Schlagwort-Archive: Plasmodium falciparum

Auswertung Wissenschafts-Newsletter, Teil 1

Nach langer Pause wegen Überstunden und Krankheit stürze ich mich wieder in die Arbeit am Buch. Ich bin immer noch mit der Beschreibung der wichtigsten Mechanismen beschäftigt, über die Infektionen mutmaßlich Autoimmunerkrankungen auslösen: molekulare Mimikry, Bystander Activation, Epitope Spreading und polyklonale Aktivierung, z. B. durch Superantigene.

Nebenbei wühle ich mich durch die Wissenschafts-Newsletter der letzten Monate. Evtl. fürs Buch relevante Meldungen verlinke ich hier. Den Anfang macht The Scientist, vor allem mit Meldungen zum Mikrobiom.

Microbes Fight Chronic Infection: Eine am 23.10.2014 in Nature veröffentlichte Studie zeigt, dass Clostridium scindens und in geringerem Umfang 10 weitere Bakterien-Taxa aus dem Darm-Mikrobiom Antibiotika-behandelte (und daher dysbiotische) Mäuse vor Infektionen mit Clostridium difficile schützen können. Evtl. lässt sich daraus eine Therapie für dysbiotische Menschen entwickeln, die weniger riskant ist als die Stuhltransplantationen, die derzeit in, äh, aller Munde sind.

Gut Microbes Trigger Malaria-Fighting Antibodies: Eine am 04.12.2014 in Cell veröffentlichte Studie zeigt, dass E. coli im Darm von Mäusen die Bildung von Antikörpern gegen den Kohlenwasserstoff Galα1-3Galb1-4GlcNAc-R (kurz: α-gal) auslöst, der sowohl an der Oberfläche der Bakterien als auch auf Malaria-Erregern (bei Mäusen Plasmodium berghei, bei Menschen Plasmodium falciparum) zu finden ist. Diese Antikörper sind auch im Blut gesunder Menschen in großen Mengen anzutreffen. Dank einer Dreifach-Mutation in den gemeinsamen Vorfahren der Menschen und der Menschenaffen stellen unsere Zellen kein α-gal mehr her, sodass die Antikörper nicht den eigenen Körper angreifen. Mit P. berghei infizierte Mäuse mit den durch das Bakterium induzierten Antikörpern im Blut erkrankten nur halb so häufig an Malaria wie Mäuse ohne die Antikörper.    Weiterlesen

Selektionsdruck durch Seuchen

Pestarzt_650_gespiegeltFür die meisten Betroffenen nur ein schwacher Trost, aber evolutionsbiologisch faszinierend: Dass Risikogenvarianten für Autoimmunerkrankungen nicht längst „weggemendelt“ wurden, liegt wohl daran, dass sie mit höheren Überlebenschancen bei Infektionserkrankungen einhergehen.

So deutet einiges darauf hin, dass manche afrikanische und asiatische Ethnien eine stärkere genetische Neigung zu Lupus (SLE) haben als beispielsweise Europäer, weil eine Variante in einem Gen für einen Rezeptor für das konstante Ende von Antikörpern das Risiko verringert, an Malaria zu sterben – um den Preis eines höheren Lupus-Risikos (Clatworthy et al. 2007).

Eine ähnliche positive Selektion hat wohl der Cholera-Erreger Vibrio cholerae im bengalischen Gangesdelta ausgeübt: Viele Bengalen tragen genetische Varianten in sich, die einerseits die Schlagkraft des angeborenen Arms ihres Immunsystems gegen Cholera, andererseits aber auch die Neigung zu Colitis ulcerosa erhöhen (Karlsson et al. 2013).

Selektionsdruck_Malaria_Pest_Cholera_Roma_650

In Europa schließlich dürften die Pestepidemien des Mittelalters und der frühen Neuzeit einen starken Selektionsdruck auf unser Immunsystem ausgeübt haben. Das wird beim Vergleich der Immunsystem-Gene von „alteingesessenen“ Rumänen, rumänischen Roma und Nordwestindern deutlich.

