Schlagwort-Archiv: Energie

Krankheitsverhalten: kurzfristig heilsam – chronisch belastend

Anhedonie (Lustlosigkeit), verringerte Libido

Anhedonie: Lustlosigkeit, z. B. verringerte Libido

Wenn wir krank sind, uns ins Bett legen, fiebern und nichts essen mögen: ist das schlecht für uns? Ist es nur ein Zeichen dafür, dass es uns schlecht geht? Oder ist es vielmehr gut für uns, ein Teil unserer Genesung? Erstaunlich lange blieb diese Frage unbeantwortet. Erst 1988 veröffentlichte Benjamin L. Hart seine wegweisende Arbeit „Biological basis of the behavior of sick animals“, in der er das Krankheitsverhalten (sickness behavior) von Tieren als evolutionäre Anpassung zur effizienten Überwindung von Infektionskrankheiten darstellte.

Zu diesem Krankheitsverhalten zählen etwa

  • Anorexie (verringerter Appetit)
Anorexie: verringerter Appetit

Anorexie: verringerter Appetit

  • Adipsie (wenig Durst)
Adipsie: verringerter Durst

Adipsie: verringerter Durst

  • Lethargie und Schläfrigkeit
Lethargie, viel Schlaf, Schonhaltung, Wärmeverlustminimierung

Schläfrigkeit, Schonhaltung, Wärmeverlust-Minimierung

  • Anhedonie (Lustlosigkeit, Unfähigkeit zur Freude, siehe oben: keinen Bock aufs Haserl!)
  • Rückzug und Asozialität (verringerte Revierverteidigung, Brutfürsorge, wechselseitige Körperpflege, sexuelle Aktivität usw.)
reduziertes Sozialverhalten, z. B. Brutpflege

reduziertes Sozialverhalten

  • Desinteresse am Erkunden der Umgebung, am Spielen und Lernen
  • Übelkeit, Unwohlsein
  • erhöhte Schmerzempfindlichkeit
  • bei Warmblütern Zittern zur Wärmeproduktion und bei wechselwarmen Tieren das Aufsuchen einer warmer Umgebung („behavioral fever“) sowie
"Verhaltensfieber" bei wechselwarmen Tieren

„Verhaltensfieber“ bei wechselwarmen Tieren

  • eine kompakte Körperhaltung, die den Wärmeverlust minimiert.

Hinzu kommen physiologische Veränderungen, etwa eine vom Hypothalamus im Gehirn angeordnete Erhöhung der Körpertemperatur (Fieber), Entzündungsreaktionen und eine träge Verdauung.

Noch immer glauben viele Menschen, Fieber sollte gesenkt werden und Brandwunden müsse man kühlen, weil die Wärme schädlich sei. Dabei dient beides „nur“ der Schmerzbekämpfung, nicht aber der Heilung – von Ausnahmen abgesehen. Zwar ist bei weitem nicht bei jeder Erkrankung klar, auf welchen Wegen Fieber uns nützt (Beschleunigung enzymatischer Reaktionen, Hemmung der Vermehrung hitzeempfindlicher Viren oder Bakterien, Entfernung des für Pathogene wichtigen Spurenelements Eisen aus unserem Blut …). Aber dass es eine Anpassungsleistung darstellt und in vielen Situationen das Überleben fördert, ist mittlerweile klar. So hatten in Tierexperimenten gezielt infizierte Wüstenleguane oder Zebrafische, die eine wärmere Umgebung aufsuchen konnten, eine deutlich höhere Überlebenswahrscheinlichkeit als Leidensgenossen, die man daran hinderte.

Viele der oben genannten Aspekte des Krankheitsverhaltens hängen miteinander zusammen. So rufen die Entzündungsreaktionen, mit denen unser Immunsystem Infektionen bekämpft, im Wachzustand Übelkeit, Abgeschlagenheit, Schmerz usw. hervor, die unsere Aktivitäten stören und riskanter machen können. Daher der Rückzug und der viele Schlaf. Der Rückzug von sozialen Aktivitäten könnte auch die Gefahr verringern, verwandte Artgenossen anzustecken. Andererseits kennen wir von vielen Tierarten Fürsorge für erkrankte Gruppenmitglieder, was darauf hindeutet, dass das verringerte Sozialverhalten und die Lethargie nicht dem Schutz der anderen, sondern der eigenen Genesung dienen, etwa der Konzentration der Energiereserven auf die kostspieligen Aktivitäten des Immunsystems.

Ob die verfügbare Energie eher in die Heilung oder doch in die kurzfristige Maximierung des Fortpflanzungserfolgs investiert wird, hängt wesentlich von der „life history“ und der Reproduktionsstrategie der Art ab: Kurzlebige kranke Säugetiermännchen paaren sich im Zweifel lieber noch einmal und kippen dann tot um. Langlebige Organismen schonen sich lieber; zur Not vernachlässigen sie ihre Jungen und setzen darauf, dass sie nach ihrer Genesung neuen Nachwuchs großziehen können.

