Schlagwort-Archiv: Umwelt

Große Unterschiede im Immunsystem eineiiger Zwillinge

Nur wenige Forscher beschäftigen sich mit der Entwicklung des gesamten Immunsystems, also all der Komponenten sowohl der angeborenen als auch der erworbenen Abwehr, über das ganze Leben hinweg: von der Geburt bis ins hohe Alter. Hier stelle ich eine dieser wenigen Arbeiten vor:

Petter Brodin et al. (2015): Variation in the Human Immune System Is Largely Driven by Non-Heritable Influences (Open Access)

Die Autoren haben an 105 gesunden Zwillingspaaren, also 210 Personen, 204 Immunsystem-Parameter untersucht, darunter die Häufigkeit von 95 verschiedenen Immunzelltypen, die Konzentration von 51 Zytokinen, Chemokinen und Wachstumsfaktoren im Serum und die Veränderungen dieser Werte nach Anregung der Immunzellen durch Botenstoffe. 78 Zwillingspaare waren eineiig, 27 zweieiig. Bei der großen Mehrheit, nämlich 77 Prozent der Parameter waren die Unterschiede zwischen den Zwillings-Messwerten überwiegend (nämlich zu mehr als der Hälfte) nicht erblich, sondern durch unterschiedliche Umwelteinflüsse bedingt. Die Unterschiede bei 58 Prozent der Immunsystem-Parameter waren sogar ganz überwiegend (zu mehr als 80 Prozent) nicht erblich bedingt. Außerdem unterschieden sich die Immunsysteme älterer Zwillingspaare deutlich stärker als die jüngerer: Der Umwelteinfluss nimmt mit den Jahren zu.

Mit den Jahren entwickeln sich Zwillinge immunologisch immer weiter auseinander, weil unterschiedliche Umwelteinflüsse auf sie einwirken, etwa Impfungen, Infektionen, Allergene oder Nahrung

Mit den Jahren entwickeln sich Zwillinge immunologisch immer weiter auseinander, weil unterschiedliche Umwelteinflüsse auf sie einwirken, etwa Impfungen, Infektionen, Zellgifte oder ihre Kost.

Die Erblichkeit der Parameter wurde anhand von Messungen an eineiigen und zweieiigen Zwillingspaaren ermittelt. Zwischen eineiigen Zwillingen sollten erbliche Faktoren (also Gene und dauerhafte epigenetische Markierungen des Erbguts) zu 100 Prozent übereinstimmen, zwischen zweieiigen Zwillingen dagegen – wie bei anderen Geschwisterpaaren – nur zu 50 Prozent. Umweltfaktoren (darunter auch stochastische epigenetische Veränderungen) sollten dagegen ein- und zweieiige Zwillinge gleichermaßen beeinflussen.

Unter den Immunzelltypen gab es einige wenige, deren Häufigkeit im Blut der Probanden stark erblich bedingt war, also zwischen eineiigen Zwillingen sehr gut übereinstimmte – vor allem naive CD27+-T-Zellen und CD4+-Gedächtnis-T-Zellen. Die Häufigkeit der meisten Zellen der erworbenen (T- und B-Zellen) sowie der angeborenen Abwehr (Granulozyten, Monozyten und NK-Zellen) unterschied sich dagegen zwischen eineiigen Zwillingen praktisch ebenso stark wie zwischen zweieiigen Zwillingen, sodass man annehmen muss, dass Zufälle und Umweltreize wie Infektionen die Werte prägen.

Unter den Zytokinen erwies sich IL-12p40 als besonders stark erblich. Varianten im Gen dieses Proteins werden mit Krankheiten wie Psoriasis oder Asthma in Verbindung gebracht, an denen das Immunsystem beteiligt ist. Bei vielen anderen Zytokinen war der erbliche Einfluss gering.

Schon im Ruhezustand (oben) unterscheiden sich viele Immunparameter zwischen Zwillingen. Eine Anregung des Immunsystems löst bei den wenigen erblich dominierten Parametern gleich starke Veränderungen aus (Zeile 2), bei vielen nicht erblich dominierten Parametern aber ungleich starke Veränderungen, die die Unterschiede zwischen den Basiswerten ausgleichen oder verstärken können.

