Schlagwort-Archiv: IgA

Die Milch macht’s – zumindest bei Mäusen

Dass Muttermilch Antikörper enthält, die das Neugeborene in den ersten Monaten vor Infektionen schützen, ist schon länger bekannt. Aber Milch leistet noch mehr für das Immunsystem des Nachwuchses, wie zwei neuere Arbeiten zeigen:

M. K. Ghosh et al. (2016): Maternal Milk T Cells Drive Development of Transgenerational Th1 Immunity in Offspring Thymus (Open Access); dazu auch die Pressemitteilung der Universität: Vaccinating Babies Without Vaccinating Babies

In der Vorläuferstudie hatten die Forscher herausgefunden, dass Mäuse ihrem Nachwuchs beim Säugen nicht nur durch Antikörper, sondern auch durch Immunzellen eine Immunität gegen Pathogene vermitteln, mit denen ihr eigenes Immunsystem kürzlich konfrontiert wurde. Seltsamerweise ist diese Immunität noch beim erwachsenen Nachwuchs nachzuweisen, obwohl dieser keinerlei mütterliche Immunzellen mehr enthält. Die Natur und die Entstehung der Zellen, die diese Immunität vermitteln, sollte hier untersucht werden. Um eine Übertragung im Mutterleib auszuschließen, ließ man die gegen das Bakterium Mycobacterium tuberculosis oder gegen den Pilz Candida albicans immunisierten Mäuseweibchen fremden Nachwuchs aufziehen.

Die Immunität wird offenbar von Gedächtnis-T-Zellen übertragen, die über CD4+-Marker und MHC-Klasse-II-Komplexe verfügen – eine kuriose Kombination, denn normalerweise empfangen CD4+-T-Zellen Signale von antigenpräsentierenden Zellen wie etwa dendritischen Zellen, die Antigene auf MHC-Klasse-II-Komplexen präsentieren. Dendritische Zellen sind aber viel zu kurzlebig, um die hier beobachteten Effekte zu erklären; es waren eindeutig antigenpräsentierende CD4+-T-Zellen, die die Immunität übertrugen – vielleicht, weil nur T-Zellen gezielt in den Thymus wandern können. Wie diese Zellen an die MHC-Klasse-II-Komplexe gelangt sind, ist unklar. Die Autoren vermuten Trogozytose: die Übergabe von Membranflößen einschließlich MHC-Komplex und Kostimulatoren an einer immunologischen Synapse, also einer Bindungsstelle zwischen der (primären) antigenpräsentierenden Zelle und einer T-Zelle, deren T-Zell-Rezeptor spezifisch an den Komplex bindet. Diesen Mechanismus habe ich hier bereits vorgestellt.

Nach der Aufnahme über die Muttermilch wandern diese ungewöhnlichen mütterlichen Gedächtnis-T-Zellen gezielt in den Thymus und die Milz der Mäusebabies. Um an den Grenzen – also am Brustdrüsen-, Darm- und Thymusepithel – nicht von anderen Immunzellen aufgehalten zu werden, „verschlucken“ sie vermutlich ihre MHC-Klasse-II-Komplexe samt Antigenen in Vesikeln und befördern sie erst am Ziel wieder an die Zelloberfläche. Im Thymus werden die MHC-Klasse-II-Komplexe einschließlich der Antigene womöglich durch eine weitere Trogozytose an „ordentliche“ antigenpräsentierende Zellen übergeben, oder die CD4+-T-Zellen werfen die Antigene ab, und antigenpräsentierende Zellen nehmen sie auf.

Jedenfalls werden die Antigene aus den Pathogenen, mit denen die Mütter infiziert waren, nun den unreifen Mäusebaby-Thymozyten präsentiert, die daraufhin zu CD8+-T-Zellen mit einer Spezifität für diese Antigene heranreifen. Diese Immunitätsübertragung nennen die Autoren „maternal educational immunity“, um sie von der passiven Immunität zu unterscheiden, die vor allem durch mütterliche Antikörper in der Milch übertragen wird und sich rasch verliert, da diese Antikörper im Jungtier nicht nachproduziert werden können.

