Schlagwort-Archiv: Darmflora

Geschlechtsspezifische Unterschiede im Mikrobiom von Menschen mit chronischem Erschöpfungssyndrom

Vor knapp zwei Jahren war ich noch skeptisch und auch ein wenig spöttisch, was das sogenannte Mikrogenderom angeht. Damals waren geschlechtsspezifische Unterschiede im Mikrobiom, die mit Autoimmunerkrankungen korrelieren, ausschließlich bei einem Tiermodell für Diabetes (NOD-Maus) nachgewiesen. Die in der Fachpresse suggerierte Übertragbarkeit auf den Menschen erschien mir fraglich, da man bis dahin nur bei traditionell lebenden Hadza in Tansania gewisse Unterschiede in der Zusammensetzung der Bakterienpopulationen im Darm gefunden hatte, die vermutlich auf die unterschiedliche Kost von Männern und Frauen zurückgehen: „Mag sein, dass wir nur noch genauer hinsehen müssen, um auch in anderen menschlichen Populationen geschlechtsspezifische Darmflora-Nuancen zu entdecken, die, wenn es sie gibt, dann vermutlich auch (auf höchst subtile und verschachtelte Weise) mit unserem Immunsystem wechselwirken und insofern womöglich ihr Scherflein zu den höheren Autoimmunerkrankungsrisiken von Frauen beitragen. Aber das ist noch ein langer Weg, den wir auch ohne Kunstworte aus der Hölle beschreiten können.“

Inzwischen sind wir einen Schritt weiter: Ein australisches Autorenteam um Amy Wallis hat 2016 und 2017 auf kleine bis mittelstarke geschlechtsspezifische Interaktionen zwischen Darmbakterien aus der Abteilung der Firmicutes und den Symptomen von Menschen mit chronischem Müdigkeits- oder Erschöpfungssyndrom (CES) hingewiesen.

CES trifft Frauen häufiger und schwerer

CES ist eine chronische Erkrankung unter Beteiligung des Nerven- und Immunsystems, die sich unter anderem durch pathologische Abgeschlagenheit und starke Erschöpfung bereits nach leichter körperlicher Betätigung auszeichnet. Die Ursachen sind nicht bekannt, und wie bei einigen Autoimmunerkrankungen belasten die schwierige, oftmals um Jahre verzögerte Diagnose und ärztliche Ignoranz die Betroffenen zusätzlich. Einiges spricht für eine starke Beteiligung des Immunsystems an der Erkrankung, aber offenbar eher des angeborenen als des erworbenen Arms unserer Abwehr. Damit ist CES wohl keine Autoimmunerkrankung, sondern eher eine chronische Entzündung.

Wie viele Autoimmunerkrankungen trifft auch CES mehr Frauen als Männer, etwa im Verhältnis 2:1. Bei 9 von 13 durch Fragebögen erhobenen Faktoren berichteten die hier befragten Patientinnen stärkere CES-Symptome als Patienten, was vermutlich nicht auf ein sogenanntes overreporting, also – salopp gesagt – eine größere Wehleidigkeit von Frauen zurückzuführen ist, sondern tatsächlich auf schwerere Beeinträchtigungen. So gehen die höheren Symtomberichtswerte von Frauen oftmals mit höheren Zytokinwerten im Blut einher.

Bakteriensuppe durchsequenzieren – oder Bakteriengattungen kultivieren?

Interessanterweise mussten die Forscher nun ganz genau hinschauen, um geschlechtsspezifische Unterschiede in der Darmflora der untersuchten und befragten 274 Patientinnen und Patienten zu entdecken. Grundsätzlich kann man die Zusammensetzung der Darmflora auf zwei Weisen analysieren:

Entweder durch Metagenomik, also indem man – wiederum salopp gesagt – eine Stuhlprobe komplett durch einen DNA-Sequencer jagt und die gefundenen Basensequenzen mit Datenbanken abgleicht, in denen die Erbinformationen von Bakterien hinterlegt sind. So findet man sehr viele Bakterienarten oder sogar -stämme, aber man weiß nicht, ob es sich bei diesen Organismen um etablierte „Mitbewohner“ handelt oder um Verunreinigungen oder „Durchreisende“, etwa aus einer Mahlzeit oder einer akuten Infektion.

Oder durch den Versuch, möglichst viele der Organismen in Kulturmedien anzusiedeln, die den Lebensbedingungen im Darm nahekommen, und sie auszuzählen. Bei dieser Kultivierung kann man nur die Gattung der Bakterien bestimmen, aber dafür kann man gut abschätzen, wie groß ihr Anteil an der Darmflora ist. Die Forscher haben sich für Letzteres entschieden.

Gut für das eine Geschlecht, schlecht für das andere?

Auf der Ebene der Bakterien-Gattungen waren die Mikrobiome der Frauen und Männer im Durchschnitt nahezu gleich zusammengesetzt. Aber es gab zahlreiche Korrelationen zwischen den CES-Symptomstärken und dem Anteil der Gattungen im Mikrobiom der Patientinnen und Patienten – und viele dieser positiven wie negativen Korrelationen waren geschlechtsspezifisch. Beispielsweise kamen im Darm von Frauen, die besonders starke Erschöpfung nach körperlichen Tätigkeiten angaben, mehr Clostridien vor als im Darm von Patienten, die nach einer Kraftanstrengung weniger erschöpft waren – aber bei Männern, die stark unter diesem CES-Symptom litten, war der Clostridien-Anteil nicht erhöht. Zweites Beispiel: Im Darm männlicher Patienten, die besonders stark unter Schmerzen litten, fanden sich deutlich weniger Eubakterien als bei Betroffenen, die schwächere Schmerzen hatten – aber auch weniger als bei Frauen, die besonders starke Schmerzen hatten. Der Darm von Frauen mit starken Schmerzen enthielt dafür signifikant weniger Streptokokken als der Darm von Betroffenen mit schwächeren Schmerzen – aber auch von Männern mit starken Schmerzen.

Besonders stark klafften die Korrelationen zwischen Bakterienhäufigkeit und Symptomstärke bei der letztgenannten Gattung auseinander: Bei 9 der 13 erhobenen Symptomfaktoren unterschieden sich die Korrelationen zwischen männlichen und weiblichen CES-Patienten signifikant, und stets war die Korrelation bei den Frauen negativ und bei den Männern positiv. Wollte man diese Zusammenhänge kausal interpretieren, hieße das: Streptokokken schützen Frauen vor heftigen Symptomen, verstärken aber die Belastung der Männer durch die Krankheit.

Das andere Extrem waren die Bifidobakterien, die nicht zur Abteilung Firmicutes gehören, sondern zu den Actinobakterien: Nur bei einem einzigen Symptom unterschied sich die Korrelation zwischen Bifidobakterien-Häufigkeit im Darm und Symptomschwere signifikant zwischen den Geschlechtern; insgesamt schienen diese Bakterien – wiederum kausal gedeutet – beide Geschlechter eher vor schweren Symptomen zu schützen.

Wie wirkt der Darminhalt auf das Nervensystem ein?

