Schlagwort-Archiv: The Scientist

Auswertung Wissenschafts-Newsletter, Teil 1

Nach langer Pause wegen Überstunden und Krankheit stürze ich mich wieder in die Arbeit am Buch. Ich bin immer noch mit der Beschreibung der wichtigsten Mechanismen beschäftigt, über die Infektionen mutmaßlich Autoimmunerkrankungen auslösen: molekulare Mimikry, Bystander Activation, Epitope Spreading und polyklonale Aktivierung, z. B. durch Superantigene.

Nebenbei wühle ich mich durch die Wissenschafts-Newsletter der letzten Monate. Evtl. fürs Buch relevante Meldungen verlinke ich hier. Den Anfang macht The Scientist, vor allem mit Meldungen zum Mikrobiom.

Microbes Fight Chronic Infection: Eine am 23.10.2014 in Nature veröffentlichte Studie zeigt, dass Clostridium scindens und in geringerem Umfang 10 weitere Bakterien-Taxa aus dem Darm-Mikrobiom Antibiotika-behandelte (und daher dysbiotische) Mäuse vor Infektionen mit Clostridium difficile schützen können. Evtl. lässt sich daraus eine Therapie für dysbiotische Menschen entwickeln, die weniger riskant ist als die Stuhltransplantationen, die derzeit in, äh, aller Munde sind.

Gut Microbes Trigger Malaria-Fighting Antibodies: Eine am 04.12.2014 in Cell veröffentlichte Studie zeigt, dass E. coli im Darm von Mäusen die Bildung von Antikörpern gegen den Kohlenwasserstoff Galα1-3Galb1-4GlcNAc-R (kurz: α-gal) auslöst, der sowohl an der Oberfläche der Bakterien als auch auf Malaria-Erregern (bei Mäusen Plasmodium berghei, bei Menschen Plasmodium falciparum) zu finden ist. Diese Antikörper sind auch im Blut gesunder Menschen in großen Mengen anzutreffen. Dank einer Dreifach-Mutation in den gemeinsamen Vorfahren der Menschen und der Menschenaffen stellen unsere Zellen kein α-gal mehr her, sodass die Antikörper nicht den eigenen Körper angreifen. Mit P. berghei infizierte Mäuse mit den durch das Bakterium induzierten Antikörpern im Blut erkrankten nur halb so häufig an Malaria wie Mäuse ohne die Antikörper.    Weiterlesen

Ist die Methylierung von Lysin 27 im Histon H3 wirklich ein epigenetischer Marker?

In einem kritischen Kommentar für The Scientist hinterfragt der Harvard-Genetiker Robert E. Kingston die weit verbreitete Überzeugung, dass die Methylierung der Aminosäure Lysin an Position 27 der Polypeptidkette des Histons H3 ein epigenetischer Marker sei, der das Ablesen eines Gens verhindert und bei der Replikation des DNA-Doppelstrangs stabil vererbt wird. Wie dieser Einbau von neuem, entsprechend methyliertem Histon an exakt der richtigen Stelle der neu synthetisierten DNA funktionieren soll, ist nämlich – anders als bei epigenetischen Modifikationen an spezifischen Sequenzen der DNA selbst – alles andere als klar.

Kingston zufolge wäre es sehr zu wünschen, dass diese Annahme bald durch Versuche überprüft wird, bei denen man das Lysin an Position 27 durch eine andere Aminosäure ersetzt. Leider gibt es sowohl im Drosophila- als auch im Mäuse-Genom jeweils über 20 H3-Gene, was solche Versuche massiv erschwert, denn man müsste entweder überall die richtige Punktmutation herbeiführen oder die nicht mutierten Gene stilllegen.

Ob sich jemand diese Mühe machen wird, solange die Mehrheit der Kollegen an dem „Glaubenssatz“ von den stabil vererbten epigenetischen H3-Markern festhält? Kingston mahnt: „Der Umstand, dass eine Hypothese einleuchtend klingt, enthebt uns nicht der Notwendigkeit, sie so streng wie möglich zu prüfen.“

Epigenetik für Einsteiger

The Scientist hat kürzlich eine schöne Infografik veröffentlicht, in der die wichtigsten Grundlagen der Epigenetik erklärt werden: Epigenetics – A Primer.

Das Genetic Science Learning Center der Universität von Utah hat einen anschaulichen, knapp zwei Minuten kurzen Animationsfilm gedreht: The Epigenome at a Glance.

Großartig finde ich auch diesen knapp fünf Minuten langen Film aus demselben YouTube-Kanal, in dem mit einfachen, selbstgebastelten Modellen erläutert wird, warum eineiige Zwillinge einander im Lauf der Jahre immer weniger ähneln: The Epigenetics of Identical Twins.