In der Pressemitteilung der Universität finden sich interessante Spekulationen über eine mögliche Nutzung dieses Mechanismus zur „indirekten Impfung“ von Säuglingen (nämlich durch Impfung der Mütter während der Schwangerschaft) und über die hohe historische Überlebensrate von Kleinkindern aus Adelsfamilien, die häufig von Ammen aus der Unterschicht gestillt wurden und so vielleicht eine besonders gute „Immunsystem-Erziehung“ genossen. Dabei sollte aber nicht vergessen werden, dass die Reifung des Immunsystems bei jungen Mäusen anders verläuft als bei Menschenkindern.

M. A. Koch et al. (2016): Maternal IgG and IgA Antibodies Dampen Mucosal T Helper Cell Responses in Early Life (Bezahlschranke, nur Abstract und eine Abbildung); dazu auch Meldung „Breast Milk Primes Gut for Microbes“ in The Scientist

Mütterliche, über die Milch übertragene Antikörper der Typen IgG und IgA dienen vor allem dazu, Pathogene im Darm junger Mäuse zu bekämpfen, solange deren Immunsystem dazu noch nicht imstande ist – so glaubte man bisher. Jetzt zeigt sich, dass insbesondere IgG auch Immunreaktionen hemmt, und zwar solche gegen nützliche Bakterien, die nach der Geburt den Darm von Mäusebabies besiedeln. Fehlen die mütterlichen Antikörper, reagiert das Lymphgewebe am Darm heftig auf die neue Darmflora: Es entstehen viel mehr T-Helferzellen, die wiederum B-Zellen zur Produktion von Antikörpern gegen die gutartigen Darmbakterien anregen.

Allerdings scheinen die Mäuse, denen das mütterliche IgG vorenthalten wurde, keine langfristigen Gesundheitsschäden davonzutragen. Der Begleitartikel in The Scientist stellt dennoch Spekulationen über langfristige Folgen einer gestörten Mikrobiom-Entwicklung an, etwa Morbus Crohn und Colitis ulcerosa – nur um dann abzuwiegeln und auf die Unterschiede zwischen Mensch und Maus hinzuweisen. Zum Beispiel darauf, dass menschliche Muttermilch viel weniger IgG enthält als die von Mäusen. Es ist zum Mäusemelken.

Affinitätsreifung der B-Zellen in den Keimzentren

In den Follikeln des sekundären und tertiären Lymphgewebes kommt es nicht nur zum Immunglobulin-Klassenwechsel, den ich im letzten Beitrag skizziert habe, sondern auch zur Affinitätsreifung durch somatische Hypermutation und anschließende Selektion auf verbesserte Antigen-Bindungsstärke:

P1240180_Follikel_Affinitätsreifung_650

Im Uhrzeigersinn, bei 4 Uhr beginnend:

A  Eine B-Zelle, die ein Antigen aufgenommen hat, präsentiert ihren Fund einer T-Helferzelle und wird vollends aktiviert, sofern der T-Zell-Rezeptor das Antigen erkennt. Sie erhält von der T-Helferzelle die Lizenz, in das Keimzentrum des Follikels einzutreten.

B  Im Keimzentrum des Follikels vermehrt sich die B-Zelle stark durch Teilung. Währenddessen verändert das Enzym AID in dem Gen, das die antigenspezifische Bindungsstelle des Immunglobulins codiert, nach dem Zufallsprinzip einzelne Basen (A, T, C, G). Diesen Vorgang nennt man somatische Hypermutation.

C  Die B-Zellen treten aus der dunklen Zone des Keimzentrums in die helle Zone über, wo sie von dendritischen Zellen (DC) erwartet werden und nach der Mutation eine Selektion durchlaufen.

D  Die dendritischen Zellen präsentieren ihnen das Antigen, um die Bindungsstärke des mutierten B-Zell-Rezeptors zu prüfen.

E  Hat die Mutation die Bindung der Immunglobuline an das Antigen geschwächt, stirbt die B-Zelle durch Apoptose kontrolliert ab.

F  Hat die Mutation die spezifische Bindung an das Antigen gestärkt, so führt die B-Zelle dieses Antigen nun auf ihrem MHC-Klasse-II-Komplex einer follikulären T-Helferzelle vor, die es mit ihrem spezifischen T-Zell-Rezeptor erkennt. Durch diesen Kontakt wird auch der Klassenwechsel bei den Immunglobulinen ausgelöst, sodass die B-Zelle nun kein IgM mehr herstellt, sondern IgG, IgE oder IgA – je nachdem, welchen Botenstoff die T-Helferzelle ausschüttet.