Die Vorfahren der Roma sind zwischen 900 und 1100 n. Chr. aus dem Nordwesten Indiens nach Europa eingewandert (weiße Punkte und Pfeil in der Karte). Seither sind sie in Rumänien im Großen und Ganzen ähnlichen Umweltbedingungen und damit auch einem ähnlichen Selektionsdruck durch Infektionen ausgesetzt wie die übrige Bevölkerung Rumäniens (schwarzer Punkt in der Karte). Sie haben sich aber genetisch kaum vermischt.

Laayouni et al. (2014) haben mehrere Gene für sogenannte toll-like receptors aufgespürt, die in diesen beiden europäischen Populationen in den letzten Jahrhunderten eine konvergente Entwicklung durchlaufen haben: TLR1, TLR6 und TLR10. Kleine Varianten in diesen Genen verändern die Zytokin-Ausschüttung, die durch das Bakterium Yersinia pestis ausgelöst wird. Bei den Nordwestindern, die den Roma genetisch ansonsten noch recht nahe stehen, finden sich diese Varianten nicht – ebenso wenig wie bei den Yoruba in Afrika oder bei den Han-Chinesen.

Unter einem positiven Selektionsdruck stand bei den Rumänen und den Roma offenbar auch eine Variante des Gens ADAMTS12, die das Risiko erhöht, an rheumatoider Arthritis zu erkranken. Etliche TLR-Varianten erhöhen ebenfalls die Neigung zu Autoimmunstörungen oder chronischen Entzündungen.

Die Evolution der Sialinsäure-Gene beim Menschen

Hintergrund/Ergänzungen zum vorigen Artikel über eine Säugetier-Sialinsäure als Xenoautoantigen:

Ajit Varki, Pascal Gagneux: Human-specific evolution of sialic acid targets: Explaining the malignant malaria mystery? PNAS 106(35), 2009, 14739-14740

Plasmodium falciparum verursacht schwere Malaria beim Menschen; nächster Verwandter,  P. reichenowi, infiziert Schimpansen und Gorillas, richtet bei ihnen aber weniger Schaden an. Übertragung P. falciparum durch Anopheles-Mücken. Nach Mückenstich infizieren die injizierten Sporozoiten Leberzellen -> Merozoiten, die in die zirkulierenden roten Blutkörperchen (RBCs) eindringen und deren zyklische asexuelle Vermehrung Schübe hohen Fiebers auslösen. P. falciparum exprimiert mehrere Bindungsproteine, die spezifische Ziele auf den RBCs erkennen – vor allem die Sialinsäuren an den Enden der Glykanketten an den Glycophorinen (den häufigsten Oberflächenglykoproteinen) der RBCs.

Das „Sialom“ oder Sialinsäure-Repertoire des Wirts muss sich ständig weiterentwickeln, da die Pathogene schnell evolvieren. Z. B. kam es vor etwa 2-3 Mio. Jahren zu einer Alu-vermittelten Deletion im CMAH-Gen unserer Vorfahren -> keine Biosynthese von Neu5Gc mehr, dafür Akkumulation des Ausgangsstoffes Neu5Ac. Bei den übrigen Menschenaffen kommen beide Sialinsäuren vor. Das wichtigste RBC-Bindungsprotein der Merozoiten von P. falciparum bindet bevorzugt Neu5Ac, das von P. reichenowi bevorzugt Neu5Gc. Der Verlust von Neu5Gc könnte unsere Vorfahren kurzfristig von schwerer Malaria befreit haben. Demnach wäre P. falciparum später entstanden, als das Erkennungsprotein EBA-175 so mutierte, dass es Neu5Ac auf den Erythrozyten erkannte. Vermutlich gab es ein Zwischenstadium, indem EBA-175 beide Formen binden konnte.  Weiterlesen