Schlagwort-Archiv: Neutrophile

Neutrophile legen Brotkrumenspuren für T-Zellen aus

P1320571_Neutrophiler_Chemokin-Brotkrumen_T-Zelle_650

Schon lange ist bekannt, dass aktivierte Zellen des Immunsystems mithilfe von Lockstoffen an die Stelle gelotst werden, an der sie benötigt werden – etwa an den Ort einer Infektion, im Fall einer Influenza also zu den virenbefallenen Epithelzellen der Atemwege. Allerdings sind diese Stoffe, Chemokine genannt, löslich; sobald sie in die Gewebsflüssigkeit oder in die Blutbahn ausgeschüttet wurden, werden sie verdünnt oder fortgespült. Daher hat man sich lange gefragt, wie beispielsweise zytotoxische T-Zellen bei einer Grippe so schnell an genau die richtige Stelle gelangen.

Ein Forscherteam um Kihong Lim hat jetzt herausgefunden, dass die Neutrophilen – jene Zellen der angeborenen Anwehr, die als „erste Verteidigungslinie“ gegen eine Influenza besonders früh am Infektionsort eintreffen – bei ihrem geschäftigen Kommen und Gehen eine Art Membran-Schleppe ausbilden, von der sie ständig kleine Membransäckchen abschnüren, die mit dem Chemokin CXCL12 gefüllt sind. Sie legen gewissermaßen Brotkrumenspuren, die umso dichter sind, je näher der Infektionsort ist – einfach aufgrund der Zahl der dort verkehrenden Neutrophilen, ähnlich wie die Duftstraßen der Ameisen in der Nähe des Nests oder einer Nahrungsquelle.

Das Chemokin diffundiert dann langsam aus den Membrankügelchen heraus und steigt den sich nähernden T-Zellen gewissermaßen als Duft in die Nase: Es bindet an deren CXCL12-Rezeptor.

In Mäuse ohne Neutrophile werden die zytotoxischen T-Zellen bei einer Influenza-Infektion zwar aktiviert, aber sie finden die mit den Viren infizierten Zellen in der Luftröhre nur ganz schlecht und bekämpfen die Infektion daher sehr ineffizient.

Literatur: 

Kihong Lim et al.: Neutrophil trails guide influenza-specific CD8+ T cells in the airwaysScience, 4. September 2015, Vol. 349, no. 6252, DOI: 10.1126/science.aaa4352

 

Auswertung Wissenschafts-Newsletter, Teil 1

Nach langer Pause wegen Überstunden und Krankheit stürze ich mich wieder in die Arbeit am Buch. Ich bin immer noch mit der Beschreibung der wichtigsten Mechanismen beschäftigt, über die Infektionen mutmaßlich Autoimmunerkrankungen auslösen: molekulare Mimikry, Bystander Activation, Epitope Spreading und polyklonale Aktivierung, z. B. durch Superantigene.

Nebenbei wühle ich mich durch die Wissenschafts-Newsletter der letzten Monate. Evtl. fürs Buch relevante Meldungen verlinke ich hier. Den Anfang macht The Scientist, vor allem mit Meldungen zum Mikrobiom.

Microbes Fight Chronic Infection: Eine am 23.10.2014 in Nature veröffentlichte Studie zeigt, dass Clostridium scindens und in geringerem Umfang 10 weitere Bakterien-Taxa aus dem Darm-Mikrobiom Antibiotika-behandelte (und daher dysbiotische) Mäuse vor Infektionen mit Clostridium difficile schützen können. Evtl. lässt sich daraus eine Therapie für dysbiotische Menschen entwickeln, die weniger riskant ist als die Stuhltransplantationen, die derzeit in, äh, aller Munde sind.

Gut Microbes Trigger Malaria-Fighting Antibodies: Eine am 04.12.2014 in Cell veröffentlichte Studie zeigt, dass E. coli im Darm von Mäusen die Bildung von Antikörpern gegen den Kohlenwasserstoff Galα1-3Galb1-4GlcNAc-R (kurz: α-gal) auslöst, der sowohl an der Oberfläche der Bakterien als auch auf Malaria-Erregern (bei Mäusen Plasmodium berghei, bei Menschen Plasmodium falciparum) zu finden ist. Diese Antikörper sind auch im Blut gesunder Menschen in großen Mengen anzutreffen. Dank einer Dreifach-Mutation in den gemeinsamen Vorfahren der Menschen und der Menschenaffen stellen unsere Zellen kein α-gal mehr her, sodass die Antikörper nicht den eigenen Körper angreifen. Mit P. berghei infizierte Mäuse mit den durch das Bakterium induzierten Antikörpern im Blut erkrankten nur halb so häufig an Malaria wie Mäuse ohne die Antikörper.    Weiterlesen

