Schlagwort-Archiv: ATP

Der Energiehaushalt der T-Zellen

Skizzen fürs Buch, angeregt durch Pearce E L et al. 2013, „Fueling immunity: insights into metabolism and lymphocyte function“:

P1180246_Stoffwechsel_T-Zellen_650Bei allem Nachdenken über Signalwege im Immunsystem sollte man nicht vergessen, dass Immunzellen auch einen Stoffwechsel haben: Gerade wenn sie sich stark teilen oder Infektionen bekämpfen sollen wie T-Zellen nach ihrer Aktivierung, benötigen sie enorm viel Energie – und zugleich müssen sie Nukleotide, Proteine und/oder Fette aufbauen.

Die Erläuterungen verschiebe ich größtenteils auf das Buch – hier nur etwas zur wohlgenährten T-Zelle in der Petrischale oben links: Die Ergebnisse von In-vitro-Versuchen mit T-Zellen sind unter anderem deshalb so schlecht auf die Verhältnisse im gesunden oder kranken Organismus zu übertragen, weil wir die kultivierten Zellen „verwöhnen“.

In unseren Lymphknoten und unserer Milz finden sie etwa 5-13% Sauerstoff, 5 mM Glukose, 0,5 mM Glutamin und ausreichend Nährstoffe vor; an ihrem Einsatzort im entzündeten oder infizierten Gewebe herrschen dagegen oft Sauerstoff- und Nährstoffmangel.

Eine Standard-Kulturlösung (Iscoves modifiziertes Dulbecco-Medium mit 10% Serum) enthält aber 20% Sauerstoff (2- bis 4-mal so viel wie in unserem Blut), 25 mM Glukose (5-mal so viel) und 4 mM Glutamin (8-mal so viel).

Low-Level-Lasertherapie bei Hashimoto-Thyreoiditis

Ich bin kein Fan der sogenannten Komplementär- oder Alternativmedizin, der die Low-Level-Lasertherapie (LLLT) bislang offenbar zugerechnet wird. Dennoch bespreche ich hier zwei Arbeiten, die aus der ersten klinischen Studie zur Behandlung von Hashimoto-Thyreoiditis mit LLLT hervorgegangen sind. Es bleibt abzuwarten, ob weitere klinische Studien anderer Forschergruppen – auch bei anderen Indikationen und mit längeren Nachbeobachtungszeiträumen – die Wirksamkeit bestätigen.

Der Bedarf an wirksamen ergänzenden Therapien neben der Gabe von L-Thyroxin und ggf. Selen ist bei Hashimoto-Thyreoiditis jedenfalls groß, denn vielen Patientinnen und Patienten geht es trotz sauber eingestellter Hormongaben nicht gut.

Beide Arbeiten stammen von einer Forschergruppe in São Paulo, Brasilien:

Danilo B. Höfling et al.: Clinical Study: Assessment of the Effects of Low-Level Laser Therapy on the Thyroid Vascularization of Patients with Autoimmune Hypothyroidism by Color Doppler Ultrasound. ISRN Endocrinology (2012), 9 Seiten (Open Access)

Danilo B. Höfling et al.: Low-level laser in the treatment of patients with hypothyroidism induced by chronic autoimmune thyroiditis: a randomized, placebo-controlled clinical trial. Lasers Med Sci (2013) 28:743-753 (Paywall)

Die Autoren nennen die Hashimoto-Thyreoiditis durchgängig „chronic autoimmune thyroiditis“ oder CAT. Gemeint ist, wie Definition und Diagnosekriterien zeigen, dasselbe.

