Schlagwort-Archiv: Interferon

Vom Immunsystem der Viren (doch, doch!) und Amöben (echt!)

Letzte Woche wurde ich auf einem Kongress, bei dem es um ganz andere Themen ging, von zwei Menschen auf dieses Blog, auf die offenbar ansprechenden Zeichnungen und auf das Werden bzw. Stagnieren des Autoimmunbuch angesprochen. Das hat mich gefreut und motiviert – und daraufhin bin ich erst mal wieder krank geworden. Auch wenn ich geistig heute zu nichts Großem imstande bin, will ich wenigstens drei Literaturfunde der letzten Woche notieren.

Kerry Grens: Giant Virus Has CRISPR-like Immune Defense (02.03.2016)

Die damals frisch entdeckte, inzwischen routinemäßig zur gezielten genetischen Veränderung von Organismen eingesetzte erworbene Immunabwehr der Bakterien, CRISPR/CAS, habe ich bereits im August 2012 skizziert. Wie sich jetzt zeigt, schützt sich ein Stamm des Riesenvirus namens Mimivirus mit einem ganz ähnlichen System vor Infektionen mit dem Virophagen (also dem Viren befallenden Virus) Zamilon: Der Stamm hat mehrere Wiederholungen eines 15 Basen langen Abschnitts aus dem Zamilon-Erbgut in sein eigenes Genom integriert, die ihn – im Unterschied zu den übrigen beiden Mimivirus-Stämmen – gegen einen Befall mit Zamilon immunisieren. Die Details des Mechanismus müssen noch aufgeklärt werden.

Interessant fände ich auch, ob dieses als MIMIVIRE bezeichnete Abwehrsystem ebenso nach hinten losgehen, also zu Autoimmunreaktionen führen kann wie CRISPR/CAS bei den Bakterien. Evolutionsbiologisch und konzeptionell verschwimmt die einst scharfe Grenze zwischen den Viren und den übrigen Domänen des Lebens jedenfalls zusehends. Es steht zu vermuten, dass sich genetische Parasiten – und Abwehrmechanismen gegen solche Schwarzfahrer, also Proto-Immunsysteme – herausgebildet haben, sobald es selbstreplizierende Einheiten gab, mithin lange vor der Entstehung vollständiger Zellen.

Jef Akst: Amoebae Have Human-Like Immunity (02.03.2016)

Sogenannte soziale Amöben wie Dictyostelium discoideum – gelegentlich irreführend als Schleimpilze bezeichnet – leben meist als Einzeller. Werden die Ressourcen knapp, schließen sie sich zu Abertausenden zu einem nacktschneckenartigen, kriechenden Gebilde zusammen, das sich schließlich aufrichtet und Sporen bildet, die vom Wind davongetragen werden – an Orte, an denen es für die Zellen hoffentlich mehr zu fressen gibt. Etwa ein Prozent des Gebildes besteht aus Wächterzellen, die die Aufgabe haben, eindringende Bakterien auszuschalten, die das Überleben der Kolonie gefährden könnten.

Die Mittel, mit denen diese sentinel cells arbeiten, erinnern stark an die angeborene Abwehr des Menschen: Phagozytose, also das Vertilgen der Eindringlinge, und Netze aus der eigenen DNA, die ruckartig ausgeworfen werden und die Bakterien festkleben lassen – ähnlich den NETs unserer neutrophilen Granuzlozyten. Bisher hatte man geglaubt, solche Netze kämen nur im Immunsystem mehrzelliger Tieren vor. Offenbar ist auch diese Entwicklung erheblich älter als gedacht.

