Schlagwort-Archiv: Antibiotikaresistenz

Das Immunsystem indigener Gruppen und das ethische Dilemma des Erstkontakts

Vor einem Jahr erschien eine Arbeit über das Mikrobiom unkontaktierter Yanomami, die ich damals nur kurz besprechen konnte. Jetzt habe ich sie noch einmal gelesen, obwohl sie immunologisch unergiebig ist: Die Entnahme von Blutproben, die Aufschluss über den Zustand des Immunsystems dieser Menschen hätte geben können, war bei einem Erstkontakt selbstverständlich unmöglich. Man muss schon froh sein, dass sie Abstriche aus ihrer Mundschleimhaut und das Einsammeln von Stuhlproben gestattet haben – vermutlich nicht, ohne sich über dieses merkwürdige Verhalten zu amüsieren.

Die Hauptergebnisse: Die Bakteriengemeinschaften auf der Haut und im Stuhl dieser mutmaßlich seit über 11.000 Jahren isolierten Menschen sind erheblich artenreicher als unsere – und auch als die Mikrobiome anderer naturnah lebender Völker. Die sogenannte Alpha-Diversität ihrer Mikrobiome ist also sehr hoch, vermutlich, weil sie nie mit antimikrobiellen Substanzen zu tun hatten und weil sie in ständigem Kontakt mit ihrer Umwelt leben. In ihrer Darm- und Hautflora leben zum Beispiel Bakterien, die man bislang für reine Bodenbakterien gehalten hat. Zugleich sind die Unterschiede in der Mikrobiom-Zusammensetzung zwischen den 34 Yanomami, von denen die Proben stammen, viel geringer als zwischen denen zweier Menschen aus einer Gruppe aus unserem Kulturkreis. Die sogenannte Beta-Diversität ist mithin sehr klein – wohl wegen des engen Zusammenlebens, der hygienischen Verhältnisse und der gleichartigen Lebensweise und Ernährung aller Gruppenmitglieder.

Unter den Genen dieser Bakterien, und zwar überweigend den Genen von zuvor unbekannten Stämmen des Darmbakteriums Escherichia coli, finden sich 28, die Antibiotika-Resistenzen vermitteln – sogar gegen einige neue, synthetische Antibiotika. Allerdings werden diese Gene in den Bakterien nicht abgelesen, sie sind „stummgeschaltet“ (silenced), sodass die Bakterien anfangs dennoch auf die Antibiotika ansprechen würden. Aber man muss damit rechnen, dass sie sehr bald wirklich Resistenzen entwickeln würden, und zwar gleich gegen mehrere Antibiotika. In Weltgegenden und Kulturen, in denen die sogenannte Therapietreue (die regelmäßige Einnahme des Medikaments über den kompletten notwendigen Zeitraum) vermutlich gering ist, geht das umso schneller.

Erstkontakt: Es gibt keinen Weg zurück

Dem Forscherteam war bewusst, dass die Probensammlung beim Erstkontakt eine einmalige Gelegenheit ist, ein Mikrobiom-Archiv anzulegen, das vermutlich große strukturelle und funktionale Ähnlichkeiten mit dem Mikrobiom unserer altsteinzeitlichen Vorfahren hat – auch wenn sich die einzelnen Bakterien-Arten und -Stämme natürlich auf dem Weg ihrer Wirte nach und durch Südamerika weiterentwickelt haben. 11.000 Jahre entsprechen ungefähr 100 Millionen Bakteriengenerationen. Zugleich begann mit dieser Begegnung zwischen der bislang isolierten Dorfgemeinschaft und den Medizinern und Wissenschaftlern unwiderruflich der Niedergang dieser Diversität – spätestens mit der ersten Antibiotika-Gabe.

Die Autoren schreiben in ihrer Danksagung: „Wir sind auch den Leuten in dem neu kontaktierten Dorf dankbar für ihr Vertrauen und für unser gemeinsamen Wunsch, dass der unvermeidliche Kontakt mit unserer Kultur ihrem Volk gesundheitliche Vorteile und Schutz bringen möge.“ Ist das nicht ein arg frommer Wunsch angesichts der bisherigen Erfahrungen mit der gesundheitlichen und sozialen Entwicklung neu kontaktierter, kleiner indigener Gruppen?  Weiterlesen

Mikrobiom-News

Lynn_Margulis_650Bevor die Tab-Leiste des Browsers explodiert und meine Bookmarks wegen Nichtbeachtung Harakiri begehen, notiere ich hier in aller Eile ein paar Stichworte zu aktueller (na ja, fast aktueller) Mikrobiom-Literatur.