Über die Mechanismen, die solche kausalen Zusammenhänge möglicherweise vermitteln, konnten die Autoren nur Hypothesen aufstellen, denn ein mutmaßlich entscheidender Vermittlungsweg – der Hormonstatus – war bei den Patientinnen und Patienten nicht erhoben worden. Bekannt ist, dass viele Darmbakterien Hydroxysteroid-Dehydrogenasen produzieren, also Enzyme, die Vorformen von Sexualhormonen verstoffwechseln und so zum Beispiel den Estrogen-Pegel im Körper beeinflussen können. Unsere Sexualhormone wiederum docken an die Hormonrezeptoren vieler Zellen an und beeinflussen so unter anderem das Immun- und das Nervensystem – und damit zum Beispiel unsere Schmerzwahrnehmung.

Es gibt aber auch einen Rückkanal, und damit ist die Richtung des Kausalzusammenhangs offen: Ein durch eine Erkrankung aus dem Lot geratenes Hormonsystem kann die Darmflora durcheinander bringen, teils durch direkte Einwirkung auf die Bakterien, teils vermittelt durch die Darmschleimhautzellen. Und schließlich könnte beides – ein Ungleichgewicht in der Darmflora und starke CES-Symptome – Folge von etwas Drittem sein, zum Beispiel von Vorlieben für bestimmte Nahrungs- oder Genussmittel. Ernährungsgewohnheiten wiederum können vom Geschlecht beeinflusst sein, teils kulturell, teils hormonell vermittelt. Vor allem bei männlichen CES-Patienten scheint der D-Laktat- oder -Milchsäure-Spiegel im Blut sowohl mit der Schwere kognitiver und neurologischer Symptome als auch mit der übermäßigen Vermehrung bestimmter Bakterien im Darm zusammenzuhängen.

Ignorieren gilt nicht

Erschwerend kommt hinzu, dass nicht nur der aktuelle Hormonspiegel geschlechtsspezifische Interaktionen – etwa zwischen Darmflora und Gehirn – vermitteln kann, sondern unter Umständen auch der ehemalige Hormonstatus des Embryos oder des Neugeborenen. Denn wie ich im übernächsten Beitrag darlegen werde, prägt insbesondere Testosteron die Entwicklung des männlichen Nerven- und Immunsystems bereits kurz vor und nach der Geburt, in der sogenannten Minipubertät. Obwohl Jungen während ihrer Kindheit kaum noch Testosteron produzieren, hält diese frühe Wirkung an, weil sie sich epigenetisch dauerhaft niederschlägt: durch die Methylierung der DNA und damit die Ablesbarkeit zahlreicher Gene auf all unseren Chromosomen.

Dieses Durcheinander aufzuklären, wird nicht leicht. Dazu müsste man (1.) in allen klinischen Studien zwischen Männern und Frauen und möglichst auch in allen präklinischen Tierversuchen zwischen Männchen und Weibchen unterscheiden, (2.) stets auch den Hormonstatus ermitteln – und (3.) die Zusammensetzung des Mikrobioms noch genauer aufklären, am besten durch Kombination beider oben erläuterter Ansätze (Metagenomik und Kulturen).

Einfach nur die durchschnittliche Häufigkeit der Bakterien-Gattungen in Proben aus Männern und Frauen zu vergleichen und dabei keine Auffälligkeiten festzustellen, reicht jedenfalls nicht aus, um die Existenz und medizinische Bedeutung eines Mikrogenderoms beim Menschen auszuschließen.

Literatur

A. Wallis et al. (2016): Support for the Microgenderome: Associations in a Human Clinical Population

A. Wallis et al. (2017): Support for the microgenderome invites enquiry into sex differences

 

Wie Lymphknoten entstehen

Mit dem Werden und Vergehen des Thymus im Lebensverlauf habe ich mich bereits ausführlich beschäftigt, etwa hier. Im letzten Beitrag habe ich die Herkunft der Lymphgefäße skizziert. (Kurz: Sie entstehen größtenteils durch Abknospung von Endothel, also Blutgefäßwänden, aus einigen Hauptadern des Embryos; in einigen Organen und Geweben tragen aber auch andere embryonale Zellen zu den Lymphgefäßen bei.) Weiter geht es mit der Entstehung den Lymphknoten.

Wer Autoimmunerkrankungen verstehen will, sollte Lymphknoten nicht ignorieren

Warum interessiert mich das überhaupt? Das Lymphsystem erfüllt im Wesentlichen drei Aufgaben: Erstens schafft es Flüssigkeit, die aufgrund des Blutdrucks aus den Kapillaren austritt und das Gewebe anschwellen lässt, in die größeren Blutgefäße zurück – jeden Tag etwa drei Liter. Zweitens transportiert es Proteine und vor allem Fette, die unser Verdauungssystem aus der Nahrung gewonnen hat, aus der Darmschleimhaut in den Blutkreislauf. Und drittens – jetzt wird es relevant für’s Buch – führt es den Lymphknoten, gewissermaßen den Kontaktbörsen des Immunsystems, Antigene und Immunzellen zu, und es schickt die dort von den Antigenen aktivierten Immunzellen in das Blut zurück, von dem sie sich an ihre Einsatzorte verfrachten lassen.

Neben den normalen Lymphknoten, die während der Embryonalentwicklung an vordefinierten Stellen entstehen, bilden sich im Körper später auch bedarfsgesteuerte Strukturen: zum einen kurz nach der Geburt die sogenannten Peyer-Plaques in der Darmschleimhaut, die dem Management unserer Beziehungen zur Darmflora dienen. Und zum anderen ein Leben lang improvisierte Lymphknötchen in der Nähe von Entzündungsherden, sogenannte tertiäre lymphatische Organe (TLO). Sie verkürzen die Transportwege für Antigene und Immunzellen und machen so die Bekämpfung der Entzündungsauslöser effizienter. Für das Buch habe ich sie als Feldlager skizziert.

Bei einer akuten Infektion ist das gut – aber bei einer chronischen Autoimmunerkrankung verstärkt es leider die Reaktion des Immunsystems auf körpereigene Antigene. Zudem unterstützen TLOs bei vielen Autoimmunerkrankungen ausgerechnet die schädlichen autoreaktiven Immunzellen, während sie andere, nützliche Immunzellen abweisen (siehe „Ärger mit dem Passwort“). Solche tertiären Lymphstrukturen entstehen im Prinzip ähnlich wie die normalen Lymphknoten, nämlich durch einen Dialog von Immunzellen und lokalen Bindegewebszellen. Daher sehen wir uns zunächst die normalen Entwicklung während der Embryogenese an.

Es beginnt im zweiten Monat

Im menschlichen Embryo schnüren sich im zweiten Monat zunächst sechs sogenannte Lymphsäcke von den Kardinalvenen im oberen Bereich des Rumpfes ab. Aus diesen Ausbuchtungen wächst dann das Lymphgefäßsystem allmählich in die Peripherie hinein, wie im letzten Beitrag beschrieben. Wo das Netzwerk besonders dicht ist, etwa in der Nachbarschaft des künftigen Verdauungstrakts, nennt man es Lymphplexus. Am Ende durchzieht das System den gesamten Körper, ähnlich wie der Amazonas das ganze Amazonasbecken drainiert.

