Archiv für den Monat: Oktober 2016

Auch Typ-1-Diabetes ist stark mit weiteren Autoimmunerkrankungen assoziiert

Wo ich gerade dabei bin: Jing W. Hughes und KollegInnen stellen in ihrer Arbeit „Autoimmune Diseases in Children and Adults with Type 1 Diabetes from the T1D Exchange Clinic Registry“ (PDF, Open Access) die Prävalenzen weiterer Autoimmunerkranungen bei über 25.000 Personen mit Typ-1-Diabetes vor.

Die Hauptergebnisse: 27% der untersuchten Kinder, Jugendlichen und Erwachsenen hatten mindestens eine weitere Autoimmunstörung. Das Spektrum ist breit; am häufigsten waren Hashimoto-Thyreoiditis und Morbus Basedow (also beide Formen der Autoimmun-Thyreoiditis), Zöliakie, rheumatoide Arthritis und Vitiligo. Der Anteil der DiabetikerInnen mit mindestens einer weiteren Autoimmunerkrankung steigt mit dem Alter; bei den über 65-Jährigen liegt er bei 47%.

Update: Assoziation von Autoimmunthyreoiditis mit weiteren Autoimmunerkrankungen

Vor fünf Jahren habe ich hier eine Übersichtsarbeit von A. P. Weetman zusammengefasst, „Diseases associated with thyroid autoimmunity: explanations for the expanding spectrum“. Da die Zusammenfassung immer noch recht häufig gelesen wird, hier ein kurzes Update: ein Hinweis auf eine Studie, von der ich wegen der Elsevier-Paywall nur das Abstract lesen konnte.

Die Autoren haben bei gut 3000 Patienten mit Autoimmunthyreoiditis*, gut 1000 Menschen ohne bekannte Schilddrüsenerkrankung und gut 1000 Menschen mit einem Kropf die Prävalenz anderer Autoimmunerkrankungen verglichen. Bei den StudienteilnehmerInnen mit einer Autoimmunerkrankung der Schilddrüse waren folgende weitere Autoimmunerkrankungen signifikant häufiger als in beiden Kontrollgruppen: chronische Autoimmun-Gastritis, Vitiligo, rheumatoide Arthritis, Polymyalgie, Zöliakie, Diabetes, Sjögren-Syndrom, Multiple Sklerose, Lupus (SLE), Sarkoidose, Alopecia areata, Psoriasisarthritis, systemische Sklerose und Hepatitis-C-bedingte Kryoglobulinämie. Leicht, aber statistisch nicht signifikant erhöht waren auch die Prävalenzen von Nebennierenrindeninsuffizienz (M. Addison) und Colitis ulcerosa. Bei etlichen Patienten mit Autoimmunthyreoiditis und chronischer Gastritis wurde eine dritte Erkrankung gefunden, am häufigsten Vitiligo oder Polymyalgie.

* Da ich den Rest des Artikels nicht kenne, weiß ich nicht, ob in ihm zwischen den beiden Autoimmunerkrankungen der Schilddrüse, nämlich Hashimoto-Thyreoiditis und Morbus Basedow, unterschieden wurde. Sinnvoll wäre das.

Poupak Fallahi et al. (2016): The association of other autoimmune diseases in patients with autoimmune thyroiditis: Review of the literature and report of a large series of patients

Die Milch macht’s – zumindest bei Mäusen

Dass Muttermilch Antikörper enthält, die das Neugeborene in den ersten Monaten vor Infektionen schützen, ist schon länger bekannt. Aber Milch leistet noch mehr für das Immunsystem des Nachwuchses, wie zwei neuere Arbeiten zeigen:

M. K. Ghosh et al. (2016): Maternal Milk T Cells Drive Development of Transgenerational Th1 Immunity in Offspring Thymus (Open Access); dazu auch die Pressemitteilung der Universität: Vaccinating Babies Without Vaccinating Babies

In der Vorläuferstudie hatten die Forscher herausgefunden, dass Mäuse ihrem Nachwuchs beim Säugen nicht nur durch Antikörper, sondern auch durch Immunzellen eine Immunität gegen Pathogene vermitteln, mit denen ihr eigenes Immunsystem kürzlich konfrontiert wurde. Seltsamerweise ist diese Immunität noch beim erwachsenen Nachwuchs nachzuweisen, obwohl dieser keinerlei mütterliche Immunzellen mehr enthält. Die Natur und die Entstehung der Zellen, die diese Immunität vermitteln, sollte hier untersucht werden. Um eine Übertragung im Mutterleib auszuschließen, ließ man die gegen das Bakterium Mycobacterium tuberculosis oder gegen den Pilz Candida albicans immunisierten Mäuseweibchen fremden Nachwuchs aufziehen.

Die Immunität wird offenbar von Gedächtnis-T-Zellen übertragen, die über CD4+-Marker und MHC-Klasse-II-Komplexe verfügen – eine kuriose Kombination, denn normalerweise empfangen CD4+-T-Zellen Signale von antigenpräsentierenden Zellen wie etwa dendritischen Zellen, die Antigene auf MHC-Klasse-II-Komplexen präsentieren. Dendritische Zellen sind aber viel zu kurzlebig, um die hier beobachteten Effekte zu erklären; es waren eindeutig antigenpräsentierende CD4+-T-Zellen, die die Immunität übertrugen – vielleicht, weil nur T-Zellen gezielt in den Thymus wandern können. Wie diese Zellen an die MHC-Klasse-II-Komplexe gelangt sind, ist unklar. Die Autoren vermuten Trogozytose: die Übergabe von Membranflößen einschließlich MHC-Komplex und Kostimulatoren an einer immunologischen Synapse, also einer Bindungsstelle zwischen der (primären) antigenpräsentierenden Zelle und einer T-Zelle, deren T-Zell-Rezeptor spezifisch an den Komplex bindet. Diesen Mechanismus habe ich hier bereits vorgestellt.