Und damit die Männerquote bei den Wissenschaftler-Porträts im Buch nicht weiter bei traurigen 100 Prozent liegt, habe ich Lynn Margulis in die Galerie aufgenommen – jene 2011 verstorbene US-amerikanische Biologin, die für symbiotische Organismen (also z. B. Mensch + Mikrobiom) den Begriff „Holobionten“ geprägt hat.

Ruth Williams (2014): Repurposed Retroviruses: Die T-Zell-unabhängige Aktivierung von B-Zellen durch Polysaccharid-Antigene geht bei Mäusen offenbar mit einer Transkription zahlreicher DNA-Sequenzen aus endogenen Retroviren (ERVs) einher, und die dabei entstehende RNA wird zum Teil vom Enzym Reverse Transkriptase in DNA-Stränge rückübersetzt. Das ist vermutlich keine funktionslose oder gar schädliche Nebenwirkung, sondern Teil des B-Zell-Aktivierungsmechanismus.

Kate Yandell (2015): Commensal Defense: Bacteroidetes in unserer Darmflora entgehen der Vernichtung durch antimikrobielle Peptide, mit denen unser Organismus Pathogene im Verdauungstrakt vernichtet, durch ein Enzym, das die Lipopolysaccharide (LPS) in ihrer Membran verändert. Diese im Resistenzgen IpxF codierte Phosphatase knipst negativ geladene Phosphatgruppen von den LPS ab, wodurch die positiv geladenen antimikrobiellen Peptide schlechter an unsere Symbionten binden als an die Pathogene.   Weiterlesen

Mundflora und Immunreaktionen von mittelalterlichen Bewohnern des Klosters Dalheim

Ergänzende Informationen zu Adler et al.; auch diese Zusammenfassung ist noch nicht allgemein verständlich aufbereitet:

Warinner C et al. (2104): Pathogens and host immunity in the ancient human oral cavity. Nature Genetics 46, 336,344, doi:10.1038/ng.2906

Zahnstein enthält viele verwertbare Informationen (DNA, Proteine) und ist in vielen alten Schädeln zu finden. Die Autoren haben (1) die Mundflora von mittelalterlichen Menschen mit leichter bis schwerer Parodontitis analysiert, (2) 40 opportunistische Pathogene charakterisiert, (3) alte mutmaßliche Atibiotikaresistenzgene identifiziert, (4) das Genom des Parodontitis-assoziierten Keims Tannerella forsythia rekonstruiert und (5) 239 bakterielle sowie 43 menschliche Proteine identifiziert, die einen historisch alten Zusammenhang zwischen Faktoren unseres Immunsystems, Pathogenen des „roten Komplexes“ und Parodontitis belegen.

Die humane Mundflora umfasst über 2000 Bakterien-Taxa, darunter viele Keime, die an Parodontitis, Atemwegs-, kardiovaskulären und systemischen Erkrankungen beteiligt sind. Zahnstein = komplexer, mineralisierter Biofilm, der aus Zahnbelag (Plaque), Speichel und der Flüssigkeit in Zahnfleischtaschen entsteht.

Adler et al. haben die alte Mundflora nur auf Phylumebene analysiert und gezielt nach einigen Arten gesucht. Zur Charakterisierung des Gesundheitszustands wurden hier nun an vier Skeletten aus dem mittelalterlichen Kloster Dalheim (Deutschland, etwa 950-1200 n. Chr.) genauere Analysen durchgeführt. 2699 mikrobielle OTUs (operational taxonomic units) identifiziert. Dominant: 1 Archäen- und 9 Bakterien-Phyla (mit absteigenden Anteilen: Firmicutes, Actinobacteria, Proteobacteria, Bacteroidetes, Synergistetes, Chloroflexi, Fusobacteria, Spirochetes, Euryarchaeota), die alle auch moderne Mundflora dominieren. Bemerkenswert selten: Bodenbakterien wie Acidobacteria -> kaum Verunreinigung der Proben.   Weiterlesen