Schlagwort-Archiv: systemische Sklerose

Inflammasomen: Entzündungsmaschinen aus Fertigbausteinen

Zeit für einen Werkstattbericht: Manche Abläufe oder Objekte im Immunsystem sind höllisch schwer zu visualisieren. Oft platzt nach tagelanger vermeintlicher Stagnation ein Knoten, und ich wache mit einer Bildidee auf. Aber diese verflixten Inflammasomen – die Proteinenkomplexe in Zellen, die Pyroptose begehen und dabei Entzündungssignale an ihre Umgebung aussenden – sperren sich hartnäckig. Das liegt vor allem an den unterschiedlichen Beschreibungen und Abbildungen in der Fachliteratur: Sie schildern und zeigen ja „nur“ Modelle, die auf dem Kenntnisstand und den Vorstellungen der jeweiligen Autoren vom Aufbau und der Funktionsweise dieser Gebilde beruhen.

Regenschirme, Mühlräder, Raumschiffe

Für diese Funktionsweise sind der dreidimensionale Aufbau und die Dynamik der beteiligten Proteine von entscheidender Bedeutung; beides lässt sich in einfachen zweidimensionalen Schemazeichnungen schlecht einfangen. Hinzu kommt, dass es zahlreiche unterschiedlich aufgebaute Inflammasomen gibt, die jeweils durch andere Signale aktiviert werden. Ich konzentriere mich im Folgenden auf das sogenannte NLRP3-Inflammasom, das am besten erforscht ist. Sein Zusammenbau und seine Aktivität können durch zahlreiche Reize ausgelöst werden, und es scheint bei etlichen chronischen Entzündungen und Autoimmunerkrankungen eine Rolle zu spielen.

Von oben sieht dieser Proteinkomplex wie ein Regenschirm oder ein Rad mit sechs, sieben oder acht Speichen aus. Von der Seite oder vielmehr im Längsschnitt betrachtet, hat er etwas von einem Raumschiff der Sternenflotte. Er besteht aus drei Baustein-Typen:

  • dem namensgebenden Protein NLRP3, das wiederum aus drei Funktionsbereichen oder „Domänen“ zusammengesetzt ist (PYD, NACHT, LRR) und den Sensor enthält, der das Inflammasom aktiviert,
  • einem Adapterprotein namens ASC mit zwei Domänen (PYD und CARD) sowie
  • dem Enzymvorläufer Pro-Caspase 1, ebenfalls mit zwei Domänen (CARD und p20/10).

Wofür all diese Abkürzungen stehen, das erspare ich uns hier.

Domino

Vielleicht ist es Ihnen aufgefallen: Die Domänen des Adapterproteins, PYD und CARD, tauchen in den beiden anderen Proteinen ebenfalls auf. Das ist kein Zufall, sondern Voraussetzung für den raschen Zusammenbau der Inflammasomen aus den Bausteinen, die in der Zelle bereitliegen und sich mit anderen Bausteinen zusammenlagern können, die dieselben Domänen aufweisen – so, wie man Dominosteine aneinander legt. Im Zytoplasma sind sie normalerweise inaktiv: Sie verbinden sich erst, wenn die Zelle den Weg zur Pyroptose, zum entzündlichen kontrollierten Zelltod einschlägt – sobald sie also Alarmsignale aus Pathogenen (PAMPs) oder aus beschädigten Zellstrukturen (DAMPs) empfängt.

Dieses regulierte Absterben ist Teil der bereits erläuterten angeborenen Immunreaktion, mit der die Ausbreitung von Krankheitserregern eingedämmt, gefährliche Zellüberreste aus dem Gewebe entfernt und Schäden repariert werden. Die Mechanismen sind evolutionär alt und erfordern keine Mithilfe der antigenspezifischen erworbenen Abwehr, also der B- und T-Zellen. Die Gefahrensignale sind nämlich immer dieselben, zum Beispiel reaktive Sauerstoffverbindungen (ROS) aus den eigenen Mitochondrien, Komponenten aus Organellen, die im Zytoplasma eigentlich nichts zu suchen haben und auf eine Beschädigung hinweisen, ein plötzlicher Verlust von Kalzium im Zytoplasma – oder eben typische Bakterienstoffe wie Lipopolysaccharide (LPS). Das eine Ende des Proteins NLRP3 besteht aus dem Rezeptor LRR, der diese Alarmzeichen direkt oder indirekt – über ein zwischengeschaltetes zellinternes Signal – erspürt.

