Schlagwort-Archiv: Antigen

Räumliche und lineare Antigen-Erkennung

Noch eine nachgeholte Simpel-Skizze für den bereits geschriebenen Teil des Buches:

Proteine und andere Antigene bestehen zwar aus Kettenmolekülen, haben aber auch eine charakteristische dreidimensionale Gestalt (Brezel).

P1240316_Antigen-Erkennung_3D_vs_2D_650

Immunglobuline, also B-Zell-Rezeptoren und Antikörper, erkennen ihr spezifisches Antigen-Epitop an seiner dreidimensionalen Struktur (Brezel-Ausschnitt links).

Bei der Antigenbindung durch T-Zell-Rezeptoren kommt es dagegen nur auf die Aminosäuresequenz eines kurzen, linearen Antigenabschnitts an (Buchstabenfolge rechts).

Affinitätsreifung der B-Zellen in den Keimzentren

In den Follikeln des sekundären und tertiären Lymphgewebes kommt es nicht nur zum Immunglobulin-Klassenwechsel, den ich im letzten Beitrag skizziert habe, sondern auch zur Affinitätsreifung durch somatische Hypermutation und anschließende Selektion auf verbesserte Antigen-Bindungsstärke:

P1240180_Follikel_Affinitätsreifung_650

Im Uhrzeigersinn, bei 4 Uhr beginnend:

A  Eine B-Zelle, die ein Antigen aufgenommen hat, präsentiert ihren Fund einer T-Helferzelle und wird vollends aktiviert, sofern der T-Zell-Rezeptor das Antigen erkennt. Sie erhält von der T-Helferzelle die Lizenz, in das Keimzentrum des Follikels einzutreten.

B  Im Keimzentrum des Follikels vermehrt sich die B-Zelle stark durch Teilung. Währenddessen verändert das Enzym AID in dem Gen, das die antigenspezifische Bindungsstelle des Immunglobulins codiert, nach dem Zufallsprinzip einzelne Basen (A, T, C, G). Diesen Vorgang nennt man somatische Hypermutation.

C  Die B-Zellen treten aus der dunklen Zone des Keimzentrums in die helle Zone über, wo sie von dendritischen Zellen (DC) erwartet werden und nach der Mutation eine Selektion durchlaufen.

D  Die dendritischen Zellen präsentieren ihnen das Antigen, um die Bindungsstärke des mutierten B-Zell-Rezeptors zu prüfen.

E  Hat die Mutation die Bindung der Immunglobuline an das Antigen geschwächt, stirbt die B-Zelle durch Apoptose kontrolliert ab.

F  Hat die Mutation die spezifische Bindung an das Antigen gestärkt, so führt die B-Zelle dieses Antigen nun auf ihrem MHC-Klasse-II-Komplex einer follikulären T-Helferzelle vor, die es mit ihrem spezifischen T-Zell-Rezeptor erkennt. Durch diesen Kontakt wird auch der Klassenwechsel bei den Immunglobulinen ausgelöst, sodass die B-Zelle nun kein IgM mehr herstellt, sondern IgG, IgE oder IgA – je nachdem, welchen Botenstoff die T-Helferzelle ausschüttet.

Je nach Bedarf und dem Ergebnis dieser weiteren Prüfung schlägt die B-Zelle danach einen von vier Wegen ein:

G  Die B-Zelle ist unbrauchbar, weil sie der T-Zelle ihr Antigen nicht effizient präsentiert, und stirbt durch Apoptose.

H  Die B-Zelle ist zur humoralen Abwehr geeignet, verlässt das Keimzentrum und entwickelt sich zur Plasmazelle weiter, die massenhaft Antikörper erzeugt.

I  Einige B-Zellen reifen stattdessen zu Gedächtniszellen heran, die mit ihrem Wissen um die aktuelle Infektion dafür sorgen, dass das Immunsystem auf ein späteres erneutes Auftreten desselben Antigens schneller und stärker reagieren kann.

J  Einige besonders schlagkräftige B-Zellen erhalten die Order, erneut in das Keimzentrum einzutreten, um sich zu vermehren und durch Mutation und Selektion weiter zu verbessern. So steigert der Organismus die Affinität der Immunglobuline zu einem bestimmten Antigen mit der Zeit. Diesen Vorgang nennt man Affinitätsreifung.