Erste Ansätze zu Lymphknoten finden sich etwa ab Tag 36 der Embryonalentwicklung in der Nähe des Zusammenflusses zweier paarig angelegter Kardinalvenen, die dort zur Vena cardinalis communis fusionieren. Die Lymphsäcke, die noch überwiegend aus Endothel bestehen, werden jetzt mit Mesenchymzellen durchsetzt, die zur charakteristischen Zonenbildung in den Lymphknoten beitragen (H bis J in dieser Zeichnung). Weitere Mesenchymzellen bilden die Bindegewebskapsel und die Stützwände der Knoten (E bis G).

Dialoge zwischen Induktoren und Organisatoren

Doch woher wissen die Vorläuferzellen, wohin sie sich begeben sollen, mit welchen anderen Zellen sie sich wie zusammenlagern und welche genaue Funktion sie übernehmen sollen? Das wird über einen Austausch von Signalen organisiert. An einem Ort, der für einen Lymphknoten prädestiniert ist – einer sogenannten Anlage* -, wird zunächst ein Botenstoff namens TRANCE ausgeschüttet. Dieser lockt sogenannte lymphoid tissue inducer cells oder LTi-Zellen an. Das sind erste weiße Blutkörperchen, die eng mit den späteren Immunzellen verwandt sind. Über Rezeptoren auf ihrer Oberfläche nehmen sie Verbindung mit den Mesenchymzellen auf, die als lymphoid tissue organizer (LTo) bezeichnet werden. Die LTo-Zellen werden durch den Kontakt aktiviert: Sie überziehen sich mit Adhäsionsmolekülen, sozusagen Widerhaken oder Klebstoffen, und schütten sowohl entzündungstypische Botenstoffe (Zytokine) als auch Lockstoffe (Chemokine) aus. Durch diese positive Rückkopplung werden weitere Immunzellen rekrutiert, zur Ansiedlung ermuntert und aktiviert, ähnlich wie bei einer Entzündung.

Nach der Geburt

All dies geschieht im Embryo, also noch ohne Kontakt zu fremden Antigenen. Aber sobald nach der Geburt der Darm des Säuglings mit Mikroben besiedelt wird, erfährt die Entwicklung des Lymphgewebes noch einen Schub. Vor allem in der Darmschleimhaut bilden sich durch den Kontakt zur Darmflora tertiäre Lymphorgane, und zwar ähnlich wie eben beschrieben, also angestoßen durch LTi-Zellen und andere Immunzellen, die sich in der Darmschleimhaut niederlassen und mit ihren Nachbarzellen in Kontakt treten, um „Feldlager“ zu errichten. Mit diesen Strukturen kann das Immunsystem die Darmflora regelmäßig auf ihre Zusammensetzung prüfen und gegebenenfalls in ihre Schranken weisen.

Inwieweit auch die Bildung tertiärer Lymphorgane bei chronischen Entzündungen und Autoimmunerkrankungen der vorgeburtlichen Entstehung der Lymphknoten ähnelt und in welcher Hinsicht die beiden Prozesse voneinander abweichen, beschreibe ich im nächsten Beitrag.

 

* Auch in englischen Arbeiten heißen sie anlagen. In der Embryologie waren im 19. Jahrhundert deutsche Forscher führend, und die Fachsprache hat diesen Ausdruck übernommen.

Literatur:

Manuela Ferreira et al. (2012): Stroma cell priming in enteric lymphoid organ morphogenesis

Lucille Rankin et al. (2013): Diversity, function, and transcriptional regulation of gut innate lymphocytes

Der Einfluss der Darmflora auf Krebs

Neulich beschrieb ich das Autoimmunbuchprojekt als „Türme von Hanoi“ mit 500.000 Scheibchen und 200 pulsierenden Stapeln. Das Bild ist natürlich schief, denn „Türme von Hanoi“ ist ein deterministisches Spiel, ein einfacher rekursiver Algorithmus. Mein Projekt verhält sich weniger vorhersagbar: Ständig sortiere ich die Literatur um, spalte ein Unterthema auf, fusioniere welche, werfe andere über Bord, nehme neue hinein … Zu Beginn hatte ich mir etwa vorgenommen, Krebs komplett auszuklammern, um nicht noch ein großes Fass aufzumachen. Aber manchmal werfen neue Erkenntnisse unsere Pläne über den Haufen: Tumoren haben so viel mit dem Immunsystem und wohl auch mit Autoimmunreaktionen zu tun, dass ich sie nicht ignorieren kann.

Zu allem Unglück werden nicht nur Autoimmunerkrankungen, sondern auch Krebserkrankungen und Krebstherapien vom Mikrobiom beeinflusst – und wirken umgekehrt auf dieses ein. Die boomende Mikrobiomforschung treibt mich ohnehin in den Wahnsinn, weil all die Einflüsse, Abhängigkeiten, Synergien und Hemmnisse zwischen unseren zahlreichen mikrobiellen Mitbewohnern, unserem Immunsystem, unserem Erbgut, dem Rest unseres Körpers und unserer Umwelt unglaublich schlecht in der linearen Erzählstruktur eines Sachbuchs abzubilden sind.

Bevor aber die drei Arbeiten, die ich gerade gelesen habe, vor lauter Zögern und Hadern Staub ansetzen, zerschlage ich den gordischen Knoten und versuche die wichtigsten Erkenntnisse aus der aktuellen Forschung festzuhalten – ganz gleich, wo im Buch sie letzten Endes landen.

Mit Magenkrebs fing es an

Seit J. Robin Warren und Barry J. Marshall Ende der 1970er entdeckten, dass Gastritis, Magengeschwüre und im worst case auch Magenkrebs oft auf das Magenbakterium Helicobacter pylori zurückgehen, ist klar, dass Pathogene in ihrer Umgebung Krebs auslösen oder fördern können. Das gilt auch für andere Teile des Verdauungstrakts: Mäuse entwickeln eher Darmkrebs, wenn man in ihrer Darmflora die Bakterien Citrobacter rodentium oder Helicobacter hepaticus ansiedelt. Und Menschen mit Darmkrebs haben eine anderes zusammengesetzte Darmflora als Gesunde, etwa einen Überschuss der normalerweise in der Mundhöhle anzutreffenden Gattungen Fusobacterium und Porphyromonas. Ein Forscherteam konnte 2014 aus der relativen Häufigkeit von 22 Bakterienarten im Stuhl von Versuchsteilnehmern sogar ablesen, ob sie Darmkrebs hatten oder nicht.

Henne oder Ei?

Aber was kommt zuerst, der Krebs oder die Veränderung der Darmflora? Im Tierversuch ließ sich das klären: Man behandelte Mäuse zunächst mit Antibiotika, um die Mikrobiom-Zusammensetzung zu verändern, und verabreichte ihnen dann ein Karzinogen sowie eine entzündungsfördernde Substanz. Im Vergleich zu Mäusen, die keine Antibiotika erhalten hatten, entwickelten sie weniger und zudem kleinere Tumoren. Die meisten Tumoren bildeten keimfrei aufgezogene Mäuse aus, denen man die Darmflora bereits krebskranker Mäuse verabreichte.