Sobald das passiert, wird zum einen im Zellkern die Produktion von weiteren Inflammasom-Bausteinen hochgefahren. Zum anderen aber lagern sich die bereits fertigen Bausteine zusammen, denn die Zelle muss sofort auf die Gefahr reagieren; die Herstellung von Proteinen dauert ja eine Weile. Am NLRP3 hängt normalerweise ein Label, das das Protein inaktiv hält. Dieses „Schildchen“, Ubiquitin, wird bei einer Aktivierung des Rezeptors LRR abgeknipst, und NLRP3 wird aktiv. Auch das Adapterprotein ASC wird (in diesem Fall durch das Anhängen zweier Label, nämlich Ubiquitin und Phosphatgruppen) in Aktionsbereitschaft versetzt. Nun lagern sich mehrere der langgestreckten NLRP3-Proteine mit ihrem PYR-Ende zusammen, sodass sie wie die Speichen eines Rads wirken.

Prionen-ähnliche Proteinkristalle

An die PYR-Ansammlung an der Radnabe lagern sich anschließend seitlich etliche ASC-Proteine an, und zwar ebenfalls mithilfe ihrer PYR-Einheiten. Sie bilden gewissermaßen eine Radachse, die wie ein Kristall weiterwächst. In der Literatur ist von einem Prionen-artigen Gebilde die Rede. Prionen verbinden wir mit tödlichen Gehirnerkrankungen wie dem Rinderwahn (BSE), der Scrapie beim Schaf und der Creutzfeld-Jakob-Krankheit beim Menschen. Aber auch normale, lebensnotwendige Zellstrukturen wie das Zytoskelett oder eben Teile der Inflammasomen sind im Grunde Proteinkristalle mit einem regelmäßigen Aufbau.

Da sich in der ASC-Achse die PYR-Einheiten innen zusammenlagern, ragen die CARD-Domänen des ASC alle nach außen. An diese docken nun die gleichartigen CARD-Einheiten der Pro-Caspase-1-Bausteine an: wieder das Domino-Prinzip. Das löst die Bildung weiterer Prionen-ähnlicher länglicher Gebilde an, die aus lauter Pro-Caspase-Molekülen bestehen und seitlich von der ASC-Achse weg wachsen. Die nunmehr enge Nachbarschaft vieler dieser Enzymeinheiten hebt ihre Selbsthemmung auf: Sie ändern ihre dreidimensionale Gestalt ein wenig, lösen sich vom Inflammasom und stehen im Zytoplasma als aktive Caspase-1 zur Verfügung. Wie im Beitrag über die Pyroptose erläutert, verwandelt Caspase-1 unter anderem die Vorformen der entzündungsfördernden Zytokine IL-1β und IL-18 in ihre aktiven Formen, die aus der sterbenden Zelle ausgeschieden werden und die Nachbarschaft alarmieren.

Nützlicher Ansteckungseffekt

Offenbar gibt es neben diesen Zytokinen noch einen weiteren Ausbreitungsweg für eine aufkeimende Entzündung. Die sterbende Zelle setzt im Zuge ihrer Pyroptose größere Bruchstücke aus den Prionen-artigen ASC-Achsen der Inflammasomen frei. Diese bereits aktivierten ASC-Kristalle können offenbar auch außerhalb von Zellen Pro-IL-1β zu aktivem IL-1β umwandeln. Außerdem werden sie von Makrophagen vertilgt, die – durch die Zytokine und Gefahrensignale aus der sterbenden Zelle angelockt – den Zellmüll beseitigen. In den Makrophagen können die Enzymkomplexe weiterarbeiten und Pro-Caspase-1 zu aktiver Caspase-1 umbauen. Durch diese Kettenreaktion kann sich eine Entzündung, die von einigen wenigen Zellen ausgeht, sehr schnell ausbreiten.

