus-Output sinkt, es gibt weniger neue naive T-Zellen. Auch die Fähigkeit, ein Gedächtnis für neue Antigene anzulegen, lässt nach. Das CD4+/CD8+-Verhältnis wird größer: Die Notwendigkeit, latente Viren wie EBV oder CMV zu kontrollieren, lässt weniger Platz für CD8+-Zellen. Naive B-Zellen werden zunehmend durch Gedächtnis-B-Zellen ersetzt, von denen einige “erschöpft” sind. Der Rückgang der naiven Zellen hat aber meist keine dramatischen Folgen, da alte Menschen schon über große „Gedächtnis-Datenbanken“ zu vielen Pathogenen verfügen.

Auch die angeborene Abwehr lässt im Alter nach. Die Hämatopoese verschiebt sich zugunsten myeloider Zellen – evtl. eine evolutionäre Anpassung, da zur Beseitigung der vielen seneszenten Zellen mehr Phagozytose vonnöten ist. Im hohen Alter sind Neutrophile, Makrophagen und DCs weniger leistungsfähig (weniger HLA-Expression, weniger Phagozytose …), sodass die immunologisch stille Beseitigung apoptotischer und seneszenter Zellen nicht mehr gelingt. Dann kommt es zu einer dauerhaften schwachen Entzündung (mehr proinflammatorische Zytokine: IL-1β, IL-6, IL-18 und TNF-α), die zu Atherosklerose, Demenz oder Krebs beitragen könnte.

Die zellulären und molekularen Grundlage der Immunoseneszenz sind noch nicht aufgeklärt. Ältere Zellen zeichnen sich durch drei Eigenheiten aus: (1) Telomere verkürzt -> Die Zellteilungsfähigkeit lässt nach. (2) Mitochondrien-Dysfunktion -> mehr reaktive Sauerstoffspezies. (3) Sekretion entzündungsfördernder Zytokine, Chemokine und Proteasen. Die Auswirkungen auf das Immunsystem: Mitotische Zellen wie hämatopoetische Stammzellen, T-Zellen usw. schwinden, postmitotische Immunzellen wie Neutrophile werden dysfunktional.

Hochbetagte sowie Menschen mit Autoimmunerkrankungen oder chronischen Vireninfektionen haben vor allem CD27CD28-T-Zellen mit sehr kurzen Telomeren, die sich kaum noch teilen können, aber noch starke Effektorfunktionen ausüben.

Bei oxidativem Stress (etwa durch reaktive Sauerstoffspezies) können DNA-Stränge zerbrechen. Verursacht wird der oxidative Stress evtl. durch ein Nachlassen der Autophagie: Altes zytoplasmatisches Material wird nicht mehr zum sicheren Abbau in Lysosomen ausgelagert.

 

Heilung bakterieller Hautinfektionen vermutlich von der Hautflora beeinflusst

Nicht nur im Darm, auch auf der Haut beeinflussen unsere bereits etablierten Mitbewohner, ob sich ein Neuankömmling – etwa ein Krankheitserreger – ansiedeln kann oder nicht. Die Zusammensetzung des Mikrobioms wiederum wird vom Wirt und seinem Immunsystem beeinflusst – und wirkt auf dieses Immunsystem zurück.

Anders als bei der Darmflora lassen sich im Bakterienartenmix auf trockener, gesunder Haut keine „Leuchtturm-Arten“ ausmachen, die die Gemeinschaft dominieren. Auf dem Oberarm leben stattdessen sehr viele Arten in relativ ausgeglichener Verteilung. Zugleich schwankt die Zusammensetzung mit der Zeit.

In der hier vorgestellten Studie haben sich acht tapfere Freiwillige an mehreren Stellen an ihren Oberarmen mit dem Bakterium Haemophilus ducreyi haben infizieren lassen. H. ducreyi ist der Erreger der Geschlechtskrankheit Weicher Schanker (Ulcus molle), kann aber auch auf der normalen Haut zu Pusteln führen, die bei Kindern in Afrika oft zu chronischen Abszessen werden. Mit Antibiotika behandelt, heilen diese lokalen Infektionen vollständig ab, ohne die Gesundheit weiter zu beeinträchtigen.