Lebensweg einer Darmepithelzelle

Wie die Darmschleimhaut aufgebaut ist, habe ich hier und hier schon mal gezeigt. Was in den alten Skizzen noch fehlte, ist die Dynamik des Epithels, durch die ständig Schäden in der Barriere repariert und alte, verbrauche Zellen ersetzt werden:

P1180516_Darmepithelzellen-Lebenszyklus_beschriftet_650

Tief in den Krypten, den engen Schluchten der Darmschleimhaut, liegen Stammzellen (*), aus denen alle Darmepithelzellen durch Teilung hervorgehen. (Den Talgrund nehmen überwiegend die Paneth-Zellen ein, hier mit J gekennzeichnet, die antimikrobielle Substanzen ausschütten.)

Die jungen Epithelzellen wandern zunächst an den Wänden der Krypten und dann an den Darmzotten oder Villi entlang. An den Spitzen der Zotten (Kreuz) schilfern die ältesten Zellen ab und werden vom Darminhalt mitgerissen. Reißt eine Infektion oder eine mechanische Verletzung irgendwo eine Lücke in das Epithel, wird diese durch nachrückende Zellen geschlossen (schwarzer Pfeil), damit keine Bakterien oder Fremdstoffe in die Lamina propria – das Bindegewebe der Darmschleimhaut – eindringen.

Nachgetragen sei auch noch eine Skizze zum Cordon sanitaire vor der Darmschleimhaut. Nähere Erläuterungen folgen im Buch:

P1180509_Cordon_Ausfall_gesamt_650

Mundflora und Immunreaktionen von mittelalterlichen Bewohnern des Klosters Dalheim

Ergänzende Informationen zu Adler et al.; auch diese Zusammenfassung ist noch nicht allgemein verständlich aufbereitet:

Warinner C et al. (2104): Pathogens and host immunity in the ancient human oral cavity. Nature Genetics 46, 336,344, doi:10.1038/ng.2906

Zahnstein enthält viele verwertbare Informationen (DNA, Proteine) und ist in vielen alten Schädeln zu finden. Die Autoren haben (1) die Mundflora von mittelalterlichen Menschen mit leichter bis schwerer Parodontitis analysiert, (2) 40 opportunistische Pathogene charakterisiert, (3) alte mutmaßliche Atibiotikaresistenzgene identifiziert, (4) das Genom des Parodontitis-assoziierten Keims Tannerella forsythia rekonstruiert und (5) 239 bakterielle sowie 43 menschliche Proteine identifiziert, die einen historisch alten Zusammenhang zwischen Faktoren unseres Immunsystems, Pathogenen des „roten Komplexes“ und Parodontitis belegen.

Die humane Mundflora umfasst über 2000 Bakterien-Taxa, darunter viele Keime, die an Parodontitis, Atemwegs-, kardiovaskulären und systemischen Erkrankungen beteiligt sind. Zahnstein = komplexer, mineralisierter Biofilm, der aus Zahnbelag (Plaque), Speichel und der Flüssigkeit in Zahnfleischtaschen entsteht.

Adler et al. haben die alte Mundflora nur auf Phylumebene analysiert und gezielt nach einigen Arten gesucht. Zur Charakterisierung des Gesundheitszustands wurden hier nun an vier Skeletten aus dem mittelalterlichen Kloster Dalheim (Deutschland, etwa 950-1200 n. Chr.) genauere Analysen durchgeführt. 2699 mikrobielle OTUs (operational taxonomic units) identifiziert. Dominant: 1 Archäen- und 9 Bakterien-Phyla (mit absteigenden Anteilen: Firmicutes, Actinobacteria, Proteobacteria, Bacteroidetes, Synergistetes, Chloroflexi, Fusobacteria, Spirochetes, Euryarchaeota), die alle auch moderne Mundflora dominieren. Bemerkenswert selten: Bodenbakterien wie Acidobacteria -> kaum Verunreinigung der Proben.   Weiterlesen

Neutrophiler Granulozyt

Noch eine Skizze für das Kapitel, in dem ich die Zellen des Immunsystems vorstelle:

P1150745_Neutrophiler_Spiderman_500

Ein Neutrophiler wirft sein DNA- und Enzym-Netz (NET = neutrophil extracellular net) aus, um einen Krankheitserreger zu fixieren und auszuschalten. Obwohl sich die Zelle dabei selbst entkernt, lebt sie oft noch eine Weile weiter und bleibt aktiv – gewissermaßen als Zombie.