Inflammasomen bei Autoimmunerkrankungen: Rolle ungeklärt

Wie viele andere nützliche Strukturen im Immunsystem kann auch das Inflammasom an Autoimmunerkrankungen, chronischen Entzündungen und anderen Krankheiten wie Alzheimer-Demenz, Parkinson oder Diabetes mitwirken, wenn es zur falschen Zeit, am falschen Ort, zu stark oder zu schwach aktiv wird. Das wiederum kann durch kleine Varianten (sogenannte Einzelnukleotid-Polymorphismen oder single nucleotide polymorphisms, kurz SNPs) in den vielen an seinem Aufbau und seiner Arbeit beteiligten Genen passieren. Solche SNPs in den Genen für Inflammasom-Komponenten, die in einzelnen Ethnien das Risiko einer Autoimmunerkrankung erhöhen, den Verlauf der Erkrankung verschlimmern oder die Wirksamkeit einer Therapie dagegen verringern könnten, sind bislang für Vitiligo, Lupus, rheumatoide Arthritis, juvenile idiopathische Arthritis, systemische Sklerose, Nebennierenrindeninsuffizienz und Psoriasis bekannt.

Bei vielen Autoimmunerkrankungen verschlimmert eine übermäßige IL-1β und IL-18-Ausschüttung den Verlauf, was vermuten lässt, dass bestimmte Zellen der Betroffenen überaktive Inflammasomen beherbergen. Allerdings ist ein kausaler Zusammenhang mit genetischen Veränderungen in den Inflammasom-Genen noch für keine dieser Krankheiten wirklich belegt, und Studien an unterschiedlichen Tiermodellen und an Menschen liefern oft widersprüchliche Ergebnisse. Die Inflammasomen sind eben nur ein Rädchen im hochkomplexen Regulierungssystem, das externe und köpereigene Gefahrensignale, Zelltod und Zellrettung, Organschädigung und Gewebsreparatur miteinander verbindet.

(Zeichnungen im nächsten Beitrag)

Literatur

H. Guo et al. (2105): Inflammasomes: mechanism of action, role in disease, and therapeutics

C.-A. Yang, B.-L. Chang (2015): Inflammasomes and human autoimmunity: A comprehensive review

Update: Assoziation von Autoimmunthyreoiditis mit weiteren Autoimmunerkrankungen

Vor fünf Jahren habe ich hier eine Übersichtsarbeit von A. P. Weetman zusammengefasst, „Diseases associated with thyroid autoimmunity: explanations for the expanding spectrum“. Da die Zusammenfassung immer noch recht häufig gelesen wird, hier ein kurzes Update: ein Hinweis auf eine Studie, von der ich wegen der Elsevier-Paywall nur das Abstract lesen konnte.

Die Autoren haben bei gut 3000 Patienten mit Autoimmunthyreoiditis*, gut 1000 Menschen ohne bekannte Schilddrüsenerkrankung und gut 1000 Menschen mit einem Kropf die Prävalenz anderer Autoimmunerkrankungen verglichen. Bei den StudienteilnehmerInnen mit einer Autoimmunerkrankung der Schilddrüse waren folgende weitere Autoimmunerkrankungen signifikant häufiger als in beiden Kontrollgruppen: chronische Autoimmun-Gastritis, Vitiligo, rheumatoide Arthritis, Polymyalgie, Zöliakie, Diabetes, Sjögren-Syndrom, Multiple Sklerose, Lupus (SLE), Sarkoidose, Alopecia areata, Psoriasisarthritis, systemische Sklerose und Hepatitis-C-bedingte Kryoglobulinämie. Leicht, aber statistisch nicht signifikant erhöht waren auch die Prävalenzen von Nebennierenrindeninsuffizienz (M. Addison) und Colitis ulcerosa. Bei etlichen Patienten mit Autoimmunthyreoiditis und chronischer Gastritis wurde eine dritte Erkrankung gefunden, am häufigsten Vitiligo oder Polymyalgie.

* Da ich den Rest des Artikels nicht kenne, weiß ich nicht, ob in ihm zwischen den beiden Autoimmunerkrankungen der Schilddrüse, nämlich Hashimoto-Thyreoiditis und Morbus Basedow, unterschieden wurde. Sinnvoll wäre das.

Poupak Fallahi et al. (2016): The association of other autoimmune diseases in patients with autoimmune thyroiditis: Review of the literature and report of a large series of patients

Thymus-Veränderungen und Autoimmunerkrankungen

Wenn schon die Struktur des Thymus, die Funktion einiger seiner Bestandteile und die Vor- und Nachteile seiner Rückbildung ab der Kindheit nicht vollständig aufgeklärt sind, wundert es nicht, dass auch das Verhältnis zwischen einer normalen oder abweichenden Entwicklung des Thymus und allen möglichen Autoimmunerkrankungen strittig ist.