Schon im Ruhezustand (oben) unterscheiden sich viele Immunparameter zwischen Zwillingen. Eine Anregung des Immunsystems löst bei den wenigen erblich dominierten Parametern (etwa den homöostatischen Zytokinen IL-2 und IL-7, die die Vermehrung von T-Zellen steuern) gleich starke Veränderungen aus (Zeile 2). Bei den vielen nicht erblich dominierten Parametern (etwa IL-6, IL-20 oder IL-21) können die unterschiedlichen Reaktionsstärken die Unterschiede zwischen den Basiswerten ausgleichen oder verstärken.

Das galt sowohl für die Basiswerte, die ohne Stimulation des Immunsystems erhoben wurden, als auch für viele Werte, die nach Anregung einer Immunreaktion ermittelt wurden. Eine stark erbliche Komponente fand sich bei den sogenannten homöostatischen Zytokinen IL-2 und IL-7, die bei einer Aktivierung des Immunsystems für die Vermehrung und die richtige Spezialisierung von T-Zellen sorgen. Die meisten Messwerte variierten jedoch nach der Immunsystem-Stimulation zwischen eineiigen Zwillingen fast ebenso unterschiedlich wie zwischen zweieiigen Zwillingen. Dabei waren schwache und starke Immunsystem-Reaktionen gleichermaßen nicht erblich, also durch Umweltfaktoren geprägt.

Stellt man alle gemessenen Immunsystem-Parameter als Netzwerk dar, in dem voneinander abhängige Größen durch Linien verbunden sind, zeigt sich: Die relativ wenigen Parameter mit starker Erblichkeit sind von Parametern umgeben, deren Variabilität durch die Umwelt bedingt ist. Das könnte erklären, warum bekannte Risiko-Genvarianten für bestimmte Krankheiten des Immunsystems oft nur für einen kleinen Teil des Erkrankungsrisikos verantwortlich zeichnen: Ihr Einfluss wird durch andere, nicht erbliche Faktoren abgepuffert, die zum Beispiel in denselben Signalketten oder Regelkreisen angesiedelt sind.

Der im Laufe des Lebens zunehmende Einfluss der Umwelt, vor allem wohl der Infektions- und Impfgeschichte auf den Zustand des Immunsystems war bei den regulatorischen T-Zellen oder Tregs am auffälligsten: Während ihre Häufigkeit bei jungen Zwillingspaaren gut übereinstimmte (Erblichkeit 0,78 von maximal 1,0), waren die Werte bei alten Zwillingspaaren so gut wie unkorreliert (Erblichkeit 0,24, also knapp über der Nachweisbarkeitsgrenze von 0,2). Besonders großen Einfluss auf das Immunsystem nimmt offenbar das Cytomegalovirus (CMV), das uns – wie andere Herpesviren – ein Leben lang erhalten bleibt. In 16 eineiigen Zwillingspaaren aus der Versuchspopulation war ein Geschwister mit CMV infiziert und das andere nicht. Viele ihrer Immunsystem-Parameter unterschieden sich stark, und zwar sowohl im Basiszustand als auch nach Stimulation.

Die Antikörperproduktion nach einer Grippeschutzimpfung war bei den Zwillingspaaren so gut wie gar nicht erblich beeinflusst, sondern fiel – wohl je nach Impf- und Infektionsgeschichte der Individuen – recht unterschiedlich aus.

Angesichts dieser Ergebnisse ist es kein Wunder, dass unter Geschwistern, die dieselben Risikogenvarianten für Autoimmunerkrankungen erben, oftmals nur eines wirklich erkrankt.

Nothing in Oncology Makes Sense Except in the Light of Evolution

„Nichts in der Biologie ist sinnvoll außer im Lichte der Evolution“, schrieb der Evolutionsbiologe Theodosius Dobzhansky 1973: Ohne dieses Licht bleibe die Biologie ein Haufen unzusammenhängender Fakten, die kein stimmiges Bild ergeben.

Es lohnt sich, Widersprüchen zwischen Tatsachen und etablierten Vorstellungen nachzuspüren und dabei die Evolution als Richtschnur zu nehmen – also das Wechselspiel von Mutation und Selektion, durch das sich Arten in ihrer Umwelt, aber auch bestimmte Zellpopulationen in unserem Körper entwickeln.