Eine solche lokal krebsfördernde Wirkung bestimmter Komponenten der Darmflora kann beispielsweise durch eine von den Bakterien ausgelöste Entzündung der Darmschleimhaut vermittelt werden, die zu einer Freisetzung von reaktiven Sauerstoffspezies (ROS) und Wachstumsfaktoren aus den angeschlagenen Schleimhautzellen führt. Die ROS können das Erbgut anderer Zellen in der Nähe mutieren lassen, sodass sie zu „Tumorkeimen“ werden, und die Wachstumsfaktoren können eine übermäßige Zellteilung und die Bildung neuer Blutgefäße fördern, die die entstehenden Tumoren mit Nährstoffen versorgen.

Fernwirkungen

Dass Veränderungen im Darm (etwa eine Dysbiose) weitere Veränderungen im Darm (etwa die Bildung von Tumoren) nach sich ziehen können, ist nicht unbedingt überraschend. Seit einigen Jahren zeichnet sich aber ab, dass es auch Fernwirkungen gibt: Die Darmflora beeinflusst das Krebsrisiko in weit entfernten Organen. Teils verringert, teils erhöht sie die Gefahr, dass sich dort Tumoren bilden.

So entwickelten Mäuse nach der Infektion mit Helicobacter hepaticus nicht nur Darmkrebs, sondern auch Brustkrebs oder Prostatakrebs. Und die Melanome, die man Mäusen des Zuchtstamms „Black 6″ in die Haut implantierte, entwickelten sich je nach dem Zuchtlabor, aus dem die Tiere stammten, ganz unterschiedlich – weil sich ihre Mikrobiome unterschieden. Sobald man sie eine Weile im selben Käfig hielt, verschwanden die Unterschiede in der Fähigkeit des Immunsystems, die Melanome in Schach zu halten.

Die krebshemmende Wirkung ging von Bakterien der Gattung Bifidobacterium aus, die offenbar dendritische Zellen aktivieren. Diese wiederum präsentierten T-Zellen Antigene aus den Bakterien oder aus den Krebszellen und befähigten sie so, die Krebszellen aufzusuchen und zu töten. Diese Aktivierung ist nötig, weil viele Krebszellen an ihrer Oberfläche molekulare „Self“-Signale präsentieren, um das Immunsystem von Attacken abzuhalten.

Bakterien beeinflussen den Therapieerfolg 

Doch nicht nur die natürliche Fähigkeit des Immunsystems, Krebsvorstufen und Tumoren zu bekämpfen, wird durch die Darmflora gefördert oder behindert: Chemotherapien und andere Krebstherapien verlaufen je nach Zusammensetzung des Mikrobioms mehr oder weniger erfolgreich. Auch dies wurde zunächst an Mäusen entdeckt, und zwar etwa zeitgleich von den Arbeitsgruppen um Romina Goldszmid und Giorgio Trinchieri am amerikanischen National Cancer Institute und um Laurence Zitvogel am französischen INSERM: Keimfrei aufgezogene oder mit Antibiotika behandelte Tiere, die entweder eine angeborene Neigung zu Lungenkrebs hatten oder verschiedenartige Tumoren implantiert bekamen, sprachen auf Chemotherapien schlechter an als Artgenossen mit intakter Darmflora.

Die Mechanismen setzen offenbar teils an der angeborenen, unspezifischen und teils an der erworbenen, antigenspezifischen Abwehr an:

  • Platin-Chemotherapien und Immuntherapien mit CpG-Oligonukleotiden bekämpfen Krebs, indem sie Entzündungen fördern. Ein Übermaß entzündungshemmender Bakterien kann dem in die Quere kommen.
  • In anderen Fällen will man eine Entzündung gerade vermeiden. Ein Probiotikum (also eine Bakterienmischung) namens Prohep brachte etwa Lebertumoren in Mäusen zum Schrumpfen, wohl weil es Entzündungen im Darm hemmt.
  • Monoklonale Antikörper binden als sogenannte Checkpoint-Inhibitoren an bestimmte Proteine auf der Oberfläche von Krebszellen, etwa PD-L1 oder CTLA-4, die sonst an passende Rezeptoren auf aktivierten T-Zellen andocken und die T-Zellen durch Vortäuschung eines gutartigen Charakters friedlich stimmen. Bestimmte Bakterien (bei Mäusen etwa Bifidobacteria oder Bacteroides) verstärken diese Form der Krebsbekämpfung – zum Teil indirekt durch ihre Wirkung auf die angeborene Abwehr und zum Teil direkt, indem sie dieselben T-Zell-Rezeptoren stimulieren.
  • Eine Chemotherapie mit Cyclophosphamid macht die Darmschleimhaut durchlässig, sodass Bakterien die Barriere überwinden und sich im Lymphgewebe des Darms ansammeln. Dies gelingt nur Arten, die nicht im Darmlumen, sondern in der zähen Schleimschicht direkt über der Schleimhaut angesiedelt sind, etwa Lactobacillus johnsonii, nicht aber Escherichia coli. In den Lymphknoten und der Milz fördern sie die Bildung von T-Helferzellen des Typs 1 (Th1) und des Typs 17 (Th17), die dann zum Tumor wandern und dort Krebszellen abtöten.

Nützliche Autoimmunität – gefährliche Hygiene?

Nach Ansicht von Laurence Zitvogel und anderen Forschern kann man solche vom Mikrobiom beeinflussten Anti-Tumor-Aktivitäten unseres Immunsystems als nützliche Form der Autoimmunität auffassen. Unsere Abwehrzellen greifen schließlich die gefährlichen, aber körpereigenen Wucherungen an, weil sie ihre Toleranz gegen die sich harmlos gebenden Krebszellen abgelegt haben – und zwar aufgrund der teils antigenspezifischen, teils unspezifischen Stimulation durch Bestandteile von Bakterien. Was bei Autoimmunerkrankungen zu ernsten, teils lebensbedrohlichen Angriffen auf normales Gewebe führt, wäre bei der Bekämpfung von Krebs und Krebsvorstufen demnach lebensnotwendig: die Kreuzreaktivität von Immunzellen, die sowohl auf Bakterienbestandteile als auch auf ähnlich aufgebaute Marker an der Oberfläche körpereigener Zellen anspringen.

Und so, wie man sich die Zunahme von Autoimmunerkrankungen und Allergien zum Teil durch eine Verarmung unseres Mikrobioms und die daraus folgende Unterstimulation unseres Immunsystems erklären kann, so lässt sich auch eine „Krebs-Hygiene-Hypothese“ formulieren: Zumindest einige Krebsarten wie chronische lymphatische Leukämie (CLL) oder das Hodgkin-Lymphom treten häufiger bei Menschen auf, die als Kinder selten Infektionen hatten oder in sogenannten guten Verhältnissen aufwuchsen, die im Allgemeinen mit einer besseren Hygiene korrelieren.

Und dann noch die Gene …

Wie eingangs erwähnt, wird die Sache durch weitere Wechselwirkungen unübersichtlich. So wird der Einfluss des Mikrobioms auf Krebs und Krebstherapien seinerseits durch unser Erbgut beeinflusst. Bestimmte Mutationen im Gen für einen Rezeptor der angeborenen Abwehr, TLR5, verhindern eine starke Reaktion der Immunzellen auf das weit verbreitete Bakterienprotein Flagellin. Brustkrebs-Patientinnen, die außer einer Mutation im Estrogenrezeptor auch diese TLR5-Genvariante aufweisen, haben besonders schlechte Prognosen. Bei Eierstock-Krebs hingegen haben Trägerinnen derselben Mutation eine höhere Überlebenswahrscheinlichkeit als Frauen ohne die Mutation.

