Schlagwort-Archive: ATP

Abb. 211: Der Energiehaushalt der Lymphozyten

Action oder Substanz? Eine Immunzelle kann Ressourcen wie Zucker entweder in eine Energiewährung wie ATP oder NADPH umsetzen, die Abwehrreaktionen ermöglicht, oder in Makromolekül-Bausteine wie Aminosäuren (AS), die bei Zellteilungen gebraucht werden.
Naive T-Zellen haben einen niedrigen Energieverbrauch. Nach ihrer Aktivierung (Blitz) müssen sie sich rasant vermehren, also Substanz aufbauen. Dabei überwiegt ein Stoffwechselweg namens aerobe Glykolyse, bei dem Glukose abgebaut wird. Während der Abwehrreaktion teilen sie sich nicht mehr, brauchen aber viel Energie für ihre Arbeit. Gedächtniszellen haben wieder einen geringeren Energieverbrauch und bevorzugen denselben gemächlich-effizienten Stoffwechselweg wie die naiven T-Zellen, die sogenannte oxidative Phosphorylierung.
In Zellkulturen werden Immunzellen meist so mit Nährstoffen verwöhnt, dass man sich fragen
muss, ob sie sich nicht völlig anders verhalten als im Körper. Eine Standard-Kulturlösung enthält 2- bis 4-mal so viel Sauerstoff wie unser Blut, 5-mal so viel Glukose und 8-mal so viel Glutamin. Und gerade in entzündetem Gewebe mangelt es an Sauerstoff und Nährstoffen.

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Abb. 72: ATP und Proteinkinasen

Das Energieträger-Molekül Adenosintriphosphat wird meist als ATP abgekürzt. Es besteht aus der Base Adenin und dem Zucker Ribose (zusammen Adenosin genannt) und einer Kette von drei Phosphatgruppen (-triphosphat). Die beiden Bindungen zwischen diesen Phosphatgruppen sind sehr energiereich. Proteinkinasen sind Enzyme, die die äußere dieser Bindungen kappen
und die Phosphatgruppe auf eine Aminosäure in einem Protein übertragen. Dadurch wird das Protein energiereicher.

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Schmerz

Achtung, lang – aber am Ende ist man wirklich schlauer!

Ein schwieriges Thema

Viele Menschen mit Autoimmunerkrankungen leiden unter Schmerzen, die ihre Lebensqualität erheblich mindern und schwer zu bekämpfen sind. Ich bin von starken Schmerzen in den letzten Jahren zum Glück weitgehend verschont geblieben und hatte – wohl auch deshalb – in meinem Buch kein Kapitel über die Zusammenhänge zwischen Schmerz und Autoimmunstörungen vorgesehen. Schließlich ist mein Thema ohnehin schon furchtbar vielschichtig, auch wenn man die Wechselwirkungen zwischen dem (gesunden oder entgleisten) Immunsystem und dem (intakten oder beschädigten) Nervensystem ausklammert.

Aber dann erreichte mich eine ziemlich verzweifelte Anfrage von jemandem, der gerade höllische Schmerzen durchlitt und einen Zusammenhang mit einer Autoimmunerkrankung vermutete. Zwar konnte ich ihm leider nicht helfen; ich gebe grundsätzlich keine Diagnose- oder Therapieempfehlungen ab, da das meine Kompetenzen weit überschreiten würde. Aber mein Interesse war geweckt, und ungefähr zur selben Zeit wies mich ein Freund auf eine gute neue Übersichtsarbeit zu Schmerz bei Autoimmunerkrankungen hin. Und so habe ich mich doch in dieses Feld gestürzt, viel dazu gelesen, mit der fremden Fachterminologie gekämpft und einiges gelernt.

Was ist Schmerz?

Intuitiv weiß jeder, was mit Schmerz gemeint ist, aber es hilft ungemein, sich die genaue Definition anzusehen. Die Internationale Gesellschaft zur Erforschung des Schmerzes (IASP) spricht von einem „unangenehmen, heftigen Sinnes- und Gefühlserlebnis, das mit tatsächlichen oder potenziellen Gewebeschäden einhergeht“. Schmerz ist also kein unmittelbarer Sinnesreiz, sondern das Ergebnis einer aufwändigen Signalverarbeitung in der Peripherie (also etwa am Ort der auslösenden Verletzung), im Rückenmark und im Gehirn. An dieser Signalverarbeitung beteiligen sich neben den Nervenzellen oder Neuronen auch die sogenannten Gliazellen (ein Sammelbegriff für alle Zellen im zentralen Nervensystem, die keine Neuronen sind) und, wie sich inzwischen gezeigt hat, etliche Zellen des Immunsystems.