Bei einer akuten Erkrankung fördert ein solches Krankheitsverhalten die Gesundung und damit die Chance, das Erbgut, in das dieses Verhalten eingeschrieben ist, in die nächsten Generationen weiterzutragen. So funktioniert natürliche Auslese. Bei chronischen Erkrankungen ist dasselbe Verhalten oftmals kontraproduktiv, denn ich kann nicht jahrelang hungern, die Tage verdämmern, enthaltsam leben und die sozialen Bedürfnisse meiner Mitgeschöpfe ignorieren, ohne mir selbst und meinen Verwandten zu schaden. Außerdem werden viele chronische Erkrankungen, etwa Autoimmunerkrankungen, wohl gar nicht durch Bakterien oder Viren verursacht, die sich durch ein solches Verhalten besiegen ließen.

Da aber etliche chronische Erkrankungen erst gegen Ende oder gar nach der Reproduktionsphase auftreten, hat die natürliche Auslese keinen Ansatzpunkt, um einem solchen „chronifizierten Krankheitsverhalten“ entgegenzuwirken. Das einmal entgleiste Immunsystem, das fälschlich meint, eine Infektion bekämpfen zu müssen, schüttet permanent entzündungsfördernde Botenstoffe wie Interleukin 1β (IL-1β), Interleukin 6 (IL-6) und Tumornekrosefaktor (TNF) aus, die dem Hypothalamus und anderen Schaltzentralen suggerieren, der Organismus müsse noch ein Weilchen kürzer treten und sich zurückziehen. Das könnte der Grund für ein Phänomen sein, das vielen chronisch Kranken nur allzu bekannt ist: Fatigue.

 

Live Fast, Love Hard, Die Young

Bar-Maus_650

Im vorigen Beitrag habe ich den Unterschied zwischen den Reproduktionsstrategien von Maus und Mensch erwähnt, der – neben anderen guten Gründen – die Übertragbarkeit von Ergebnissen immunologischer Studien an Labormäusen auf Menschen erschwert. Das will ich hier genauer ausführen.

Theoretische Ökologie, erste Lektion: Malthus’sche Gleichung. Der Mathematiker Thomas Malthus beschrieb 1798 in seinem Essay on the Principle of Population das Wachstum einer Bevölkerung, deren Geburtenrate über der Sterberate liegt. Eine anfangs kleine Gründerpopulation in einem neuen Lebensraum wächst zunächst exponentiell an, und zwar mit der Wachstumsrate r: der Differenz aus Geburten- und Sterberate.

Zweite Lektion: die logistische Gleichung, eingeführt 1837 vom Mathematiker Pierre François Verhulst. Wenn die verfügbaren Ressourcen nicht ebenfalls exponentiell anwachsen, schwächt sich der Zuwachs durch Konkurrenz um diese knappen Ressourcen ab – und zwar umso stärker, je näher die Populationsgröße N der sogenannten Kapazitätsgrenze K kommt, der maximalen Tragfähigkeit der Umwelt. Die Populationsentwicklung nimmt eine S-Kurve; in einer stabilen Umwelt halten sich schließlich Zuwachs und Schwund die Waage.

Logistische_Kurve_650

Weiterlesen

Der Energiehaushalt der T-Zellen

Skizzen fürs Buch, angeregt durch Pearce E L et al. 2013, „Fueling immunity: insights into metabolism and lymphocyte function“:

P1180246_Stoffwechsel_T-Zellen_650Bei allem Nachdenken über Signalwege im Immunsystem sollte man nicht vergessen, dass Immunzellen auch einen Stoffwechsel haben: Gerade wenn sie sich stark teilen oder Infektionen bekämpfen sollen wie T-Zellen nach ihrer Aktivierung, benötigen sie enorm viel Energie – und zugleich müssen sie Nukleotide, Proteine und/oder Fette aufbauen.

Die Erläuterungen verschiebe ich größtenteils auf das Buch – hier nur etwas zur wohlgenährten T-Zelle in der Petrischale oben links: Die Ergebnisse von In-vitro-Versuchen mit T-Zellen sind unter anderem deshalb so schlecht auf die Verhältnisse im gesunden oder kranken Organismus zu übertragen, weil wir die kultivierten Zellen „verwöhnen“.

In unseren Lymphknoten und unserer Milz finden sie etwa 5-13% Sauerstoff, 5 mM Glukose, 0,5 mM Glutamin und ausreichend Nährstoffe vor; an ihrem Einsatzort im entzündeten oder infizierten Gewebe herrschen dagegen oft Sauerstoff- und Nährstoffmangel.

Eine Standard-Kulturlösung (Iscoves modifiziertes Dulbecco-Medium mit 10% Serum) enthält aber 20% Sauerstoff (2- bis 4-mal so viel wie in unserem Blut), 25 mM Glukose (5-mal so viel) und 4 mM Glutamin (8-mal so viel).