Wie so oft sind zum Beispiel Ursache und Wirkung nicht leicht zu unterscheiden: Entwickelt sich der Thymus wegen einer Autoimmunerkrankung merkwürdig? Zieht eine anomale Entwicklung des Organs die Entlassung autoreaktiver T-Zellen in die Peripherie und damit eine Autoimmunstörung nach sich? Schaukeln sich beide Entwicklungen gegenseitig hoch? Oder sind sowohl die Autoimmunerkrankung als auch die Fehlentwicklung des Thymus Folgen von etwas Drittem, etwa einer genetischen Abweichung in den T-Zell-Vorläufern?

Ich versuche gar nicht erst, aus der Literatur ein stimmiges Gesamtbild abzuleiten, sondern stelle die Aussagen verschiedener Autoren einfach nebeneinander.

1. Thymome und Autoimmunerkrankungen

Eric A. Engels (2010): Epidemiology of thymoma and associated malignancies (Volltext)

Bei Thymomen (Tumoren aus Thymus-Epithelzellen) gelangen häufig abnorm konditionierte T-Zellen in den Kreislauf, die wahrscheinlich für die mit Thymomen assoziierten Autoimmunerkrankungen wie Myasthenia gravis (MG) verantwortlich sind. Was Thymome verursacht, ist unbekannt.

C. R. Thomas, C. D. Wright und P. J. Loehrer (1999): Thymoma: state of the art (PDF)

10-15 Prozent der MG-Patienten haben ein Thymom; 30 Prozent der Patienten mit einem Thymom haben MG. Mit Thymomen sind außerdem unter anderem assoziiert (bei weniger als 5-10 Prozent der Patienten): akute Perikarditis, Morbus Addison (Nebennierenrindeninsuffizienz), Agranulozytose, Alopecia areata, Colitis ulcerosa, Morbus Cushing, hämolytische Anämie, limbische Enzephalopathie, Myokarditis, nephrotisches Syndrom, Panhypopituitarismus, perniziöse Anämie, Polymyositis, rheumatoide Arthritis, Sarkoidose, Sklerodermie, sensorimotorsche Radikulopathie, Stiff-Person-Syndrom, systemischer Lupus erythematosus (SLE) und Thyroiditis. Die meisten dieser Krankheiten sind Autoimmunerkrankungen.

2. Thymus-Involution und Autoimmunerkrankungen

M. Meunier et al. (2013): Incomplete thymic involution in systemic sclerosis and rheumatoid arthritis (nur Abstract gelesen)

In der Studie wurde bei Patienten mit systemischer Sklerose (SSc) und rheumatoider Arthritis (RA) nach Thymus-Anomalien gesucht, wie sie für andere Autoimmunerkrankungen bereits nachgewiesen wurden. Alle Studienteilnehmer waren mindestens 40 Jahre alt. Eine unvollständige Thymus-Involution (Thymus-Reste über 7 mm dick) trat signifikant häufiger bei Patienten mit SSc (15 Prozent) und RA (14 Prozent) auf als in der Kontrollgruppe (0 Prozent).

Brandon D. Coder et al. (2015): Thymic Involution Perturbs Negative Selection Leading to Autoreactive T Cells That Induce Chronic Inflammation (nur Abstract gelesen)

Die Thymus-Involution und die aus ihr folgende vermehrte Freisetzung autoreaktiver T-Zellen erhöht den Autoren zufolge das Risiko für Autoimmunerkrankungen im Alter. In der Studie sollte an Foxn1-Knockout-Mäusen untersucht werden, ob das auch für chronische Entzündung (Inflammaging) gilt: ja. Wird das Gen Foxn1 „ausgeknockt“, läuft die Involution beschleunigt ab, während der Rest des Körpers jung bleibt. Die Involution führt dazu, dass T-Zellen kurz nach Verlassen des Thymus aktiviert werden, was mit Anzeichen einer chronischer Entzündung einhergeht: Zell-Infiltration in Nicht-Lymphgewebe, erhöhte TNF-α-Produktion, erhöhter IL-6-Spiegel im Serum. Nicht eine verminderte Treg-Produktion, sondern ein Versagen der negativen Selektion durch einer verringerte Aire-Expression führt zur Entstehung autoreaktiver T-Zell-Klone.  Weiterlesen