Bei etwa 30 Prozent aller Betroffenen heilen die Hautinfektionen auch ohne Intervention ab. In der kleinen Studie verschwanden die Vorformen der Pusteln bei vier Teilnehmern, also der Hälfte, ohne Behandlung rasch wieder. Die Autoren haben untersucht, ob sich die Hautflora dieser Selbstheiler vom Mikrobiom der Teilnehmer unterscheidet, deren Immunsystem ohne Unterstützung nicht mit H. ducreyi fertig wird. Ihre aus der Ökologie abgeleitete Hypothese, dass die lokale Hautflora der Selbstheiler eine größere Vielfalt und damit eine höhere Resilienz aufweist, bestätigte sich nicht – was aber auch an der sehr kleinen Teilnehmerzahl liegen kann.

Dennoch gab es markante Unterschiede: Die Mikrobiome der vier Selbstheiler ähnelten sich zu Beginn des Versuchs untereinander viel stärker als den vier Mikrobiomen der Pustel-Entwickler, die auch untereinander recht verschieden waren. Auf der gesunden Oberarmhaut der künftigen Selbstheiler leben deutlich mehr Actinobacteria, Firmicutes und Bacteroidetes und dafür deutlich weniger Proteobacteria als in der Hautflora der künftigen Pustel-Entwickler. Entweder wirkt sich die Zusammensetzung des Selbstheiler-Mikrobioms günstig auf die Bekämpfung des Pathogens aus, oder Eigenschaften des Wirts – etwa das Aktivitätsniveau bestimmter Immunzellen – prägen sowohl das Mikrobiom als auch die Selbstheilungschancen.

Nach einigen Tagen hatte sich das Bild umgekehrt: Nun waren sich die Mikrobiome der Pustel-Entwickler ziemlich ähnlich. In den Pusteln hatten sich neben H. ducreyi auch Proteobacteria, Bacteroidetes, Micrococcus, Corynebacterium, Paracoccus und Staphylococcus vermehrt – vermutlich aufgrund der vergeblichen Versuche des Immunsystems, H. ducreyi zu bekämpfen (sog. Hyperinflammation). Bei dieser versagenden Abwehr gelingt es den Zellen des angeborenen Immunsystems nicht, die Pathogene rasch durch Verschlingen (Phagozytose) unschädlich zu machen. Entsprechend werden in den Pusteln über längere Zeit viele entzündungsfördernde Zytokine, Sauerstoff- und Stickstoff-Radikale, antimikrobielle Peptide usw. ausgeschüttet, und die Temperatur und die Feuchtigkeit steigen. Davon profitieren einige Bakterien, während andere in dieser veränderten Umwelt nicht mehr gedeihen.

Eine Abheilung von Pusteln ging dagegen mit einer Vermehrung von Actinobacteria und Propionibacterium einher. Vielleicht hindern diese Bakterien H. ducreyi aktiv an der Vermehrung, oder sie konkurrieren mit dem Pathogen erfolgreich um Ressourcen, oder sie versetzen das Immunsystem ihres Wirts in die Lage, die Keime zu bekämpfen. Es ist auch nicht auszuschließen, dass ihre Präsenz einfach einen Zustand des angeborenen Immunsystems anzeigt, der für die Bekämpfung von H. ducreyi besonders geeignet ist.

Literatur:

J. J. van Rensburg et al. (2015): The Human Skin Microbiome Associates with the Outcome of and Is Influenced by Bacterial InfectionmBio vol. 6 no. 5 e01315-15, doi: 10.1128/mBio.01315-15 (Open Access)

Dazu auch A. Azvolinsky (2015): Skin Microbes Help Clear Infection

Selektionsdruck durch Seuchen

Pestarzt_650_gespiegeltFür die meisten Betroffenen nur ein schwacher Trost, aber evolutionsbiologisch faszinierend: Dass Risikogenvarianten für Autoimmunerkrankungen nicht längst „weggemendelt“ wurden, liegt wohl daran, dass sie mit höheren Überlebenschancen bei Infektionserkrankungen einhergehen.