An Mäusen fand man heraus, dass diese Mutation Zytokinkonzentrationen verändert: Mit ihr produzieren unsere Zellen weniger Interleukin 6, aber mehr Interleukin 17 als mit der Standard-Genvariante – allerdings nur, wenn sie mit einem Mikrobiom konfrontiert werden: In keimfrei aufgezogenen Mäuse mit oder ohne die Mutation schreitet der Krebs gleich schnell voran.

Zurück auf Los: Was ist überhaupt Krebs?

Auch die nächsten Blogbeiträge werden sich um Krebs drehen. Im nächsten Artikel stelle ich die vermeintlich banale Frage, was Krebs überhaupt ist, und beantworte sie anhand des unverwüstlichen Leitspruchs von Theodosius Dobzhansky: „Nichts in der Biologie hat einen Sinn außer im Lichte der Evolution.“ Und im übernächsten Artikel dringe ich zur eigentlichen Schnittmenge mit dem Thema meines Buches vor: Lassen sich Autoimmunerkrankungen als aus dem Ruder gelaufene Krebsabwehr verstehen – und was wäre damit gewonnen?

Literatur

Kate Yandell: Microbes Meet Cancer. The Scientist Magazine, 1. April 2016 – wissenschaftsjournalistische Zusammenfassung mit guter Grafik

Laurence Zitvogel et al.: Microbiome and Anticancer Immunosurveillance. Cell 165, 7. April 2016 – gute Übersichtsarbeit, ebenfalls gut illustriert

S. Viaud et al.: Gut microbiome and anticancer immune response: really hot Sh*t! Cell Death and Differentiation 22, 2015 – mit Details überfrachtete, nicht sehr sorgfältig durchgearbeitete und anstrengend zu lesende Übersichtsarbeit mit wirrer Grafik

 

Aufräumaktion, Teil 2

Weitere [fast] unkommentierte Links aus den angesammelten Wissenschafts-Newslettern der letzten Wochen:

Mikrobiom:

Yandell (2016): Chimps Share Microbes When Socializing

Kinder: Antibiotika fördern Asthma und Übergewicht. Makrolid-Antibiotika verändern die schützende Darmflora bei Kindern nachhaltig (2016) – zu Korpela et al. (2016): Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children (Open Access)

Offord (2016): Restoring C-Section Babies’ Microbiota. A small pilot study suggests exposure to maternal vaginal fluids could restore infant microbiota following Cesarean-section delivery.
[Ich hielt es naiverweise für selbstverständlich, dass das seit Jahren so gehandhabt wird. Eigentlich sträflicher Leichtsinn, erst jetzt damit anzufangen.]

Offord (2016): Antiperspirants Affect Armpit Ecosystems. Wearing antiperspirant can substantially alter a person’s armpit microbiome, scientists show.

Offord (2016): Hibernation Helpers. Gut microbes may help regulate the metabolic changes a bear experiences before and during hibernation, scientists show.

Azvolinsky (2016): Breast Milk Sugars Support Infant Gut Health. Oligosaccharides found in breast milk stimulate the activity of gut bacteria, promoting growth in two animal models of infant malnutrition.

Ghannoum (2016): The Mycobiome. The largely overlooked resident fungal community plays a critical role in human health and disease.

Pflanzliches Immunsystem:

Keener (2016): Plant Immunity. How plants fight off pathogens.

Aberli (2016): Fighting Back. Plants can’t run away from attackers, so they’ve evolved unique immune defenses to protect themselves.

Akst (2016): Premature Assault? Plants may trick bacteria into attacking before the microbial population reaches a critical size, allowing the plants to successfully defend the weak invasion.

Akst (2016): Widespread Plant Immune Tactics. A survey of plant genomes reveals how different species trick pathogens into triggering their immune defenses.

Zusi (2016): Fungal Security Force. In yew trees, Taxol-producing fungi function as an immune system to ward off pathogens.

Sonstige Themen:

Peng et al. (2016): Seminal fluid of honeybees contains multiple mechanisms to combat infections of the sexually transmitted pathogen Nosema apis (Paywall)

Elternschaft verändert Immunsystem mehr als eine Infektion. Elternschaft und Alter erweisen sich als größte Einflussfaktoren für die individuelle Immunabwehr (2016)

Offord (2016): Humans Meet Neanderthals: The Prequel. The earliest interbreeding between humans and Neanderthals took place at least 100,000 years ago—millennia earlier than previously thought.

Williams (2016): Neanderthals’ Genetic Legacy. Ancient DNA in the genomes of modern humans influences a range of physiological traits.

Etablierung der Hautflora nach der Geburt: Ohne Tregs keine Toleranz

Eine aktuelle Arbeit, die genau zu dem Teil des Buches passt, den ich gerade schreibe, nämlich zur Entwicklung des Immunsystems rund um die Geburt:

T. C. Scharschmidt et al.: A Wave of Regulatory T Cells into Neonatal Skin
Mediates Tolerance to Commensal Microbes. Immunity 43, 1011–1021, November 17, 2015, doi: 10.1016/j.immuni.2015.10.016

Dazu auch Anna Azvolinsky: Birth of the Skin Microbiome

Unsere Haut ist eine der wichtigsten Barrieren zwischen der Außenwelt und unserem Körper und zugleich ein wichtiges Immunorgan. Ein Quadratzentimeter enthält über eine Million Lymphozyten und ist mit etwa einer Million Bakterien besiedelt. Das Mikrobiom der Haut unterscheidet sich grundlegend von der Flora etwa in unserem Darm oder in den Atemwegen, und die Ausbildung der Hautflora ist viel schlechter untersucht als die Etablierung der Darmflora. Unsere Haut ist vielschichtig und enthält zahlreiche Strukturen wie Haarfollikel oder schweiß- und Talgdrüsen, und sie wird im täglichen Leben häufig verletzt, wobei auch Bakterien in die tieferen Schichten eindringen – ohne dort normalerweise Entzündungen auszulösen.

Das kalifornische Forscherteam hat nun an Mäusen untersucht, wann und wie sich die Toleranz des Immunsystems gegenüber dem Bakterium Staphylococcus epidermis ausbildet, einem Kommensalen, der bei Mensch und Maus vorkommt. Bringt man die Bakterien auf die intakte Haut junger, aber ausgewachsener Mäuse auf, so kommt es zu einer gewissen T-Zell-Reaktion, aber nicht zu einer merklichen Entzündung. Kratzt man die Mäuse einige Wochen später und trägt erneut Bakterien auf die nunmehr verletzte Haut auf, so entzündet sie sich, es wandern viele Neutrophile (Zellen der angeborenen Abwehr) in die Haut ein, und die T-Zellen (Zellen der erworbenen Abwehr) reagieren stark auf die Eindringlinge. Das Immunsystem hat also durch den Erstkontakt keine Toleranz ausgebildet.