Epstein-Barr-Viren kapern und überdauern in B-Zellen

P1230954_EBV-Schläfer_in_B-Zelle_650

Etliche Bakterien und Viren entziehen sich der Abwehr, indem sie sich ausgerechnet im Inneren von Immunzellen einnisten. Eines der bekanntesten Beispiele ist das Humane Immundefizienz-Virus (HIV), das in T-Zellen überdauert. Viel häufiger und zum Glück weniger gefährlich ist das Epstein-Barr-Virus (EBV), das zu den Herpes-Viren gehört und sich in unseren B-Zellen versteckt. Einmal infiziert, trägt man es so ein Leben lang mit sich herum, und meistens bemerkt man davon nichts.

Bis zum 35. Lebensjahr haben sich über 95 Prozent aller Menschen das Virus zugezogen. Während sich in den Entwicklungsländern – wie früher auch bei uns – die meisten bereits als Kleinkinder symptomfrei anstecken, infizieren sich etliche Menschen in hoch entwickelten Ländern mit guter Hygiene erst als Jugendliche oder junge Erwachsene und entwickeln dann das Pfeiffer-Drüsenfieber. Nach einer akuten Infektionsphase in den Mandeln startet das Virus ein Latenzprogramm: Es nistet sich in langlebigen B-Gedächtniszellen ein, in denen es nicht weiter stört, aber die Funktion der B-Zellen subtil beeinflussen kann. Die B-Gedächtniszellen wandern über die Blutbahn in andere Organe.

Schon lange steht das Virus im Verdacht, bei Menschen mit entsprechender genetischer Veranlagung den Ausbruch von Autoimmunerkrankungen zu fördern, etwa Lupus, Multiple Sklerose, rheumatoide Arthritis, Hashimoto-Thyreoiditis, Sjögren-Syndrom, Typ-1-Diabetes, systemische Sklerose oder chronisch-entzündliche Darmerkrankungen. Gegen welches Organ oder Gewebe sich die Autoimmunreaktionen richten, scheint von ererbten Risikoallelen abzuhängen, insbesondere von bestimmten MHC-Klasse-II-Genvarianten und einer Veranlagung zu einem Mangel an regulatorischen T-Zellen (Tregs). Aber wie tragen die Viren zum Ausbruch der Autoimmunerkrankung bei? Alle möglichen Mechanismen werden in der Literatur diskutiert: molekulare Mimikry zwischen EBV-Proteinen wie EBNA-1 und menschlichen Proteinen wie dem Lupus-Autoantigen Ro, Bystander Activation autoreaktiver T-Zellen durch Entzündungssignale aus den infizierten B-Zellen, Epitope Spreading über das anfangs dominante EBV-Antigen hinaus oder polyklonale Antikörperbildung im Zuge der Vermehrung und Aktivierung der befallenen B-Zellen.

Außerdem wurde spekuliert, die Viren könnten naive autoreaktive B-Zellen so umprogrammieren, dass sie sich auch ohne Aktivierung durch Autoantigen-Kontakt in sehr langlebige Gedächtnis-B-Zellen umwandeln, die dann später Autoimmunreaktionen auslösen. Die Viren könnten auch endogene Retroviren wie HERV-K18 oder HERV-W aktivieren, die normalerweise untätig in unserem Genom schlummern, nach ihrer Erweckung durch EBV aber Superantigene herstellen, die zahlreiche T-Zellen polyklonal aktivieren könnten. Bewiesen ist aber nichts.

Dass im Blut von Patienten mit Autoimmunerkrankungen manchmal deutlich mehr Anti-EBV-Antikörper oder EBV-DNA-Moleküle nachzuweisen sind als bei Gesunden, belegt noch keine Verursachung der Erkrankung durch EBV: Vielleicht stört umgekehrt die Autoimmunerkrankung das Gleichgewicht in den infizierten B-Zellen, sodass die Viren aus ihrem Latenzzustand erwachen und sich vermehren. Da die üblichen Tiermodelle für Autoimmunerkrankungen, insbesondere Mäuse- und Rattenstämme, sich nicht mit EBV infizieren lassen, können auch Tierversuche keine rasche Klärung bringen.