Reformierter Immunzellstammbaum, Teil 1

Eigentlich wollte ich nahtlos an die Lektüre und die Schreiberei vor dem Urlaub anschließen und „eben schnell“ den sogenannten hämatopoetischen Stammbaum skizzieren, also die Entwicklungwege der verschiedenen Blutzellen, die alle aus demselben Typ von Stammzellen hervorgehen (HSZ = hämatopoietische Stammzelle) . Doch alle Abbildungsvorlagen in meinen Lehrbüchern und in der Wikipedia erweisen sich als veraltet oder grob unvollständig.

P1150525_hämatopoietischer_Stammbaum_myeloischer_Zweig_650

Nach umfangreichen Recherchen hier schon mal Teil 1 – noch ohne die Lymphozyten und ihre Verwandten, die aus dem mit einem Sternchen gekennzeichneten multilineage progenitor (MLP) hervorgehen.

Relativ neu ist die Erkenntnis, dass die neutrophilen Granulozyten (NG) nicht näher mit den eosinophilen Granulozyten (EoG) und den basophilen Granulozyten (BG) verwandt sind, also nicht auf dem rechten, erythro-myeloiden Ast, sondern auf dem linken, dem lympho-myeloiden Ast des Baums angesiedelt sind.

Interessant auch, dass die basophilen Granulozyten den Mastzellen (MZ) näherstehen als den eosinophilen Granulozyten. Die alte Klassifikation anhand des mikroskopischen Erscheinungsbilds (alle drei Granulozyten enthalten zahlreiche kleine Vesikel oder „Körnchen“, die granula) führt also etwas in die Irre.

Fortsetzung folgt – und dann wird es richtig kompliziert, denn einige der neu entdeckten lymphoiden Zelltypen haben noch nicht einmal eingedeutschte Namen, von klaren Familienverhältnissen ganz zu schweigen!

(v. l. n. r., außer den 4 oben genannten Zelltypen: DZ = dendritische Zellen, Mo = Monozyten, MΦ = Makrophagen, E = Erythrozyten, M = Megakaryozyten; P steht jeweils für Progenitor = Vorläuferzelle)

Dickdarmbakterien regulieren über kurzkettige Fettsäuren unser Immunsystem

J. K. Nicholson etl al: Host-Gut Microbiota Metabolic Interactions. Science 336, 08.06.2012, 1262-1267: Firmicutes wie Eubacterium, Roseburia, Faecalibacterium und Coprococcus zerlegen für den menschlichen Organismus unverdauliche Ballaststoffe wie Hemizellulosen im Dickdarm in kurzkettige Fettsäuren wie Buttersäure, Essigsäure oder Proprionsäure. Diese senken den pH-Wert im Dickdarm, hemmen durch die Ansäuerung das Wachstum von Pathogenen wie Salmonellen, stimulieren die Wasser- und Natriumabsorption, beteiligen sich an der Cholesterinsynthese, versorgen die Darmepithelzellen und einige Darmbakterien mit Energie und stimulieren die Leptinproduktion in Adipozyten (zumindest in Zellkulturen und Mäusen).   Weiterlesen

PCB-belastete Große Tümmler leiden häufig unter Hypothyreose, Immunsuppression und Anämie

Polychlorierte Biphenyle bestehen aus zwei Benzolringen, an denen mehrere Wasserstoffatome durch Chlor ersetzt sind.

Notizen zu Lori H. Schwacke et al., „Anaemia, hypothyroidism and immune suppression associated with polychlorinated biphenyl exposure in bottlenose dolphins (Tursiops truncatus)“, Proceedings of the Royal Society B: Biological Sciences, 25. Mai 2011, doi:10.1098/rspb.2011.0665

[Die Arbeit hat nichts mit Autoimmunerkrankungen zu tun – wohl aber mit einer umweltgiftbedingten Schilddrüsenunterfunktion und weiteren damit einhergehenden Schädigungen. Daher nehme ich sie in meine Materialsammlung auf.]

Polychlorierte Biphenyle (PCBs) wurden in den USA in den späten 1970er-Jahren verboten. Sowohl Versuche als auch epidemiologische Untersuchungen deuten darauf hin, dass sie das Immun-, das Hormon- und das Fortpflanzungssystem massiv schädigen können. Zudem weiß man, dass PCBs sehr stabil sind und sich in der Nahrungskette anreichern. Im Fettgewebe von Großen Tümmlern an der Südküste von Georgia (USA) wurden in den letzten Jahren extreme PCB-Konzentrationen von bis zu 2900 Milligramm pro Kilogramm gemessen.   Weiterlesen