Schlagwort-Archiv: Salicylsäure

Immunologische Meldungen aus Spektrum 7/2012 und BiuZ 3/2012

Spektrum der Wissenschaft, Juli 2012

S. 8, Starkes Immunsystem führt zu Kleinwuchs der Pygmäen: Kurzmeldung auf der Basis einer Arbeit von Sarah Tishkoff und ihrem Team aus PLoS Genetics 8, e1002641, 2012 (Open Access). Pygmäen sind wohl deshalb so klein, weil die genetische Basis der Körpergröße eng mit Genen für die Funktion des Immunsystems gekoppelt ist, vor allem in einem Bereich des Chromosoms 3. Im Lebensraum der Pygmäen herrscht ein enorm hoher Selektionsdruck durch Krankheitserreger, z. B. Malaria- oder Tuberkuloseerreger. Die nötige erhöhte Widerstandsfähigkeit gegen Infektionen ging auf Kosten der Körpergröße. (Wichtig für Teil III meines Buches.)

Biologie in unserer Zeit, 3/2012

S. 152, Axel Brennicke, Innere Uhr. Pflanzen bereiten sich auf den abendlichen Angriff von Insekten vor: Bericht auf der Basis einer Studie von D. Goodspeed et al., Proc Natl Acad Sci USA 2012, 109, 4674 (Closed Access, nur Abstract). Da eine alarmbereite Immunabwehr energetisch kostspielig ist und u. U. auch dem eigenen Gewebe schaden kann, regulieren Pflanzen ihre Abwehrkraft gegen die Raupen im Tagesverlauf je nach voraussichtlicher Gefahrenlage hormonell hinauf oder herab. Abends, wenn die Raupen am meisten fressen, schmecken die Blätter besonders bitter, weil das Hormon Jasmoninsäure, das mittags seine höchste Konzentration erreicht, im Laufe des Nachmittags für eine Anhäufung von Bitterstoffen sorgt. Diese durch die circadiane Uhr der Pflanze gesteuerte Vorsorgemaßnahme wird dann bei den ersten tatsächlichen Bissen von Raupen noch um akute Abwehrmaßnahmen ergänzt. Gegen Schädlinge und Erreger, die in die Pflanze eindringen, um von ihren Nährstoffen zu leben, wirkt ein anderer Arm des pflanzlichen Immunsystems, der durch Salicylsäure gesteuert wird. (Ebenfalls für Teil III meines Buches geeignet.)

S. 174ff, Wolfgang Schumann, Bakterien-Evolution: Das bakterielle Mobilom. Artikel über die Transposons und sonstigen mobilen Elemente, die auf drei Wegen asexuell und horizontal zwischen verschiedenen Baktertien ausgetauscht werden, nämlich Transformation (Aufnahme nackter DNA aus der Umgebung), Konjugation (Übertragung von Plasmiden von einer Donor- auf eine Empfängerzelle, v. a. durch Pili) und Transduktion (Infektion durch Phagen, also Viren, die Bakterien befallen). Das Genom von Escherichia coli kann z. B. zwischen 4,56 und 5,7 Millionen Basenpaare umfassen, weil es mal mehr, mal weniger mobile Elemente enthält. (Ebenfalls für Teil III interessant, gerade i. Zsh. mit der Auswirkung der Umwelt auf die Zusammensetzung unseres Mikrobioms; Bsp.: mikrobielle Porphyranase-Gene im Mikrobiom der japanischen Bevölkerung wg. Verzehr von Rotalgen, s. Kau et al. 2011.)

Literaturliste zum Immunsystem der Pflanzen, Teil 7: Zelltod

Sinn und Anfang der Liste: s. Teil 1.

Andrew P. Hayward, S. P. Dinesh-Kumar: What can plant autophagy do for an innate immune response? Annual Review of Phytopathology 49, 2011, 557-576, doi: 10.1146/annurev-phyto-072910-095333
[nur Abstract gelesen] Autophagie, programmierter Zelltod, PCD, Immunabwehr der Säugetiere.

J.-L. Cacas: Devil inside: does plant programmed cell death involve the endomembrane system? Plant, Cell & Environment 33, 2010, 1453-1574, doi: 10.1111/j.1365-3040.2010.02117.x
[nur Abstract gelesen] endoplasmatisches Reticulum, Golgi-Apparat, Vakuole, programmierter Zelltod, Endomembransystem.

Kirsten Bomblies: What Can Plant Autophagy Do for an Innate Immune Response? Annual Review of Phytopathology 49, 2009, 557-576, doi: 10.1146/annurev-phyto-072910-095333
[nur Abstract gelesen] Hybridnekrose, Inkompatibilität, Autoimmunität, programmierter Zelltod, Abwehr, Artbildung, Evolution.   Weiterlesen

Literaturliste zum Immunsystem der Pflanzen, Teil 3

Sinn und Anfang der Liste: s. Teil 1.

Dario Cantu et al.: Strangers in the matrix: plant cell walls and pathogen susceptibility. Trends in Plant Science 13/11, 2008, doi: 10.1016/j.tplants.2008.09.002

Abstract: Zu Beginn einer Infektion müssen Pathogene Zellwände überwinden. Dazu setzen sie Hydrolasen ein. Aber pflanzliche Zellwände enthalten Proteine, die der Pathogen-Erkennung dienen und bei ihrem Abbau aktiviert werden, was Abwehrreaktionen auslöst.
Stichwörter: primäre Zellwand: Polysaccharide, Proteine, Phenole, Ionen; Umbau der Zellwand bei Wachstum und Entwicklung; zellwandabbauende Proteine aus Pathogenen = CWDPs; 3 Klassen von Pflanzenpathogenen: Biotrophe (leben auf Kosten lebender Zellen), Nekrotrophe (leben von toten Zellen), Hemibiotrophe (anfangs bio-, später nekrotroph); alle scheiden CWDPs aus, aber Biotrophe beschränken die Wandlyse, um Wirt nicht abzutöten; Haustorien erfordern lokalen Zellwandabbau; Nekrotrophe bauen großflächig Zellwände ab; Pektinabbau; Pektatlyasen = PELs; Pektinmethylesterasen = PMEs; Zellulose, Hemizellulose, Xylane, Xyloglucane; Pseudomonas syringae, Agrobacterium tumefaciens; Pili; Pektinase; PDOs = pectin-derived oligosaccharides aus Zellwand als Gefahrensignale -> Abwehr; Reaktion: Zellwandverstärkung mit Phenolen, verstärkter Vernetzung von Zellwandproteinen, Callose-Einlagerung; Salicylsäure, Ethylen, Jasmonsäure als Signale; antimikrobielle Peptide, Synthese sekundärer Antipathogen-Metaboliten; in muro = in der Zellwand.   Weiterlesen