So deutet einiges darauf hin, dass manche afrikanische und asiatische Ethnien eine stärkere genetische Neigung zu Lupus (SLE) haben als beispielsweise Europäer, weil eine Variante in einem Gen für einen Rezeptor für das konstante Ende von Antikörpern das Risiko verringert, an Malaria zu sterben – um den Preis eines höheren Lupus-Risikos (Clatworthy et al. 2007).

Eine ähnliche positive Selektion hat wohl der Cholera-Erreger Vibrio cholerae im bengalischen Gangesdelta ausgeübt: Viele Bengalen tragen genetische Varianten in sich, die einerseits die Schlagkraft des angeborenen Arms ihres Immunsystems gegen Cholera, andererseits aber auch die Neigung zu Colitis ulcerosa erhöhen (Karlsson et al. 2013).

Selektionsdruck_Malaria_Pest_Cholera_Roma_650

In Europa schließlich dürften die Pestepidemien des Mittelalters und der frühen Neuzeit einen starken Selektionsdruck auf unser Immunsystem ausgeübt haben. Das wird beim Vergleich der Immunsystem-Gene von „alteingesessenen“ Rumänen, rumänischen Roma und Nordwestindern deutlich.

Die Vorfahren der Roma sind zwischen 900 und 1100 n. Chr. aus dem Nordwesten Indiens nach Europa eingewandert (weiße Punkte und Pfeil in der Karte). Seither sind sie in Rumänien im Großen und Ganzen ähnlichen Umweltbedingungen und damit auch einem ähnlichen Selektionsdruck durch Infektionen ausgesetzt wie die übrige Bevölkerung Rumäniens (schwarzer Punkt in der Karte). Sie haben sich aber genetisch kaum vermischt.

Laayouni et al. (2014) haben mehrere Gene für sogenannte toll-like receptors aufgespürt, die in diesen beiden europäischen Populationen in den letzten Jahrhunderten eine konvergente Entwicklung durchlaufen haben: TLR1, TLR6 und TLR10. Kleine Varianten in diesen Genen verändern die Zytokin-Ausschüttung, die durch das Bakterium Yersinia pestis ausgelöst wird. Bei den Nordwestindern, die den Roma genetisch ansonsten noch recht nahe stehen, finden sich diese Varianten nicht – ebenso wenig wie bei den Yoruba in Afrika oder bei den Han-Chinesen.

Unter einem positiven Selektionsdruck stand bei den Rumänen und den Roma offenbar auch eine Variante des Gens ADAMTS12, die das Risiko erhöht, an rheumatoider Arthritis zu erkranken. Etliche TLR-Varianten erhöhen ebenfalls die Neigung zu Autoimmunstörungen oder chronischen Entzündungen.

Bildergalerie

Da ich im Moment nicht zum ausführlichen Bloggen komme, stelle ich hier einfach die neuesten Abbildungen fürs Buch vor: unkommentiert – und damit wohl auch unverständlich. Aber das eine oder andere Element spricht vielleicht doch für sich selbst:

P1200120_IFN_und_AIE_1000

P1200095_U-Form_1_Grundtonus_nach_Casadevall_650

P1200100_U-From_2_entzündungshemmend_nach_Casadevall_650

P1200105_U-Form_3_entzündungsfördernd_nach_Casadevall_650

P1190917_Wahren-Herlenius_Autoimmunität_Risiken_650

Wahren-Herlenius_Rückkopplung_angeb_erw_Abwehr_AIE_650

  Primär_Sekundärantwort_IgM_IgG_650

Zeitverlauf_klonale_Expansion_Kontraktion_CD4_CD8_650n

Und jetzt weiter im Text – oder vielmehr im Bild: Die nächste Zeichnung dreht sich um die circadiane Rhythmik des Immunsystems, also die Schwankungen von Zell- und Stoffkonzentrationen sowie -funktionen im Tagesverlauf.

Neandertaler-Erbe in unserem Immunsystem

Sapiens-Neandertaler-Paar_650Schnelle Notizen zu 14 kürzlich gelesenen Artikeln – nicht allgemein verständlich aufbereitet, nicht korrekturgelesen und in dieser Form wahrscheinlich nur für mich selbst nützlich. :-) Das Ganze wird im letzten Teil des Buches verwurstet, in dem ich die Evolution unseres Immunsytems chronologisch abhandle.