Je nach Bedarf und dem Ergebnis dieser weiteren Prüfung schlägt die B-Zelle danach einen von vier Wegen ein:

G  Die B-Zelle ist unbrauchbar, weil sie der T-Zelle ihr Antigen nicht effizient präsentiert, und stirbt durch Apoptose.

H  Die B-Zelle ist zur humoralen Abwehr geeignet, verlässt das Keimzentrum und entwickelt sich zur Plasmazelle weiter, die massenhaft Antikörper erzeugt.

I  Einige B-Zellen reifen stattdessen zu Gedächtniszellen heran, die mit ihrem Wissen um die aktuelle Infektion dafür sorgen, dass das Immunsystem auf ein späteres erneutes Auftreten desselben Antigens schneller und stärker reagieren kann.

J  Einige besonders schlagkräftige B-Zellen erhalten die Order, erneut in das Keimzentrum einzutreten, um sich zu vermehren und durch Mutation und Selektion weiter zu verbessern. So steigert der Organismus die Affinität der Immunglobuline zu einem bestimmten Antigen mit der Zeit. Diesen Vorgang nennt man Affinitätsreifung.

Alcaligenes: das Vieh in unseren Peyer-Plaque-Corrals

Die nächste Skizze fürs Buch:

P1180270_Alcaligenes_sIgA_ILCs_Corral_korr_650Eine der seltsamsten Entdeckungen, die in den letzten Jahren in unserem Darm gemacht wurden, ist die „Viehwirtschaft“ in den Peyer-Plaques – jenen Lymphfollikelhaufen unter dem Dünndarmepithel, in denen die lokale Immunabwehr organisiert wird.

Das Epithel, hier als Palisade dargestellt, besteht aus einer einzelnen Schicht von Enterozyten, die seitlich durch tight junctions so eng miteinander verbunden sind, dass sich nichts Gefährliches zwischen ihnen hindurch aus dem Darmlumen (oben) in das darunter liegende Gewebe (unten) quetschen kann. Aber direkt über jedem Peyer-Plaque sitzt eine M-Zelle (die Pforte), die Substanzen aus der Nahrung, Bakterien und Bakterienbruchstücke aus dem Darmlumen aufnimmt und an ihrer Unterseite wieder ausscheidet (sog. Transzytose, von trans = hindurch und Endozytose).

Dort nehmen normalerweise dendritische Zellen, die unterhalb des Epithels Wache schieben, die Antigene auf, um sie zu verarbeiten und dann in den Peyer-Plaques den naiven T- und B-Zellen zu präsentieren. Dort werden die zu den Antigenen passenden Zellen der erworbenen Abwehr aktiviert; sie vermehren sich, wandern durch die Blutbahn und kehren in den Darm zurück, wo sie z. B. Infektionen bekämpfen.

Solange keine akute Infektion vorliegt, sondern den B-Zellen vor allem Antigene aus harmlosen Darmbakterien (Kommensalen) präsentiert werden, produzieren sie sogenanntes sekretorisches Immunglobulin A (sIgA): Dimere aus zwei Y-förmigen IgA-Antikörpern, die an ihren „Stielenden“ zusammengeheftet sind. Dieses sIgA wird durch das Epithel ins Darmlumen ausgeschieden, wo es an Antigene an der Oberfläche von Kommensalen bindet. sIgA löst keine Komplementreaktion und damit keine Entzündung aus, sondern hindert die Kommensalen einfach nur daran, sich an das Epithel anzulagern und damit die Enterozyten und die Immunzellen in der Nähe „nervös zu machen“.

Manchmal aber geschieht Seltsames: Das sIgA bindet an lebende Bakterien der Gattung Alcaligenes, klopft dann gewissermaßen an die M-Zellen-Tür und wird mitsamt der Bakterien durch die M-Zellen in die darunter liegenden Peyer-Plaques eingeschleust. Ich habe das sIgA hier als Cowboys und die Alcaligenes-Zellen als Rinder dargestellt. Im Peyer-Plaque – dem Corral – werden die Bakterien nicht etwa abgetötet, sondern sie leben weiter, werden mit Nährstoffen versorgt und vermehren sich offenbar sogar.