Merkwürdigkeiten

Ein solcher Widerspruch ist Peto’s paradox: 1975 wies der Epidemiologe Richard Peto darauf hin, dass große Säugetiere wie Blauwale oder Elefanten trotz ihrer erheblich höheren Zellzahl und ihrer Langlebigkeit nicht wesentlich früher oder häufiger an Krebs erkranken als kleine, kurzlebige Arten wie Mäuse.

Petos Paradox: Obwohl Wale älter werden und sehr viel mehr Zellen enthalten als Mäuse, sterben sie nicht sehr viel öfter an Krebs.

Petos Paradox: Obwohl Wale und Elefanten mehr Zellen haben und älter werden als Mäuse, sterben sie nicht wesentlich öfter an Krebs.

Das passt nicht recht zu dem allgemein akzeptierten Mehrstufenmodell der Krebsentstehung. Nach diesem müsste Krebs nämlich ausbrechen, sobald sich in einer Zell-Linie nacheinander mehrere zufällige Mutationen ereignet haben, die zusammen zu einer unkontrollierten Zellvermehrung führen.

Wenn mehrere Mutationen zusammenkommen müssen, bevor Krebs ausbricht, steigt die Chance dafür in Zellen, die sich nach der ersten Mutation schneller teilen (oberer Zweig, Hase).

Wenn Krebs ausbricht, sobald bestimmte Mutationen zusammenkommen, müssten Zellen, die sich schneller teilen (oberer Zweig), krebsanfälliger sein. Aber das ist nicht immer der Fall.

Eine zweite Merkwürdigkeit ist der oftmals späte Ausbruch von Krebs beim Menschen, typischerweise nach dem Ende der Reproduktionsphase, und zwar über die meisten Krebsarten und betroffenen Organe hinweg – ob es dort nun viele oder wenige Stammzellen gibt, aus denen die ersten Krebszellen hervorgehen, und ob sich diese Stammzellen nun häufig oder selten teilen. Denn nach dem Mehrstufenmodell müsste Krebs in Organen mit großem Stammzellpool und hohen Zellteilungsraten früher ausbrechen, da sich die tumorbildenden Mutationen dort früher anhäufen sollten – genau wie in größeren Tieren.

Was ist Krebs überhaupt?

Zum besseren Verständnis des Mehrstufenmodells und seiner Unzulänglichkeit blenden wir die beträchtlichen Unterschiede zwischen all den Krebsformen und individuellen Verläufen einmal aus und betrachten das große Ganze: Was ist Krebs?

Wenn im Erbgut einer Zelle etwas schief gelaufen, etwa bei der letzten Zellteilung ein Kopierfehler aufgetreten ist, gibt es mehrere Möglichkeiten. Die DNA kann von Enzymkomplexen im Zellkern repariert werden. Oder die Zelle kann unschädlich gemacht werden – entweder durch einen Ruhestandsmodus namens Seneszenz, in dem sie sich insbesondere nicht weiter teilt, oder durch ein Selbstmordprogramm namens Apoptose, das auch die Beseitigung der Überreste durch Zellen des Immunsystems einschließt.

Eine Zelle, in deren Erbgut etwas schief gelaufen ist (Alarm, Mitte), kann entweder repariert werden oder in Seneszenz verfallen oder Selbstmord begehen oder - wenn diese Schutzmechanismen versagen - zur Krebszelle werden.

Eine Zelle, in deren Erbgut etwas schief gelaufen ist (Alarm, Mitte), kann entweder repariert werden oder in Seneszenz verfallen oder Selbstmord begehen oder – wenn diese Schutzmechanismen versagen – zur Krebszelle werden.

Versagen diese Mechanismen, teilt sich die defekte Zelle unter Umständen unkontrolliert weiter. So entstehen im Gewebe Tumoren, also bösartige Geschwulste, oder im Fall von Blutzellen Blutkrebs. (Im Folgenden geht es überwiegend um Tumoren.)

Weiterlesen

Umwelt oder Gene: eine falsche Alternative

Skizzen zum Einfluss von Umweltbedingungen und genetischer Ausstattung auf das Risiko von Autoimmunerkrankungen. Die Visualisierungsidee mit dem Rechteck, dessen Fläche durch beide Seiten gleichermaßen bestimmt ist, stammt von dem kanadischen Psychologen Donald Hebb.