Anders, wenn man das Experiment mit eine Woche alten Mäusen beginnt, die vier Wochen später gekratzt und erneut mit den Bakterien konfrontiert werden: Bei ihnen werden dann nur wenige T-Zellen aktiv, und die Entzündung fällt sehr schwach aus. Der Organismus ist offenbar gegen Staphylococcus epidermis tolerant geworden. Dafür sind offenbar spezifische regulatorische T-Zellen oder Tregs vonnöten, die vor allem während der zweiten Lebenswoche der Mäuse recht abrupt in die Haut einwandern. Tregs aus dem Thymus sind auch in der Darmschleimhaut notwendig, um das Immunsystem gegen die Darmflora milde zu stimmen. Anders als im Darm beeinflusst die Zahl der Keime auf der Haut aber nicht die Zahl der Tregs.

Über 80 Prozent der CD4+-T-Zellen in der Haut von 1-2 Wochen alten Mäusen sind Tregs, während es bei erwachsenen Mäusen etwa 50 Prozent sind. Ihre Dichte in der Haut ist bei den Baby-Mäusen doppelt so hoch wie bei den ausgewachsenen Tieren, und sie sind hochgradig aktiviert – wiederum im Unterschied zu den Haut-Tregs erwachsener Mäuse. In tiefer liegenden Gewebeschichten kommt es nach der Geburt nicht zu einer Treg-Akkumulation; diese ist also hautspezifisch.

Behandelt man die neugeborenen Mäuse kurz vor dem ersten Auftragen von Staphylococcus epidermis mit einem Rezeptorantagonisten, der spezifisch die Auswanderung von Tregs aus dem Thymus unterbindet, so werden die Mäuse nicht tolerant gegen den Keim: nach dem Aufkratzen der Haut und dem zweiten Kontakt mit den Bakterien reagieren sie mit einer starken Entzündungsreaktion – anders als die Kontrollgruppe, in der die Wanderung der Tregs aus dem Thymus in die Haut nicht unterbunden wurde.

Außerdem enthält die Haut der Tiere mehr für Staphylococcus-Antigene spezifische Effektor-T-Zellen und weiterhin nur wenige für Staphylococcus-Antigene spezifische Tregs, obwohl die migrationshemmende Wirkung des vier Wochen zuvor verabreichten Rezeptorantagoisten längst abgeklungen ist und andere Tregs durchaus in der Haut vorkommen. Die Antigen-spezifischen Tregs müssen also im richtigen Zeitfenster – ein bis zwei Wochen nach der Geburt der Mäuse – aus dem Thymus in die Haut gelangen, um eine Toleranz gegen Kommensalen aus der Hautflora aufzubauen.

Anders als im Darm, in dem sowohl angeborene, direkt aus dem Thymus stammende Tregs (nTregs oder tTregs) als auch in der Peripherie durch Antigen-Präsentation induzierte Tregs (iTregs) an der peripheren Toleranz beteiligt sind, scheinen iTregs in der Haut nicht an der Etablierung der Toleranz gegen Kommensalen beteiligt zu sein – zumindest nicht in diesem frühen Zeitfenster. Auch die Mechanismen, über die Tregs andere Immunzellen tolerant stimmen, unterscheiden sich offenbar: Im Darm spielt das von den Tregs ausgeschüttete, entzündungshemmende Zytokin IL-10 eine große Rolle, während ein IL-10-Mangel das Gleichgewicht in der Haut nicht weiter zu stören scheint.

Auch die abrupte, massive Einwanderung hoch aktiver Tregs und während der zweiten Lebenswoche der Mäuse scheint hautspezifisch zu sein: Im Darm kommt es gar nicht zu einer solchen Welle, und in der Lunge ist sie erstens viel schwächer (Tregs stellen dort höchstens 15 Prozent der CD4+-T-Zellen statt über 80 Prozent) und zweitens offenbar nicht für die Ausbildung der Toleranz gegen Atemwegs-Kommensalen zuständig.

Auffällig ist, dass die Haarfollikel in der Haut der jungen Mäuse genau zur Zeit der Treg-Einwanderung entstehen. Tregs halten sich in der Haut von Mäusen wie Menschen bevorzugt an den Haarfollikeln auf. Vielleicht sondern die entstehenden Follikel ein Chemokin ab, das die Tregs anzieht. Da sich an den Haarwurzeln besonders viele Kommensalen ansiedeln, wäre es evolutionär von Vorteil, wenn auch die periphere Toleranzausbildung vor allem dort stattfände.

Da die Barrierefunktion der Haut nicht nur lokale, sondern (etwa bei der Entstehung von Asthma) auch systemische Auswirkungen hat, sollte man mit allem, was die Ausbildung einer normalen Hautflora und einer Toleranz des Immunsystems gegen diese Kommensalen beeinträchtigen könnte, sehr aufpassen – etwa mit Antibiotika-Behandlungen bei Neugeborenen.

Hunde, Vieh und Darmbakterien schützen vor Asthma

Die Durchsicht der seit Mitte September aufgelaufenen Wissenschafts-Newsletter hat ergeben: ausnahmsweise keine grundstürzenden Neuigkeiten auf dem Gebiet der Immunologie, insbesondere der Autoimmunerkrankungen. Zwei Arbeiten zum Asthma-Risiko haben Aufmerksamkeit erregt, obwohl sie nur bestätigen, was sich schon in den letzten Jahren abgezeichnet hat.

Bereits 2012 hatte ich hier kurz von einer finnischen Untersuchung berichtet, der zufolge Hun­de­hal­tung im länd­li­chen Raum für ein gesün­de­res ers­tes Lebens­jahr von Klein­kin­dern sorgt: weni­ger Ohr­ent­zün­dun­gen und Schnup­fen, weni­ger Anti­bio­ti­ka­be­hand­lun­gen. Wichtig war, dass die Haustiere genug Zeit an der frischen Luft verbrachten, um mit den nötigen Keimen in Berührung zu kommen.

Vermittelt wird die Schutzwirkung vermutlich – zumindest teilweise – über das Enzym A20 in unseren Schleimhäuten, dessen Aktivität durch Endotoxine (Lipopolysaccharide aus Bakterienzellwänden) angeregt wird.

Nun hat ein schwedisches Forscherteam in einer landesweiten Kohortenstudie über 600.000 zwischen 2001 und 2010 in Schweden geborene Kinder auf Zusammenhänge zwischen Asthma und Kontakt zu Hunden oder Vieh untersucht. Dabei zeigte sich: Kinder, die im ersten Lebensjahr Kontakt zu einem Hund hatten, hatten im Kindergarten- und Grundschulalter ein verringertes Asthma-Risiko. Kontakt zu Bauernhoftieren verringerte das Risiko, später an Asthma zu erkranken, noch stärker als Hundekontakt.

Doch nicht nur Bakterien aus der Tierhaltung, sondern auch solche aus unsere eigenen Darmflora können vor Asthma schützen. Kanadische Wissenschaftler haben die Bakterien im Kot von drei Monate alten Kindern analysiert und in den nächsten drei Jahren verfolgt, ob die Kinder Ekzeme oder Atemgeräusche entwickelten, die als erste Anzeichen von Asthma gelten. In der Darmflora von Säuglingen, die später diese Anzeichen zeigten, waren die Bakteriengattungen Faecalibacterium, Lachnospira, Veillonella und Rothia signifikant schwächer vertreten als bei den anderen Säuglingen, und ihr Kot enthielt weniger Acetat als normal – eine der kurzkettigen Fettsäuren (SCFA), von denen hier schon öfter die Rede war: Stoffwechselprodukte, mit denen bestimmte Darmbakterien unser Immunsystem beeinflussen. Diese Dysbiose war transient; später normalisierte sich die Zusammensetzung der Darmflora.