Jyoti Madhusoodanan: Viral Remnants Help Regulate Human Immunity (03.03.2016)

Dass humane endogene Retroviren oder HERVs zu wichtigen Neuerungen in der Evolution der Säugetiere geführt haben, etwa zur Ausbildung des Synzytiotrophoblasten in der Plazenta, ist schon länger bekannt. Überreste eines humanen endogenen Retrovirus, das vor etwa 45-60 Millionen Jahren in unser Genom integriert wurde, regulieren offenbar auch die Reaktion unserer angeborenen Abwehr auf eine Interferon-Ausschüttung. Rings um die Gene, deren Ablesung durch Interferon induziert wird, gibt es mindestens 27 sogenannte Transposons, die wahrscheinlich von den langen Wiederholungen oder LTRs an den Enden retroviraler Sequenzen stammen.

Eines dieser Elemente, MER41, enthält Interferon-induzierbare Bindungsstellen. Es findet sich unter anderem 220 Basenpaare oberhalb des Interferon-gesteuerten Gens AIM2, das in den Zellen eine Entzündungsreaktion in Gang setzt. Wird MER41 und damit die Induktion von AIM2 durch Interferon ausgeschaltet, sind die Zellen anfälliger für Viren-Infektionen. Ob dieser Steuerungsmechanismus ursprünglich den Retroviren dazu diente, die Immunreaktionen des Wirts zu manipulieren, oder unmittelbar nach der Integration der viralen Sequenzen vom Wirt für seine Zwecke requiriert wurde, lässt sich allerdings nicht sagen. Bei einigen Autoimmunerkrankungen und Krebserkrankungen können stillgelegte retrovirale Sequenzen noch heute reaktiviert werden. Aber ob dies die Erkrankungen verstärkt oder gar mit verursacht, ihrer Bekämpfung dient oder eine unbedeutende Nebenwirkung ist, bleibt nach wie vor offen.

Bildergalerie

Da ich im Moment nicht zum ausführlichen Bloggen komme, stelle ich hier einfach die neuesten Abbildungen fürs Buch vor: unkommentiert – und damit wohl auch unverständlich. Aber das eine oder andere Element spricht vielleicht doch für sich selbst:

P1200120_IFN_und_AIE_1000

P1200095_U-Form_1_Grundtonus_nach_Casadevall_650

P1200100_U-From_2_entzündungshemmend_nach_Casadevall_650

P1200105_U-Form_3_entzündungsfördernd_nach_Casadevall_650

P1190917_Wahren-Herlenius_Autoimmunität_Risiken_650

Wahren-Herlenius_Rückkopplung_angeb_erw_Abwehr_AIE_650

  Primär_Sekundärantwort_IgM_IgG_650

Zeitverlauf_klonale_Expansion_Kontraktion_CD4_CD8_650n

Und jetzt weiter im Text – oder vielmehr im Bild: Die nächste Zeichnung dreht sich um die circadiane Rhythmik des Immunsystems, also die Schwankungen von Zell- und Stoffkonzentrationen sowie -funktionen im Tagesverlauf.

Neandertaler-Erbe in unserem Immunsystem

Sapiens-Neandertaler-Paar_650Schnelle Notizen zu 14 kürzlich gelesenen Artikeln – nicht allgemein verständlich aufbereitet, nicht korrekturgelesen und in dieser Form wahrscheinlich nur für mich selbst nützlich. :-) Das Ganze wird im letzten Teil des Buches verwurstet, in dem ich die Evolution unseres Immunsytems chronologisch abhandle.

Gibbons A. (2014): Neandertals and moderns made imperfect mates. Science 343, 31.01.2014 (News zu den Arbeiten von Sankararaman et al. 2014, s. u., sowie Vernot & Akey 2014)

Vernot & Akey haben nur moderne Humangenome aus dem 1000 Genomes Project verglichen und daraus Rückschlüsse auf Neandertaler-Einkreuzungen gezogen; Sankararaman et al. haben auch Neandertaler-Genomsequenz einbezogen. Neandertaler haben Spuren in Haut, Nägeln und Haaren (Keratin) hinterlassen; Nachfahren der Hybriden waren weniger fruchtbar als „reine“ moderne Menschen.

In über 60% von 1004 ostasiatischen und europäischen Genomen Neandertaler-Version des Keratinfunktion-Gens. Keratin macht Haut wasserdicht, blockiert Pathogene, macht Haut wärme- und kälteempfindlich -> Anpassung an kältere Habitate?

