Schlagwort-Archiv: Grippe

Große Unterschiede im Immunsystem eineiiger Zwillinge

Nur wenige Forscher beschäftigen sich mit der Entwicklung des gesamten Immunsystems, also all der Komponenten sowohl der angeborenen als auch der erworbenen Abwehr, über das ganze Leben hinweg: von der Geburt bis ins hohe Alter. Hier stelle ich eine dieser wenigen Arbeiten vor:

Petter Brodin et al. (2015): Variation in the Human Immune System Is Largely Driven by Non-Heritable Influences (Open Access)

Die Autoren haben an 105 gesunden Zwillingspaaren, also 210 Personen, 204 Immunsystem-Parameter untersucht, darunter die Häufigkeit von 95 verschiedenen Immunzelltypen, die Konzentration von 51 Zytokinen, Chemokinen und Wachstumsfaktoren im Serum und die Veränderungen dieser Werte nach Anregung der Immunzellen durch Botenstoffe. 78 Zwillingspaare waren eineiig, 27 zweieiig. Bei der großen Mehrheit, nämlich 77 Prozent der Parameter waren die Unterschiede zwischen den Zwillings-Messwerten überwiegend (nämlich zu mehr als der Hälfte) nicht erblich, sondern durch unterschiedliche Umwelteinflüsse bedingt. Die Unterschiede bei 58 Prozent der Immunsystem-Parameter waren sogar ganz überwiegend (zu mehr als 80 Prozent) nicht erblich bedingt. Außerdem unterschieden sich die Immunsysteme älterer Zwillingspaare deutlich stärker als die jüngerer: Der Umwelteinfluss nimmt mit den Jahren zu.

Mit den Jahren entwickeln sich Zwillinge immunologisch immer weiter auseinander, weil unterschiedliche Umwelteinflüsse auf sie einwirken, etwa Impfungen, Infektionen, Allergene oder Nahrung

Mit den Jahren entwickeln sich Zwillinge immunologisch immer weiter auseinander, weil unterschiedliche Umwelteinflüsse auf sie einwirken, etwa Impfungen, Infektionen, Zellgifte oder ihre Kost.

Die Erblichkeit der Parameter wurde anhand von Messungen an eineiigen und zweieiigen Zwillingspaaren ermittelt. Zwischen eineiigen Zwillingen sollten erbliche Faktoren (also Gene und dauerhafte epigenetische Markierungen des Erbguts) zu 100 Prozent übereinstimmen, zwischen zweieiigen Zwillingen dagegen – wie bei anderen Geschwisterpaaren – nur zu 50 Prozent. Umweltfaktoren (darunter auch stochastische epigenetische Veränderungen) sollten dagegen ein- und zweieiige Zwillinge gleichermaßen beeinflussen.

Unter den Immunzelltypen gab es einige wenige, deren Häufigkeit im Blut der Probanden stark erblich bedingt war, also zwischen eineiigen Zwillingen sehr gut übereinstimmte – vor allem naive CD27+-T-Zellen und CD4+-Gedächtnis-T-Zellen. Die Häufigkeit der meisten Zellen der erworbenen (T- und B-Zellen) sowie der angeborenen Abwehr (Granulozyten, Monozyten und NK-Zellen) unterschied sich dagegen zwischen eineiigen Zwillingen praktisch ebenso stark wie zwischen zweieiigen Zwillingen, sodass man annehmen muss, dass Zufälle und Umweltreize wie Infektionen die Werte prägen.

Unter den Zytokinen erwies sich IL-12p40 als besonders stark erblich. Varianten im Gen dieses Proteins werden mit Krankheiten wie Psoriasis oder Asthma in Verbindung gebracht, an denen das Immunsystem beteiligt ist. Bei vielen anderen Zytokinen war der erbliche Einfluss gering.

Schon im Ruhezustand (oben) unterscheiden sich viele Immunparameter zwischen Zwillingen. Eine Anregung des Immunsystems löst bei den wenigen erblich dominierten Parametern gleich starke Veränderungen aus (Zeile 2), bei vielen nicht erblich dominierten Parametern aber ungleich starke Veränderungen, die die Unterschiede zwischen den Basiswerten ausgleichen oder verstärken können.