P1100559_3_Orte_Schmerzentstehung_800

An der Schmerzentstehung sind die Nervenendigungen im peripheren Nervensystem (1), das Hinterhorn des Rückenmarks (2) und das Gehirn (3) beteiligt. Das Rückenmark zählt zum zentralen Nervensystem.

Etwas enger gefasst ist ein dem Schmerz verwandter Begriff, die Nozizeption. Noxen (vom lateinischen nocere = schaden) sind potenziell schädliche Reizauslöser physikalischer, chemischer, mikrobieller oder auch psychosozialer Natur, also etwa Hitze, ätzende Stoffe oder Krankheitserreger. Deren rein sinnesphysiologische, also ohne Beteiligung von Bewusstsein oder Gefühlen erfolgende Wahrnehmung (Perzeption) im zentralen Nervensystem (ZNS) heißt Nozizeption.

Die Alarmsignale, die im ZNS ankommen, gehen von spezialisierten freien Nervenendigungen in der Peripherie aus, also zum Beispiel in der Haut eines Fingers, in den sich gerade ein Dorn gebohrt hat. Diese für Schmerzreize empfindlichen Nervenendigungen, die Nozizeptoren, registrieren die Gewebeschädigung und senden dann elektrische Signale aus.

Weiterlesen

Der Energiehaushalt der T-Zellen

Skizzen fürs Buch, angeregt durch Pearce E L et al. 2013, „Fueling immunity: insights into metabolism and lymphocyte function“:

P1180246_Stoffwechsel_T-Zellen_650Bei allem Nachdenken über Signalwege im Immunsystem sollte man nicht vergessen, dass Immunzellen auch einen Stoffwechsel haben: Gerade wenn sie sich stark teilen oder Infektionen bekämpfen sollen wie T-Zellen nach ihrer Aktivierung, benötigen sie enorm viel Energie – und zugleich müssen sie Nukleotide, Proteine und/oder Fette aufbauen.

Die Erläuterungen verschiebe ich größtenteils auf das Buch – hier nur etwas zur wohlgenährten T-Zelle in der Petrischale oben links: Die Ergebnisse von In-vitro-Versuchen mit T-Zellen sind unter anderem deshalb so schlecht auf die Verhältnisse im gesunden oder kranken Organismus zu übertragen, weil wir die kultivierten Zellen „verwöhnen“.

In unseren Lymphknoten und unserer Milz finden sie etwa 5-13% Sauerstoff, 5 mM Glukose, 0,5 mM Glutamin und ausreichend Nährstoffe vor; an ihrem Einsatzort im entzündeten oder infizierten Gewebe herrschen dagegen oft Sauerstoff- und Nährstoffmangel.

Eine Standard-Kulturlösung (Iscoves modifiziertes Dulbecco-Medium mit 10% Serum) enthält aber 20% Sauerstoff (2- bis 4-mal so viel wie in unserem Blut), 25 mM Glukose (5-mal so viel) und 4 mM Glutamin (8-mal so viel).

Low-Level-Lasertherapie bei Hashimoto-Thyreoiditis

Ich bin kein Fan der sogenannten Komplementär- oder Alternativmedizin, der die Low-Level-Lasertherapie (LLLT) bislang offenbar zugerechnet wird. Dennoch bespreche ich hier zwei Arbeiten, die aus der ersten klinischen Studie zur Behandlung von Hashimoto-Thyreoiditis mit LLLT hervorgegangen sind. Es bleibt abzuwarten, ob weitere klinische Studien anderer Forschergruppen – auch bei anderen Indikationen und mit längeren Nachbeobachtungszeiträumen – die Wirksamkeit bestätigen.

Der Bedarf an wirksamen ergänzenden Therapien neben der Gabe von L-Thyroxin und ggf. Selen ist bei Hashimoto-Thyreoiditis jedenfalls groß, denn vielen Patientinnen und Patienten geht es trotz sauber eingestellter Hormongaben nicht gut.

Beide Arbeiten stammen von einer Forschergruppe in São Paulo, Brasilien:

Danilo B. Höfling et al.: Clinical Study: Assessment of the Effects of Low-Level Laser Therapy on the Thyroid Vascularization of Patients with Autoimmune Hypothyroidism by Color Doppler Ultrasound. ISRN Endocrinology (2012), 9 Seiten (Open Access)

Danilo B. Höfling et al.: Low-level laser in the treatment of patients with hypothyroidism induced by chronic autoimmune thyroiditis: a randomized, placebo-controlled clinical trial. Lasers Med Sci (2013) 28:743-753 (Paywall)

Die Autoren nennen die Hashimoto-Thyreoiditis durchgängig „chronic autoimmune thyroiditis“ oder CAT. Gemeint ist, wie Definition und Diagnosekriterien zeigen, dasselbe.