Im Tierversuch ließ sich das Asthma-Risiko durch Animpfen keimfrei geborener Mäuse mit Darmbakterien aus asthmatischen Artgenossen erhöhen, durch Übertragung der vier genannten Bakteriengattungen dagegen verringern. Ob das auch bei Menschen funktioniert, muss sich noch erweisen. Weiter untersucht werden sollte auch, ob neben dem Asthma-Risiko auch das Risiko von Autoimmunerkrankungen durch eine vorübergehende Dysbiose kurz nach der Geburt erhöht wird.

Literatur:

T. Fall et al.: Early Exposure to Dogs and Farm Animals and the Risk of Childhood AsthmaJAMA Pediatr. 2015;169(11):e153219. doi:10.1001/jamapediatrics.2015.3219 (nur Abstract frei);

dazu auch: Hunde senken Asthmarisiko. Früher Kontakt mit Hunden schützt Kinder gegen die Überreaktion des Immunsystems

M.-C. Arrieta et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthmaScience Translational Medicine 30 Sep 2015: Vol. 7, Issue 307, pp. 307ra152, DOI: 10.1126/scitranslmed.aab2271 (nur Abstract frei);

dazu auch: Jef Akst: Gut Bacteria Linked to Asthma Risk. Four types of gut bacteria found in babies’ stool may help researchers predict the future development of asthma und Mit vier Bakterien gegen Asthma. Darmflora bei Säuglingen liefert vielversprechenden Ansatz für eine vorbeugende Therapie

Aus dem Bauch heraus: Mikrobiom beeinflusst Immunzellen im Gehirn

Unser Gehirn ist ein immunologisch privilegiertes Organ, in dem Immunreaktionen besonders strikt reguliert werden, um Kollateralschäden zu vermeiden. Dennoch enthält es Immunzellen, vor allem solche der angeborenen Abwehr – insbesondere Mikroglia.

Zu deren Aufgaben gehört das Pruning: das Wegschneiden überflüssiger Verbindungen (Synapsen) zwischen Nervenzellen, vor allem während der Kindheit und Adoleszenz. Mikroglia sind gewissermaßen die Gärtner des Gehirns, die die Sträucher regelmäßig zurückschneiden, bevor sie zu einem undurchdringlichen, dysfunktionalen Gestrüpp zusammenwuchern. Krankhaft überaktive Mikroglia übertreiben das Stutzen; sie zerstören auch Verbindungen zwischen Neuronen, die für die Gehirnfunktion notwendig sind. Andererseits sind auch erschöpfte, nicht hinreichend aktive Mikroglia schädlich, denn sie kommen mit dem Aufräumen, dem Entsorgen von Krankheitskeimen oder toten oder erkrankten Nervenbestandteilen nicht mehr hinterher. Abnorme Mikroglia werden unter anderem mit Multipler Sklerose, aber auch mit Alzheimer-Demenz und Schizophrenie in Verbindung gebracht.

Offenbar wird ihre Aktivität unter anderem von unserer Darmflora reguliert. Vermittelt wird diese Fernwirkung vermutlich über sogenannte kurzkettige Fettsäuren (short-chained fetty acids = SCFA), also Gärungsprodukte wie Essig-, Propion- und Buttersäure, die die Darmbakterien aus unserer Nahrung gewinnen. Diese durchdringen das Darmepithel und gelangen dann entweder selbst über das Blut ins Gehirn, oder sie regen in unserem Darmgewebe Zellen zur Ausschüttung von Botenstoffen an, die dann ihrerseits über die Adern ins Gehirn kommen.

Im Gehirn von Menschen, die ein hohes Schizophrenie-Risiko haben oder sich bereits in der Frühphase der Erkrankung befinden, ist die Konzentration von Zytokinen erhöht; ihre graue Materie geht zurück, und ihre Mikroglia sind überaktiv: Anzeichen für eine Entzündung. Je stärker ihre Mikroglia aktiviert sind, desto stärker sind die Schizophrenie-Symptome, wenn die Erkrankung schließlich ausbricht. Die zeitliche Abfolge lässt vermuten, dass die Mikroglia-Aktivierung nicht lediglich eine Folge einer bereits eingetretenen Störung im Gehirn ist, sondern diese mit verursacht. Dazu passt auch das Lebensalter, in dem Schizophrenie und weitere psychische Erkrankungen besonders häufig ausbrechen: während oder kurz nach der Adoleszenz – genau dann, wenn die Mikroglia im Frontalkortex viel Pruning betreiben.

Literatur:

D. Erny et al.: Host microbiota constantly control maturation and function of microglia in the CNSNature Neuroscience 18, 965–977 (2015), doi:10.1038/nn.4030 (nur Abstract frei)

Dazu auch Katrin Zöfel: Bakterien für ein gesundes Gehirn (09.10.2015)

P. S. Bloomfield et al.: Microglial Activity in People at Ultra High Risk of Psychosis and in Schizophrenia: An [11C]PBR28 PET Brain Imaging StudyAmerican Journal of Psychiatry, http://dx.doi.org/10.1176/appi.ajp.2015.14101358 (nur Abstract frei)

Dazu auch Mo Costandi: Brain’s immune cells hyperactive in schizophrenia (16.10.2015)

Knut und der ganze Rest: Urlaubsnachlese

Knut hat es postum noch ein vermutlich letztes Mal geschafft, das Sommerloch zu füllen: Während meines Urlaubs ging die Nachricht um, dass der Eisbär an einer Autoimmunerkrankung zugrunde gegangen ist, nämlich an einer Anti-NMDA-Rezeptor-Encephalitis. Hier der entsprechende Forschungsartikel von H. Prüss et al.: Anti-NMDA Receptor Encephalitis in the Polar Bear (Ursus maritimus) Knut.

Weitere Immunsystem-Meldungen und -Fachartikel der letzten Wochen; über einige davon werde ich demnächst noch bloggen:

Mikrobiom

Antibiotics and the Gut Microbiome
Antibiotics given to infant mice may have long-term effects on the animals’ metabolism and gut microbiota.

The Sum of Our Parts
Putting the microbiome front and center in health care, in preventive strategies, and in health-risk assessments could stem the epidemic of noncommunicable diseases.

How Fats Influence the Microbiome
Mice fed a diet high in saturated fat show shifts in their gut microbes and develop obesity-related inflammation.

Skin Microbes Help Clear Infection
In a small study, researchers find a link between an individual’s skin microbiome and the ability to clear a bacterial infection.
Die Studie (Open Access): The Human Skin Microbiome Associates with the Outcome of and Is Influenced by Bacterial Infection

Genetics, Immunity, and the Microbiome
The makeup of an individual’s microbiome correlates with genetic variation in immunity-related pathways, a study shows.
Die Studie (Open Access): Host genetic variation impacts microbiome composition across human body sites

Thymus

Nur 160 Plätze für T-Vorläuferzellen im Thymus frei
Abstract (Rest hinter Paywall): Multicongenic fate mapping quantification of dynamics of thymus colonization.