T-Zell-Rezeptoren sind degeneriert

Manche Fachbegriffe fordern Missverständnisse geradezu heraus; „degeneriert“ gehört sicherlich dazu. Gemeint ist, dass das Repertoire der T-Zell-Rezeptoren in jedem einzelnen Menschen zwar groß ist (schätzungsweise 1-100 Millionen unterschiedliche Typen), aber längst nicht ausreicht für eine hochspezifische 1:1-Erkennung jeweils eines Antigen-Peptids durch einen Rezeptortyp. Die Zahl der Peptide, die die antigenpräsentierenden Zellen im Laufe unseres Lebens auf ihren MHC-Molekülen präsentieren können, ist einfach gigantisch. Daher muss ein T-Zell-Rezeptor auf zahlreiche verschiedene Peptid-MHC-Komplexe reagieren können. Und so geht’s:

P1240133_TCR-Degeneration_650

 

Unten das MHC-Molekül, das als Präsentierteller in der Membran einer antigenpräsentierenden Zelle (etwa einer dendritischen Zelle oder einer B-Zelle) verankert ist. In der Mitte das Peptid, also die Aminosäurenkette, die diese Zelle aus einem aufgenommenen Antigen gewonnen hat und nun vorführt. Und oben der T-Zell-Rezeptor, der in der Membran einer T-Zelle verankert ist. Dieser Rezeptor braucht nur an wenige Stellen – teils an der Oberfläche des MHC-Moleküls, teils an der ihm zugewandten Seite des Peptids – wirklich gut zu binden, um die T-Zelle zu aktivieren. Die Hohlräume zeigen: Welche Aminosäure-Seitenketten ihm an den anderen Stellen entgegengestreckt werden, ist dem Rezeptor egal.

Folglich erkennt eine T-Zelle mit ihrem individuellen Rezeptortyp nicht nur ein Antigen, sondern etliche. Hier sind es zwei Pickelhauben (in meinen Cartoons die typische Kopfbedeckung pathogener Bakterien), aber leider auch ein harmloser Bauhelm – also ein Antigen, das vielleicht von einem Pflanzenpollenkorn, von einem gutartigen Bakterium aus unserem Mikrobiom oder von einer körpereigenen Zelle stammt:

P1240133_TCR-Degeneration_Helme_650

Und hier noch eine „realistischere“ oder zumindest weniger schematische Darstellung der Bindungsstelle eines MHC-Moleküls und des passenden T-Zell-Rezeptors:

MHC-Peptid-TCR-Bindung_650

Wir blicken aus der Perspektive der T-Zelle auf die Front eines MHC-Moleküls der antigenpräsentierenden Zelle. Die Kontur des darauf präsentierten Antigen-Peptids ist gepunktet. Die sechs „Würmer“ sind die entscheidenden Erkennungsschlaufen an der Front des ansonsten unsichtbaren T-Zell-Rezeptors. Normalerweise binden nur die mittleren zwei oder drei Schlaufen Aminosäuren des Antigen-Peptids, während die äußeren Schlaufen vor allem mit der Oberfläche des MHC-Moleküls Kontakt haben.

Da die mittleren Schlaufen nicht starr, sondern ein wenig verformbar sind, akzeptieren sie unterschiedliche Peptide als Bindungspartner. Ab und zu leider auch solche, die aus Autoantigenen stammen. Und wenn dann noch ein paar Kontrollmechanismen versagen, kommt eine Autoimmunreaktion in Gang.

Bystander Activation und Epitope Spreading

Bystander activation (Aktivierung Unbeteiligter) und epitope spreading (Epitop-Ausweitung) sind zwei der vier meistdiskutierten Mechanismen, über die sich akute Infektionen zu chronischen Autimmunerkrankungen auswachsen können.

P1230946_Bystander_activation_650

Bei einer bystander activation liefert die Bekämpfung einer akuten Infektion (rechts) Signale, die zufällig in der Nähe befindliche autoreaktive T-Zellen (links) aktivieren – etwa Interferon-α bei einer Vireninfektion oder Kostimulationssignale auf antigenpräsentierenden Zellen.

P1230942_Epitope_spreading_Schlange_650

Epitope spreading sorgt dafür, dass die Abwehr, die zunächst nur ein Epitop (einen kurzen Abschnitt) eines Antigens erkennt, nach und nach auch andere Epitope dieses Antigens und evtl. auch anderer, mit ihm gemeinsam auftretender Antigene erkennt. Im Fall eines tatsächlich gefährlichen Antigens (Schlange) macht das die Abwehr schlagkräftiger. Aber wenn das System fälschlicherweise auf ein harmloses Autoantigen (Blindschleiche) anspringt, kann derselbe Mechanismus auch die Autoimmunreaktion ausweiten.

Die anderen beiden Hauptmechanismen sind die molekulare Mimikry (siehe z. B. Punkt 5 im Artikel über Immunneuropathien) und die Aktivierung von T-Zellen durch Superantigene (siehe z. B. unterste Abbildung im Artikel über MHC-Moleküle und Superantigene). Die vier Mechanismen schließen einander nicht aus, sondern ergänzen sich. So kann das ursprüngliche „Missverständnis“ beim epitope spreading (gepunkteter Pfeil) durch molekulare Mimikry zustande kommen.

Autoantikörper sind notwendig

Skizze zur Veranschaulichung der Hypothese von der Natürlichkeit und Notwendigkeit von Autoantikörpern zur Regulierung der frühen Immunantwort bei Infektionen; Erläuterungen folgen im Buch:

P1110063_AK-AAK-Netzwerk_Messer_Scheide_650