Schon im Ruhezustand (oben) unterscheiden sich viele Immunparameter zwischen Zwillingen. Eine Anregung des Immunsystems löst bei den wenigen erblich dominierten Parametern (etwa den homöostatischen Zytokinen IL-2 und IL-7, die die Vermehrung von T-Zellen steuern) gleich starke Veränderungen aus (Zeile 2). Bei den vielen nicht erblich dominierten Parametern (etwa IL-6, IL-20 oder IL-21) können die unterschiedlichen Reaktionsstärken die Unterschiede zwischen den Basiswerten ausgleichen oder verstärken.

Das galt sowohl für die Basiswerte, die ohne Stimulation des Immunsystems erhoben wurden, als auch für viele Werte, die nach Anregung einer Immunreaktion ermittelt wurden. Eine stark erbliche Komponente fand sich bei den sogenannten homöostatischen Zytokinen IL-2 und IL-7, die bei einer Aktivierung des Immunsystems für die Vermehrung und die richtige Spezialisierung von T-Zellen sorgen. Die meisten Messwerte variierten jedoch nach der Immunsystem-Stimulation zwischen eineiigen Zwillingen fast ebenso unterschiedlich wie zwischen zweieiigen Zwillingen. Dabei waren schwache und starke Immunsystem-Reaktionen gleichermaßen nicht erblich, also durch Umweltfaktoren geprägt.

Stellt man alle gemessenen Immunsystem-Parameter als Netzwerk dar, in dem voneinander abhängige Größen durch Linien verbunden sind, zeigt sich: Die relativ wenigen Parameter mit starker Erblichkeit sind von Parametern umgeben, deren Variabilität durch die Umwelt bedingt ist. Das könnte erklären, warum bekannte Risiko-Genvarianten für bestimmte Krankheiten des Immunsystems oft nur für einen kleinen Teil des Erkrankungsrisikos verantwortlich zeichnen: Ihr Einfluss wird durch andere, nicht erbliche Faktoren abgepuffert, die zum Beispiel in denselben Signalketten oder Regelkreisen angesiedelt sind.

Der im Laufe des Lebens zunehmende Einfluss der Umwelt, vor allem wohl der Infektions- und Impfgeschichte auf den Zustand des Immunsystems war bei den regulatorischen T-Zellen oder Tregs am auffälligsten: Während ihre Häufigkeit bei jungen Zwillingspaaren gut übereinstimmte (Erblichkeit 0,78 von maximal 1,0), waren die Werte bei alten Zwillingspaaren so gut wie unkorreliert (Erblichkeit 0,24, also knapp über der Nachweisbarkeitsgrenze von 0,2). Besonders großen Einfluss auf das Immunsystem nimmt offenbar das Cytomegalovirus (CMV), das uns – wie andere Herpesviren – ein Leben lang erhalten bleibt. In 16 eineiigen Zwillingspaaren aus der Versuchspopulation war ein Geschwister mit CMV infiziert und das andere nicht. Viele ihrer Immunsystem-Parameter unterschieden sich stark, und zwar sowohl im Basiszustand als auch nach Stimulation.

Die Antikörperproduktion nach einer Grippeschutzimpfung war bei den Zwillingspaaren so gut wie gar nicht erblich beeinflusst, sondern fiel – wohl je nach Impf- und Infektionsgeschichte der Individuen – recht unterschiedlich aus.

Angesichts dieser Ergebnisse ist es kein Wunder, dass unter Geschwistern, die dieselben Risikogenvarianten für Autoimmunerkrankungen erben, oftmals nur eines wirklich erkrankt.

Das Immunsystem indigener Gruppen und das ethische Dilemma des Erstkontakts

Vor einem Jahr erschien eine Arbeit über das Mikrobiom unkontaktierter Yanomami, die ich damals nur kurz besprechen konnte. Jetzt habe ich sie noch einmal gelesen, obwohl sie immunologisch unergiebig ist: Die Entnahme von Blutproben, die Aufschluss über den Zustand des Immunsystems dieser Menschen hätte geben können, war bei einem Erstkontakt selbstverständlich unmöglich. Man muss schon froh sein, dass sie Abstriche aus ihrer Mundschleimhaut und das Einsammeln von Stuhlproben gestattet haben – vermutlich nicht, ohne sich über dieses merkwürdige Verhalten zu amüsieren.