Lymphgewebe

Rethinking Lymphatic Development
Four studies identify alternative origins for cells of the developing lymphatic system, challenging the long-standing view that they all come from veins.

Brain Drain
The brain contains lymphatic vessels similar to those found elsewhere in the body, a mouse study shows.

Krebs und Autoimmunität

Body, Heal Thyself
Reviving a decades-old hypothesis of autoimmunity
Review (Open Access): Cancer-Induced Autoimmunity in the Rheumatic Diseases

Autoimmun-Uveitis

Bacteria to Blame?
T cells activated in the microbe-dense gut can spark an autoimmune eye disease, a study shows.

Multiple Sklerose

Melatonin for MS?
Improvements in multiple sclerosis symptoms correlate with higher levels of the sleep hormone, a study finds.

Taufliegen: Erhöhung der genetischen Vielfalt zur Pathogenabwehr

Fending Off Infection in Future Generations
Female fruit flies challenged with infection during their lifetimes have offspring with greater genetic diversity.

Plazenta

The Prescient Placenta
The maternal-fetal interface plays important roles in the health of both mother and baby, even after birth.

Asthma

Wie Bauernhöfe vor Asthma schützen
Spezifisches Protein senkt Überreaktionen des Immunsystems ab

Selbstmedikation von Affen bei Peitschenwurm-Infektionen

Sickness behaviour associated with non-lethal infections in wild primates (Abstract)

Junge rote Blutkörperchen regulieren Immunreaktionen

Im letzten Beitrag habe ich eine Studie vorgestellt, der zufolge unreife rote Blutkörperchen unser Immunsystem in den Wochen nach der Geburt so stark zäumen, dass die Erstbesiedlung des Darms mit gutartigen Bakterien nicht zu einer gefährlichen großflächigen Entzündung führt. Hier nun die passenden Skizzen – zunächst ein erwachsener, kernloser Erythrozyt, der bekanntlich die Aufgabe hat, Sauerstoff aus den Lungen in unser Gewebe zu transportieren, und ein junger, unreifer Erythrozyt, der wegen seines Zellkerns noch nicht die typische Scheibenform der roten Blutkörperchen angenommen hat. Seine Aufgabe ist es, Immunreaktionen aufzuhalten:

P1260500_Reifer_unreifer_Erythrozyt_650Dass die kernhaltigen rote Blutkörperchen von Nicht-Säugetieren wie Fischen und Vögeln auch Aufgaben im Immunsystem übernehmen, ist schon lange bekannt. Insofern sollte es uns nicht überraschen, dass dies auch bei Menschen der Fall ist – wenn auch nur in einem schmalen Zeitfenster: Vorläufer späterer roter Blutkörperchen, die den Marker CD71 auf der Oberfläche tragen, hemmen durch Enzyme und womöglich weitere lösliche Substanzen die Aktivität der T-Zellen, B-Zellen, dendritischen Zellen und Makrophagen von Neugeborenen. Eventuell fördern sie zudem durch Freisetzung von Zytokinen die Bildung von regulatorischen T-Zellen (Tregs) und T-Helferzellen des Typs 2 (Th2).

Shokrollah Elahi vermutet, dass die massiven Entzündungen, unter denen viele Frühgeborene leiden, auf einen Mangel an CD71+-Zellen zurückzuführen sind. Diese Schutzpolizisten entstehen nämlich vor allem in den letzten Schwangerschaftswochen vor dem normalen Geburtstermin. Bei einer Frühgeburt ist ihre Zahl noch viel zu gering, um das Immunsystem während der Erstbesiedlung des Darms mit unseren Darmbakterien vom Amoklauf abzuhalten.

Wie aber werden unreife Erythrozyten „erwachsen“? Sie versammeln sich im roten Knochenmark um Makrophagen, scheiden ihre Zellkerne ab und nehmen ihre Arbeit als Sauerstofftransporteure auf. Die Kerne, die dabei nur stören würden, werden von den Makrophagen vertilgt:

P1260501_Unreife_Erythrozyten_und_Makrophage_650

Wie so oft übernehmen die Makrophagen also die Müllentsorgung – besonders wichtig, wenn es um die Beseitigung von Kernen geht, da diese jede Menge Nukleinsäuren (DNA) enthalten, die andernfalls starke Immunreaktionen auslösen würden. Extrazelluläre Nukleinsäuren deuten nämlich normalerweise auf Infektionen oder ein massives Zellsterben hin.

Lit.: S. Elahi (2014): New insight into an old concept: role of immature erythroid cells in immune pathogenesis of neonatal infection

 

Auswertung Wissenschafts-Newsletter, Teil 2

Weitere Meldungen der letzten Monate, zunächst wieder zum Mikrobiom:

Manipuliert uns unsere Darmflora? Artikel über eine im August veröffentlichte Studie, der zufolge Darmbakterien die Stimmung ihrer Wirte so beeinflussen, dass diese Nahrung zu sich nehmen, die den Bakterien zugute kommt. Keimfrei aufgezogene Mäuse haben z. B. veränderte Geschmacksrezeptoren, und Darmbakterien wie Escherichia coli produzieren Dopamin. Die Anwesenheit bestimmter Bakterien beeinflusst über solche Signalstoffe die Nerven des Verdauungstrakts, dessen Signale über den Vagusnerv ans Gehirn weitergeleitet werden. Der Vagusnerv beeinflusst unser Essverhalten und Körpergewicht.

Dick durch Jetlag und Schichtarbeit? Eine im Oktober in Cell veröffentlichte Studie deutet darauf hin, dass Jetlag und Schichtarbeit uns dick macht, indem sie nicht nur unsere innere Uhr, sondern auch die inneren Uhren unserer Darmflora verstellen. Mäuse, die unregelmäßigen Hell-Dunkel- sowie Fütterungsrhythmen ausgesetzt sind und kalorienreiche Kost erhalten, haben eine anders zusammengesetzte Darmflora und werden dicker als solche, die einen normalen Rhythmus beibehalten können. Auch bei zwei Menschen mit Jetlag nach einer Fernreise veränderte sich die Zusammensetzung der Darmflora: Begünstigt wurden Bakterien, die mit Übergewicht und Diabetes in Zusammenhang gebracht werden.

The Rise of Celiac Disease Still Stumps Scientists: Bericht über zwei im Oktober im New England Journal of Medicine veröffentlichte Studien zu Zöliakie, deren Ergebnisse zwei beliebten Hypothesen widersprechen. Erstens scheint die Wahrscheinlichkeit, an Zöliakie zu erkranken, nicht zu sinken, wenn man bei Kleinkindern die Einführung von glutenhaltiger Nahrung hinauszögert. Bestenfalls bricht die Zöliakie etwas später aus. Zweitens lässt sich die Erkrankungswahrscheinlichkeit bei Kindern mit einer entsprechenden genetischen Prädisposition auch durch „Desensibilisierung“, also durch kleine Glutenbeimischungen zur Muttermilch, nicht senken.    Weiterlesen