Neandertaler-Allele, die Risiko für Krankheiten wie Lupus, Morbus Crohn usw. erhöhen, haben Neandertalern vermutlich nicht geschadet, passten aber schlecht zum neuen Kontext im modernen Menschen.

Weitere Neandertaler-Allele -> Hautfarbe.

In allen untersuchten modernen Humangenomen zusammen 20 bzw. 30% des Neandertaler-Genoms wiedergefunden; in einem Individuum stammen 1-3% des Genoms vom Neandertaler. Einkreuzung vor etwa 60.000 Jahren.

Etwa 20 Regionen des Humangenoms enthalten keine Neandertaler-DNA -> negative Selektion wegen Fortpflanzungsnachteilen der Hybriden. Frauen bleiben wegen doppeltem X-Chromosom eher fruchtbar -> Jetzt wird untersucht, ob wir mehr DNA von weiblichen als von männlichen Neandertalern übernommen haben. (Gemeint ist wahrscheinlich das Geschlecht der gemischten Kinder, nicht des reinen Neandertaler-Elternteils – da macht es keinen Unterschied, solange männliche Hybriden mit Neandertaler-X und modernem Y ebenso (un)fruchtbar sind wie männliche Hybriden mit modernem X und Neandertaler-Y.)

Sankararaman S. et al. (2014): The genomic landscape of Neanderthal ancestry in present-day humans. nature, doi:10.1038/nature12961

Vergleich zwischen Neandertaler-Genomen und 1004 modernen Genomen (darunter 176 Yoruba, mutmaßlich Neandertaler-frei) -> Neandertaler-Haplotypen abgeleitet. Regionen mit vielen Neandertaler-Allelen enthalten viele Gene, die Keratinfilamente beeinflussen -> Haut und Haar -> Anpassung moderner Menschen an außerafrikanische Umwelt erleichtert? Große Neandertaler-Allel-freie „Wüsten“ im Humangenom, z. B. auf X-Chromosom, das viele Gene für männliche Fruchtbarkeit enthält; nur teilweise durch geringe Populationsgröße kurz nach Einkreuzung zu erklären  -> negative Selektion, evlt. weil Neandertaler-Allele im Genom-Kontext des modernen Menschen Fruchtbarkeit minderten.

Haplotyp-Längen -> Kreuzung vor etwa 2000 Generationen, also 37.000-86.000 Jahren. Neandertaler-Anteil in individuellen Genomen: heute durchschnittlich 1,15% in Europa, 1,38% in Ostasien; kurz nach Einkreuzung über 3% (abgeleitet aus Anteil in „Nicht-Wüsten-Regionen“). Größerer Anteil in Ostasiaten evtl. wegen über lange Zeit kleinerer Populationen als in Europa -> negative Selektion weniger effektiv. Mutmaßlichem Neandertaler-Anteil an einzelnen Genorten: bis zu 62% in ostasiatischen, bis zu 64% in europäischen Populationen. In einigen dieser Regionen Anzeichen für positive Selektion, an an deren negative Selektion.

Aus Neandertalern stammende Allele beeinflussen Risiko für SLE/Lupus, primär biliäre Zirrhose (beides: Transportin-3), Morbus Crohn (Chromosom 10: Zinkfinger-Protein 365, Chromosom 12: Gen unbekannt?), IL-18-Level (Regulator der angeborenen und erworbenen Immunität) , Typ-2-Diabetes, Rauchen und Größe des Blinden Flecks.

Obwohl bei der Einkreuzung nur etwa fünfmal mehr Zeit seit der Aufspaltung zwischen Neandertalern und Vorfahren der modernen Menschen vergangen war als heute seit der Aufspaltung zwischen Europäern und Westafrikanern, war die Fruchtbarkeit der Hybriden wohl wegen Schneeball-Effekten (Dobzhansky-Müller-Inkompatibilitäten) stark reduziert.