Die Hauptergebnisse: Die Bakteriengemeinschaften auf der Haut und im Stuhl dieser mutmaßlich seit über 11.000 Jahren isolierten Menschen sind erheblich artenreicher als unsere – und auch als die Mikrobiome anderer naturnah lebender Völker. Die sogenannte Alpha-Diversität ihrer Mikrobiome ist also sehr hoch, vermutlich, weil sie nie mit antimikrobiellen Substanzen zu tun hatten und weil sie in ständigem Kontakt mit ihrer Umwelt leben. In ihrer Darm- und Hautflora leben zum Beispiel Bakterien, die man bislang für reine Bodenbakterien gehalten hat. Zugleich sind die Unterschiede in der Mikrobiom-Zusammensetzung zwischen den 34 Yanomami, von denen die Proben stammen, viel geringer als zwischen denen zweier Menschen aus einer Gruppe aus unserem Kulturkreis. Die sogenannte Beta-Diversität ist mithin sehr klein – wohl wegen des engen Zusammenlebens, der hygienischen Verhältnisse und der gleichartigen Lebensweise und Ernährung aller Gruppenmitglieder.

Unter den Genen dieser Bakterien, und zwar überweigend den Genen von zuvor unbekannten Stämmen des Darmbakteriums Escherichia coli, finden sich 28, die Antibiotika-Resistenzen vermitteln – sogar gegen einige neue, synthetische Antibiotika. Allerdings werden diese Gene in den Bakterien nicht abgelesen, sie sind „stummgeschaltet“ (silenced), sodass die Bakterien anfangs dennoch auf die Antibiotika ansprechen würden. Aber man muss damit rechnen, dass sie sehr bald wirklich Resistenzen entwickeln würden, und zwar gleich gegen mehrere Antibiotika. In Weltgegenden und Kulturen, in denen die sogenannte Therapietreue (die regelmäßige Einnahme des Medikaments über den kompletten notwendigen Zeitraum) vermutlich gering ist, geht das umso schneller.

Erstkontakt: Es gibt keinen Weg zurück

Dem Forscherteam war bewusst, dass die Probensammlung beim Erstkontakt eine einmalige Gelegenheit ist, ein Mikrobiom-Archiv anzulegen, das vermutlich große strukturelle und funktionale Ähnlichkeiten mit dem Mikrobiom unserer altsteinzeitlichen Vorfahren hat – auch wenn sich die einzelnen Bakterien-Arten und -Stämme natürlich auf dem Weg ihrer Wirte nach und durch Südamerika weiterentwickelt haben. 11.000 Jahre entsprechen ungefähr 100 Millionen Bakteriengenerationen. Zugleich begann mit dieser Begegnung zwischen der bislang isolierten Dorfgemeinschaft und den Medizinern und Wissenschaftlern unwiderruflich der Niedergang dieser Diversität – spätestens mit der ersten Antibiotika-Gabe.

Die Autoren schreiben in ihrer Danksagung: „Wir sind auch den Leuten in dem neu kontaktierten Dorf dankbar für ihr Vertrauen und für unser gemeinsamen Wunsch, dass der unvermeidliche Kontakt mit unserer Kultur ihrem Volk gesundheitliche Vorteile und Schutz bringen möge.“ Ist das nicht ein arg frommer Wunsch angesichts der bisherigen Erfahrungen mit der gesundheitlichen und sozialen Entwicklung neu kontaktierter, kleiner indigener Gruppen?  Weiterlesen

Neutrophile legen Brotkrumenspuren für T-Zellen aus

P1320571_Neutrophiler_Chemokin-Brotkrumen_T-Zelle_650

Schon lange ist bekannt, dass aktivierte Zellen des Immunsystems mithilfe von Lockstoffen an die Stelle gelotst werden, an der sie benötigt werden – etwa an den Ort einer Infektion, im Fall einer Influenza also zu den virenbefallenen Epithelzellen der Atemwege. Allerdings sind diese Stoffe, Chemokine genannt, löslich; sobald sie in die Gewebsflüssigkeit oder in die Blutbahn ausgeschüttet wurden, werden sie verdünnt oder fortgespült. Daher hat man sich lange gefragt, wie beispielsweise zytotoxische T-Zellen bei einer Grippe so schnell an genau die richtige Stelle gelangen.