Noch ist nicht ganz auszuschließen, dass es sich um eine perfide Ausbeutung durch die Bakterien handelt. Wahrscheinlicher ist diese Form der „Viehhaltung“ aber eine Symbiose: Alcaligenes lässt sich in geschützter Umgebung versorgen und stimmt dafür das lokale Immunsystem tolerant, indem es ihm ständig kommensalentypische Antigene präsentiert. So werden gefährliche Überreaktionen auf harmlose Kommensalen vermieden.

Wichtig ist, dass die Bakterien nicht aus ihrem Corral ausbrechen. Dafür sorgen offenbar ILCs – die vor wenigen Jahren entdeckten innate lymphoid cells, die an der Grenze zwischen angeborenem und erworbenem Immunsystem stehen. Rings um die Peyer-Plaques machen sie sich als Hirten verdient. Fehlen sie oder haben sie einen Defekt, so brechen die Alcaligenes-Bakterien aus, die örtlichen B-Zellen schalten auf die Produktion von Antikörpern des Typs IgG um, und der Dünndarm entzündet sich.

Quellen:

  • Kunisawa J. und H. Kiyono (2012): Alcaligenes is Commensal Bacteria Habituating in the Gut-Associated Lymphoid Tissue for the Regulation of Intestinal IgA Responses. Front Immunol. 2012; 3: 65, doi: 10.3389/fimmu.2012.00065
  • Sonnenberg G. F. et al (2012): Innate Lymphoid Cells Promote Anatomical Containment of Lymphoid-Resident Commensal Bacteria. Science 336: 6086; doi: 10.1126/science.1222551

 

Über- und Unterrepräsentation bakterieller Proteine bei Morbus Crohn

Juste C et al. Bacterial protein signals are associated with Crohn’s disease. Gut Online first, doi:10.1136/gutjnl-2012-303786 (2104)

(Zusammenfassung nur bzgl. der Funktionen der bei M. Crohn über-/unterrepräsentierten Bakterienproteine; deren Verwendbarkeit als qualitative oder gar quantitative diagnostische Marker interessiert mich nicht.)

Abstract: Analyse der bakteriellen Proteine aus dem Darm von Morbus-Crohn-Patienten zeigt: Viele Proteine aus Bacteroides überrepräsentiert (auch im Vergleich zur Zahl der Bacteroides, also echte Überexpression); Funktion: ermöglichen opportunistischen Bakterien Besiedlung der Schleimschichten, Überwindung der Barriere und Schleimhaut-Invasion. Mit der Überexpression der z. T. stark immunogenen Proteine geht eine stärkere IgA-Bedeckung der Bakterienzellen bei Morbus Crohn einher. Unterrepräsentiert (schwach exprimiert) sind v. a. Proteine von Firmicutes und einigen Prevotella-Arten sowie aus unserem eigenen Proteom das Pankreas-Zymogen-Granulamembran-Glykoprotein 2 (oder wie auch immer das auf Deutsch heißen mag), kurz GP2, das normalerweise an Bakterien bindet und so wohl deren Adhäsion am Schleim und damit eine Entzündungsreaktion verhindert.*  Weiterlesen

IgA, IgE und IgM

Neben dem zähen Schleim, den in ihn eingebetteten antibakteriellen Peptiden und der mechanischen Barriere des Darmepithels mit seinen Tight Junctions sorgen auch in die Schleimschicht abgeschiedene Immunglobuline (Antikörper) für einen Schutz vor Pathogenen und vor allzu aufdringlichen Kommensalen. Es gibt mehrere Typen von Immunglobulinen, die sich in ihrem Aufbau, ihrer Funktion und ihren Einsatzorten unterscheiden. Im Darm finden wir vor allem IgA (links), und zwar zumeist als Dimer: Zwei Antikörper sind an ihrem konstanten Ende (am „Stamm“ des Y) miteinander verbunden und mit einer Peptipkette umwickelt. IgA bindet vor allem an Bakterien.   Weiterlesen