Gibbons A. (2014): Neandertals and moderns made imperfect mates. Science 343, 31.01.2014 (News zu den Arbeiten von Sankararaman et al. 2014, s. u., sowie Vernot & Akey 2014)

Vernot & Akey haben nur moderne Humangenome aus dem 1000 Genomes Project verglichen und daraus Rückschlüsse auf Neandertaler-Einkreuzungen gezogen; Sankararaman et al. haben auch Neandertaler-Genomsequenz einbezogen. Neandertaler haben Spuren in Haut, Nägeln und Haaren (Keratin) hinterlassen; Nachfahren der Hybriden waren weniger fruchtbar als „reine“ moderne Menschen.

In über 60% von 1004 ostasiatischen und europäischen Genomen Neandertaler-Version des Keratinfunktion-Gens. Keratin macht Haut wasserdicht, blockiert Pathogene, macht Haut wärme- und kälteempfindlich -> Anpassung an kältere Habitate?

Neandertaler-Allele, die Risiko für Krankheiten wie Lupus, Morbus Crohn usw. erhöhen, haben Neandertalern vermutlich nicht geschadet, passten aber schlecht zum neuen Kontext im modernen Menschen.

Weitere Neandertaler-Allele -> Hautfarbe.

In allen untersuchten modernen Humangenomen zusammen 20 bzw. 30% des Neandertaler-Genoms wiedergefunden; in einem Individuum stammen 1-3% des Genoms vom Neandertaler. Einkreuzung vor etwa 60.000 Jahren.

Etwa 20 Regionen des Humangenoms enthalten keine Neandertaler-DNA -> negative Selektion wegen Fortpflanzungsnachteilen der Hybriden. Frauen bleiben wegen doppeltem X-Chromosom eher fruchtbar -> Jetzt wird untersucht, ob wir mehr DNA von weiblichen als von männlichen Neandertalern übernommen haben. (Gemeint ist wahrscheinlich das Geschlecht der gemischten Kinder, nicht des reinen Neandertaler-Elternteils – da macht es keinen Unterschied, solange männliche Hybriden mit Neandertaler-X und modernem Y ebenso (un)fruchtbar sind wie männliche Hybriden mit modernem X und Neandertaler-Y.)

Sankararaman S. et al. (2014): The genomic landscape of Neanderthal ancestry in present-day humans. nature, doi:10.1038/nature12961

Vergleich zwischen Neandertaler-Genomen und 1004 modernen Genomen (darunter 176 Yoruba, mutmaßlich Neandertaler-frei) -> Neandertaler-Haplotypen abgeleitet. Regionen mit vielen Neandertaler-Allelen enthalten viele Gene, die Keratinfilamente beeinflussen -> Haut und Haar -> Anpassung moderner Menschen an außerafrikanische Umwelt erleichtert? Große Neandertaler-Allel-freie „Wüsten“ im Humangenom, z. B. auf X-Chromosom, das viele Gene für männliche Fruchtbarkeit enthält; nur teilweise durch geringe Populationsgröße kurz nach Einkreuzung zu erklären  -> negative Selektion, evlt. weil Neandertaler-Allele im Genom-Kontext des modernen Menschen Fruchtbarkeit minderten.

Haplotyp-Längen -> Kreuzung vor etwa 2000 Generationen, also 37.000-86.000 Jahren. Neandertaler-Anteil in individuellen Genomen: heute durchschnittlich 1,15% in Europa, 1,38% in Ostasien; kurz nach Einkreuzung über 3% (abgeleitet aus Anteil in „Nicht-Wüsten-Regionen“). Größerer Anteil in Ostasiaten evtl. wegen über lange Zeit kleinerer Populationen als in Europa -> negative Selektion weniger effektiv. Mutmaßlichem Neandertaler-Anteil an einzelnen Genorten: bis zu 62% in ostasiatischen, bis zu 64% in europäischen Populationen. In einigen dieser Regionen Anzeichen für positive Selektion, an an deren negative Selektion.