Ein Forscherteam um Kihong Lim hat jetzt herausgefunden, dass die Neutrophilen – jene Zellen der angeborenen Anwehr, die als „erste Verteidigungslinie“ gegen eine Influenza besonders früh am Infektionsort eintreffen – bei ihrem geschäftigen Kommen und Gehen eine Art Membran-Schleppe ausbilden, von der sie ständig kleine Membransäckchen abschnüren, die mit dem Chemokin CXCL12 gefüllt sind. Sie legen gewissermaßen Brotkrumenspuren, die umso dichter sind, je näher der Infektionsort ist – einfach aufgrund der Zahl der dort verkehrenden Neutrophilen, ähnlich wie die Duftstraßen der Ameisen in der Nähe des Nests oder einer Nahrungsquelle.

Das Chemokin diffundiert dann langsam aus den Membrankügelchen heraus und steigt den sich nähernden T-Zellen gewissermaßen als Duft in die Nase: Es bindet an deren CXCL12-Rezeptor.

In Mäuse ohne Neutrophile werden die zytotoxischen T-Zellen bei einer Influenza-Infektion zwar aktiviert, aber sie finden die mit den Viren infizierten Zellen in der Luftröhre nur ganz schlecht und bekämpfen die Infektion daher sehr ineffizient.

Literatur: 

Kihong Lim et al.: Neutrophil trails guide influenza-specific CD8+ T cells in the airwaysScience, 4. September 2015, Vol. 349, no. 6252, DOI: 10.1126/science.aaa4352

 

Linksammlung eines Tabmessies

Zum Teil schon seit über einem Monat sind in meinem Broswer alle möglichen Tabs zu Wissenschaftsnachrichten oder Abstracts offen, die ich „irgendwann“ abarbeiten wollte. Da ich das im Moment nicht schaffe, trage ich sie hier zusammen, um die Tabs schließen zu können.

„Überwinterung“ in Beringia: http://www.pasthorizonspr.com/index.php/archives/02/2014/beringia-standstill-hypothesis-gains-support – http://www.sciencedaily.com/releases/2014/02/140227141854.htm# – https://www.sciencemag.org/content/343/6174/979.figures-only

Viren in mittelalterlichem Stuhl: http://aem.asm.org/content/early/2014/02/05/AEM.03242-13.abstract – http://news.sciencemag.org/biology/2014/02/700-year-old-poop-tracks-history-human-gut-microbes

Geografische Variation der Zusammensetzung der Darmflora / des Mikrobioms: http://rsbl.royalsocietypublishing.org/content/10/2/20131037.abstract?cpetoc – http://newscenter.berkeley.edu/2014/02/14/geographic-variation-of-human-gut-microbes-tied-to-obesity/

Geschichte der Pandemien: http://contagions.wordpress.com/2010/12/31/pandemic-influenza-1510-2010/ – europepmc.org/abstract/MED/1724803 – http://rspb.royalsocietypublishing.org/content/281/1780/20133159.abstract?etoc

Protein M: http://www.spiegel.de/wissenschaft/medizin/bakterien-parasiten-protein-ueberlistet-immunsystem-a-952059.html – http://www.sciencemag.org/content/343/6171/656

FAQ Humanes Mikrobiom: http://blogs.plos.org/onscienceblogs/2014/01/17/human-microbiome-vitamin-e-alzheimers-tweets-1000-genome/

Histokompatibilitätslocus der Seescheide Botryllus schlosseri: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0065980#pone-0065980-g004

Herkunft der V(D)J-Rekombinations-aktivierenden (RAG) Gene, Nesseltiere: http://www.sciencedirect.com/science/article/pii/S1044532309001195 – http://www.sciencedirect.com/science/article/pii/S1471490607002062

Phagozytose bei Dictyostelium: http://onlinelibrary.wiley.com/doi/10.1111/j.1550-7408.1996.tb02474.x/abstract

Vitamin-A-Mangel schützt gegen Würmer: http://www.the-scientist.com/?articles.view/articleNo/38977/title/Vitamin-Deficit-Can-Boost-Innate-Immunity/

Immunreaktion, die Salmonellen-Infektion fördert: http://www.the-scientist.com//?articles.view/articleNo/39096/title/Immune-Response-Promotes-Infection/