Der mutmaßliche Wirkmechanismus hinter der LLLT: Das Laserlicht soll auf Photoakzeptoren in der Atmungskette der Zellen einwirken, wahrscheinlich auf die Cytochrom-c-Oxidase. Dadurch soll die Produktion von ATP, reaktiven Sauerstoffspezies (ROS) und Stickstoffmonoxid (NO) angeregt werden und der innerzelluläre Kalziumspiegel steigen. Daraufhin sollen die Zellen mehr Wachstumsfaktoren und Zytokine produzieren, die die Gewebsreparatur fördern. Rotlicht- oder Nahinfrarot-Laser scheinen in vitro die Serumkonzentration proinflammatorischer Zytokine zu senken, darunter TNF-α, IFN-γ, IL-1β, IL-2, Il-6 und IL-8. Zugleich steigern LLL offenbar die Produktion von entzündungshemmenden, regulatorischen Zytokinen.

In der klinischen Studie wurden 43 Patienten mit Hashimoto-Thyreoiditis, die hormonell gut eingestellt waren, randomisiert einer Laserbehandlungsgruppe (23 Personen) und einer Placebogruppe (20 Personen) zugeordnet. Unter den 43 Personen, die den Einschlusskriterien genügten (u. a. TSH, T3 und T4 im Normbereich, kein zusätzlicher M. Basedow, keine andere schwere Erkrankung) und an der Studie teilnehmen konnten, war nur ein Mann. Die Behandlung bestand aus 10 Bestrahlungssitzungen innerhalb von 5 Wochen.   Weiterlesen

Literaturliste zum Immunsystem der Pflanzen, Teil 7: Zelltod

Sinn und Anfang der Liste: s. Teil 1.

Andrew P. Hayward, S. P. Dinesh-Kumar: What can plant autophagy do for an innate immune response? Annual Review of Phytopathology 49, 2011, 557-576, doi: 10.1146/annurev-phyto-072910-095333
[nur Abstract gelesen] Autophagie, programmierter Zelltod, PCD, Immunabwehr der Säugetiere.

J.-L. Cacas: Devil inside: does plant programmed cell death involve the endomembrane system? Plant, Cell & Environment 33, 2010, 1453-1574, doi: 10.1111/j.1365-3040.2010.02117.x
[nur Abstract gelesen] endoplasmatisches Reticulum, Golgi-Apparat, Vakuole, programmierter Zelltod, Endomembransystem.

Kirsten Bomblies: What Can Plant Autophagy Do for an Innate Immune Response? Annual Review of Phytopathology 49, 2009, 557-576, doi: 10.1146/annurev-phyto-072910-095333
[nur Abstract gelesen] Hybridnekrose, Inkompatibilität, Autoimmunität, programmierter Zelltod, Abwehr, Artbildung, Evolution.   Weiterlesen

Literatur zum Immunsystem der Pflanzen, Teil 1

Um den Auswertungsrückstand aufzuholen, werde ich alle Artikel, die ich zum Thema „pflanzliches Immunsystem“ gelesen habe, auflisten, verlinken, verschlagworten und ggf. grob zusammenfassen. Das ist sicher nicht schön zu lesen, ja vermutlich total unverständlich, hilft mir aber, Informationen rasch wiederzufinden, wenn ich das entsprechende Buchkapitel schreibe.

Die Artikel sind nicht alphabetisch sortiert, sondern grob thematisch gruppiert. Den ersten, relativ alten Text fasse ich ausführlicher zusammen, weil sich in ihm einige grundlegende Konzepte abzeichnen.

Roger W. Innes: Guarding the goods. New insights into the central alarm system of plants. Update to Pathogen Recognition. Plant Physiol. 2004 Jun;135(2):695-701. doi: http:/​/​dx.​doi.​org/​10.​1104/​pp.​104.​040410
Indirekte Pathogen-Überwachungssysteme in Pflanzen. H. H. Flor 1956: Lein-Rostpilz und Lein; in der Pflanze Resistenzgen R, im Pathogen Avirulenzgen avr; Parallelen zur Wechselwirkung zwischen Antigen und Antikörper. Seither über 50 pathogenspezifische R-Gene in 10 Pflanzenarten (Einkeimblättrige/Monokotyledonen und Zweikeimblättrige/Dikotyledonen) identifiziert.   Weiterlesen