Aus Neandertalern stammende Allele beeinflussen Risiko für SLE/Lupus, primär biliäre Zirrhose (beides: Transportin-3), Morbus Crohn (Chromosom 10: Zinkfinger-Protein 365, Chromosom 12: Gen unbekannt?), IL-18-Level (Regulator der angeborenen und erworbenen Immunität) , Typ-2-Diabetes, Rauchen und Größe des Blinden Flecks.

Obwohl bei der Einkreuzung nur etwa fünfmal mehr Zeit seit der Aufspaltung zwischen Neandertalern und Vorfahren der modernen Menschen vergangen war als heute seit der Aufspaltung zwischen Europäern und Westafrikanern, war die Fruchtbarkeit der Hybriden wohl wegen Schneeball-Effekten (Dobzhansky-Müller-Inkompatibilitäten) stark reduziert.

Prüfer K. et al. (2014): The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505, doi:10.1038/nature12886

Hochwertige Genomsequenz einer Neandertaler-Frau aus der Denisova-Höhle in Altai-Gebirge, Sibirien – gewonnen aus einem Zehenknochen aus einer etwa 50.000 Jahre alten Schicht. In derselben Höhle, aber in einer etwas jüngeren Schicht wurde auch der Fingerknochen gefunden, aus dem die vorläufige Genomsequenz des Denisova-Menschen ermittelt wurde. Vergleich mehrerer Neandertaler-Genome (auch aus dem Kaukasus und Kroatien, s. Karte Abb. 1), des Denisova-Menschen-Genoms und 25 moderner Humangenome -> Modell der Einkreuzungsereignisse zwischen modernem Menschen, Denisova, Neandertaler und einem unbekannten Hominiden (Abb. 8).  Weiterlesen

Dendritische Zellen und Mikrogliazellen

Die letzte Skizze für heute:

P1150754_DC_und_Mikroglia_650Dendritische Zellen nehmen im Gewebe Antigene auf, verarbeiten sie weiter und präsentieren sie nach ihrer Wanderung in einen Lymphknoten auf ihren MHC-Klasse-II-Molekülen (Tablett) den T-Zellen. Hier ein Frühstadium; das spätere Stadium als antigenpräsentierende Zelle (APC) habe ich schon letztes Jahr skizziert.

Mikrogliazellen übernehmen im Gehirn ähnliche Aufgaben wie Makrophagen oder dendritische Zellen: Zwischen den Nervenzellen sitzend, tasten sie mit ihren zahlreichen Ausläufern ständig ihre Umgebung ab, um den Zustand der Synapsen zu überprüfen, gegebenenfalls Nervenverbindungen zu reparieren oder abzubauen und bei Infektionen Erreger zu verschlingen sowie Alarmsignale auszusenden. Das Kuriose: Sie stammen nicht aus dem Knochenmark und auch nicht aus den embryonalen blutbildenden Organen wie der Embryo-Leber, sondern aus dem Dottersack!

Da ich die Makrophagen bereits vor einigen Monaten gezeichnet habe, ist die Skizzenserie zu den Zellen der angeborenen Immunabwehr damit abgeschlossen.

Basophiler Granulozyt

Nächste Skizze: ein Basophiler mit seinem charakteristisch in zwei Lappen unterteilten Zellkern und vielen, vielen Granula (Bläschen, die mit chemischen Waffen angefüllt sind).

P1150749_Basophiler_Zecke_500

Die Funktion dieser seltenen, eng mit den Mastzellen verwandten Immunzellen ist noch nicht ganz geklärt. Vielleicht sind sie Spezialisten für die Bekämpfung wiederholter Zeckeninfektionen.

Neutrophiler Granulozyt

Noch eine Skizze für das Kapitel, in dem ich die Zellen des Immunsystems vorstelle:

P1150745_Neutrophiler_Spiderman_500

Ein Neutrophiler wirft sein DNA- und Enzym-Netz (NET = neutrophil extracellular net) aus, um einen Krankheitserreger zu fixieren und auszuschalten. Obwohl sich die Zelle dabei selbst entkernt, lebt sie oft noch eine Weile weiter und bleibt aktiv – gewissermaßen als Zombie.