Der mutmaßliche Wirkmechanismus hinter der LLLT: Das Laserlicht soll auf Photoakzeptoren in der Atmungskette der Zellen einwirken, wahrscheinlich auf die Cytochrom-c-Oxidase. Dadurch soll die Produktion von ATP, reaktiven Sauerstoffspezies (ROS) und Stickstoffmonoxid (NO) angeregt werden und der innerzelluläre Kalziumspiegel steigen. Daraufhin sollen die Zellen mehr Wachstumsfaktoren und Zytokine produzieren, die die Gewebsreparatur fördern. Rotlicht- oder Nahinfrarot-Laser scheinen in vitro die Serumkonzentration proinflammatorischer Zytokine zu senken, darunter TNF-α, IFN-γ, IL-1β, IL-2, Il-6 und IL-8. Zugleich steigern LLL offenbar die Produktion von entzündungshemmenden, regulatorischen Zytokinen.

In der klinischen Studie wurden 43 Patienten mit Hashimoto-Thyreoiditis, die hormonell gut eingestellt waren, randomisiert einer Laserbehandlungsgruppe (23 Personen) und einer Placebogruppe (20 Personen) zugeordnet. Unter den 43 Personen, die den Einschlusskriterien genügten (u. a. TSH, T3 und T4 im Normbereich, kein zusätzlicher M. Basedow, keine andere schwere Erkrankung) und an der Studie teilnehmen konnten, war nur ein Mann. Die Behandlung bestand aus 10 Bestrahlungssitzungen innerhalb von 5 Wochen.   Weiterlesen

Literaturliste zum Immunsystem der Pflanzen, Teil 7: Zelltod

Sinn und Anfang der Liste: s. Teil 1.

Andrew P. Hayward, S. P. Dinesh-Kumar: What can plant autophagy do for an innate immune response? Annual Review of Phytopathology 49, 2011, 557-576, doi: 10.1146/annurev-phyto-072910-095333
[nur Abstract gelesen] Autophagie, programmierter Zelltod, PCD, Immunabwehr der Säugetiere.

J.-L. Cacas: Devil inside: does plant programmed cell death involve the endomembrane system? Plant, Cell & Environment 33, 2010, 1453-1574, doi: 10.1111/j.1365-3040.2010.02117.x
[nur Abstract gelesen] endoplasmatisches Reticulum, Golgi-Apparat, Vakuole, programmierter Zelltod, Endomembransystem.

Kirsten Bomblies: What Can Plant Autophagy Do for an Innate Immune Response? Annual Review of Phytopathology 49, 2009, 557-576, doi: 10.1146/annurev-phyto-072910-095333
[nur Abstract gelesen] Hybridnekrose, Inkompatibilität, Autoimmunität, programmierter Zelltod, Abwehr, Artbildung, Evolution.   Weiterlesen

Literatur zum Immunsystem der Pflanzen, Teil 1

Um den Auswertungsrückstand aufzuholen, werde ich alle Artikel, die ich zum Thema „pflanzliches Immunsystem“ gelesen habe, auflisten, verlinken, verschlagworten und ggf. grob zusammenfassen. Das ist sicher nicht schön zu lesen, ja vermutlich total unverständlich, hilft mir aber, Informationen rasch wiederzufinden, wenn ich das entsprechende Buchkapitel schreibe.

Die Artikel sind nicht alphabetisch sortiert, sondern grob thematisch gruppiert. Den ersten, relativ alten Text fasse ich ausführlicher zusammen, weil sich in ihm einige grundlegende Konzepte abzeichnen.

Roger W. Innes: Guarding the goods. New insights into the central alarm system of plants. Update to Pathogen Recognition. Plant Physiol. 2004 Jun;135(2):695-701. doi: http:/​/​dx.​doi.​org/​10.​1104/​pp.​104.​040410
Indirekte Pathogen-Überwachungssysteme in Pflanzen. H. H. Flor 1956: Lein-Rostpilz und Lein; in der Pflanze Resistenzgen R, im Pathogen Avirulenzgen avr; Parallelen zur Wechselwirkung zwischen Antigen und Antikörper. Seither über 50 pathogenspezifische R-Gene in 10 Pflanzenarten (Einkeimblättrige/Monokotyledonen und Zweikeimblättrige/Dikotyledonen) identifiziert.   Weiterlesen