Prüfer K. et al. (2014): The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505, doi:10.1038/nature12886

Hochwertige Genomsequenz einer Neandertaler-Frau aus der Denisova-Höhle in Altai-Gebirge, Sibirien – gewonnen aus einem Zehenknochen aus einer etwa 50.000 Jahre alten Schicht. In derselben Höhle, aber in einer etwas jüngeren Schicht wurde auch der Fingerknochen gefunden, aus dem die vorläufige Genomsequenz des Denisova-Menschen ermittelt wurde. Vergleich mehrerer Neandertaler-Genome (auch aus dem Kaukasus und Kroatien, s. Karte Abb. 1), des Denisova-Menschen-Genoms und 25 moderner Humangenome -> Modell der Einkreuzungsereignisse zwischen modernem Menschen, Denisova, Neandertaler und einem unbekannten Hominiden (Abb. 8).  Weiterlesen

Gekurve

Nach einer Übersetzungspause endlich wieder ein paar Skizzen fürs Buch: Zeitverläufe von Immunisierungen bzw. Infektionen. (Erläuterungen folgen im Buch.)

Die Grundlagen: Autoimmunität, Teil 3

Immunologisch privilegierte Orte sind vom Rest des Körpers isoliert, und T-Zellen reagieren bei Gesunden nicht auf ihre Antigene.

Notizen zum 14. Kapitel des Lehrbuchs Janeway’s Immunobiology von Kenneth Murphy, Paul Travers und Mark Walport, 7. Auflage, Garland Science, 2008 – Teil 3: S. 605-607 (Teil 2: hier)

Immunologisch privilegierte Orte: An einigen Stellen des Körpers lösen Transplantate keine Immunreaktionen aus, z. B.

  • im Gehirn,
  • in der vorderen Augenkammer,
  • in den Hoden und
  • in der Gebärmutter.

Antigene von dort können diese Orte zwar verlassen und dann mit T-Zellen interagieren, induzierten in diesen aber kein Verhalten, das zur Gewebezerstörung führt.

Was zeichnet diese privilegierten Orte aus?   Weiterlesen

Frank Ryan: Virolution – Die Macht der Viren in der Evolution, Kap. 8

Fortsetzung meiner Exzerpte der Kapitel 5 und 6 und 7 von Ryans Buch, wiederum noch nicht allgemein verständlich aufbereitet

8. Autoimmunkrankheiten

Etwa 5 % der Menschen in den Industrieländern leiden unter Autoimmunkrankheiten: In unterschiedlichen Organen treten Entzündungen auf, die nicht eindeutig auf Infektionen zurückzuführen sind. Zur Diagnose ist oft der Nachweis bestimmter gegen körpereigenes Gewebe gerichteter Antipkörper nötig.

Zu den häufigsten Autoimmunkrankheiten gehört der Systemische Lupus erythematodes (SLE), bei dem das Immunsystem die eigene Doppelstrang-DNA angreift, sodass man DNA-spezifische Antikörper findet. Bei 85 % der Patienten mit rheumatoider Arthritis ist ein Antikörper nachweisbar, der sich gegen  Immunglobulin G (IgG) richtet, ein Protein, das zur normalen Immunantwort gehört. Im Falle von Typ-1-Diabetes greifen weiße Blutkörperchen und Antikörper die Betazellen in den Langerhans-Inseln an, die in der Bauchspeicheldrüse Insulin herstellen. In Tests werden Antikörper gegen die Glutamat-Decarboxylase 65 (GAD65) nachgewiesen, ein für die Arbeit der Langerhans-Inseln notwendiges Enzym. Bei Multipler Sklerose (MS) führen Angriffe des Immunsystems auf die Myelinscheiden zur Demyelinisierung von Axonen im Zentralnervensystem. Alle Autoimmunerkrankungen lassen sich durch die Gabe von Steroiden beeinflussen, die die Immunantwort unterdrücken. Auch Beta-Interferon und ähnliche Medikamente verbessern den Zustand vieler Patienten.   Weiterlesen