Nach der Aufnahme über die Muttermilch wandern diese ungewöhnlichen mütterlichen Gedächtnis-T-Zellen gezielt in den Thymus und die Milz der Mäusebabies. Um an den Grenzen – also am Brustdrüsen-, Darm- und Thymusepithel – nicht von anderen Immunzellen aufgehalten zu werden, „verschlucken“ sie vermutlich ihre MHC-Klasse-II-Komplexe samt Antigenen in Vesikeln und befördern sie erst am Ziel wieder an die Zelloberfläche. Im Thymus werden die MHC-Klasse-II-Komplexe einschließlich der Antigene womöglich durch eine weitere Trogozytose an „ordentliche“ antigenpräsentierende Zellen übergeben, oder die CD4+-T-Zellen werfen die Antigene ab, und antigenpräsentierende Zellen nehmen sie auf.

Jedenfalls werden die Antigene aus den Pathogenen, mit denen die Mütter infiziert waren, nun den unreifen Mäusebaby-Thymozyten präsentiert, die daraufhin zu CD8+-T-Zellen mit einer Spezifität für diese Antigene heranreifen. Diese Immunitätsübertragung nennen die Autoren „maternal educational immunity“, um sie von der passiven Immunität zu unterscheiden, die vor allem durch mütterliche Antikörper in der Milch übertragen wird und sich rasch verliert, da diese Antikörper im Jungtier nicht nachproduziert werden können.

In der Pressemitteilung der Universität finden sich interessante Spekulationen über eine mögliche Nutzung dieses Mechanismus zur „indirekten Impfung“ von Säuglingen (nämlich durch Impfung der Mütter während der Schwangerschaft) und über die hohe historische Überlebensrate von Kleinkindern aus Adelsfamilien, die häufig von Ammen aus der Unterschicht gestillt wurden und so vielleicht eine besonders gute „Immunsystem-Erziehung“ genossen. Dabei sollte aber nicht vergessen werden, dass die Reifung des Immunsystems bei jungen Mäusen anders verläuft als bei Menschenkindern.

M. A. Koch et al. (2016): Maternal IgG and IgA Antibodies Dampen Mucosal T Helper Cell Responses in Early Life (Bezahlschranke, nur Abstract und eine Abbildung); dazu auch Meldung „Breast Milk Primes Gut for Microbes“ in The Scientist

Mütterliche, über die Milch übertragene Antikörper der Typen IgG und IgA dienen vor allem dazu, Pathogene im Darm junger Mäuse zu bekämpfen, solange deren Immunsystem dazu noch nicht imstande ist – so glaubte man bisher. Jetzt zeigt sich, dass insbesondere IgG auch Immunreaktionen hemmt, und zwar solche gegen nützliche Bakterien, die nach der Geburt den Darm von Mäusebabies besiedeln. Fehlen die mütterlichen Antikörper, reagiert das Lymphgewebe am Darm heftig auf die neue Darmflora: Es entstehen viel mehr T-Helferzellen, die wiederum B-Zellen zur Produktion von Antikörpern gegen die gutartigen Darmbakterien anregen.

Allerdings scheinen die Mäuse, denen das mütterliche IgG vorenthalten wurde, keine langfristigen Gesundheitsschäden davonzutragen. Der Begleitartikel in The Scientist stellt dennoch Spekulationen über langfristige Folgen einer gestörten Mikrobiom-Entwicklung an, etwa Morbus Crohn und Colitis ulcerosa – nur um dann abzuwiegeln und auf die Unterschiede zwischen Mensch und Maus hinzuweisen. Zum Beispiel darauf, dass menschliche Muttermilch viel weniger IgG enthält als die von Mäusen. Es ist zum Mäusemelken.

Vom Kaiserschnitt bis zur Erdnussbutter: Einflüsse auf das kindliche Immunsystem

Unter dem Titel Early-Life Microbiome wurden in The Scientist zwei Studien beschrieben, in denen – anders als in der gestern vorgestellten Mäuse-Studie – die Entwicklung des Mikrobioms von Kleinkindern untersucht wurde. (Die Fachartikel selbst stecken hinter Bezahlschranken.) Das erste Team hat Stuhlproben aus den ersten drei Lebensjahren von 39 finnische Kindern analysiert. Während in der Darmflora der meisten vaginal geborenen Kindern Bacteroides vorherrschten, fehlten diese Bakterien bei den per Kaiserschnitt zur Welt gekommenen und auch bei einigen vaginal geborenen Kindern in den ersten 6-18 Monaten. Nach einer frühen Antibiotika-Therapie wegen Atemwegs- oder Ohrinfekten fanden sich im Mikrobiom der Kinder Antibiotikaresistenz-Gene, von denen einige wenige noch lange nach der Behandlung nachzuweisen waren. Das andere Team hat die Entwicklung der Darmflora von 43 US-amerikanischen Kindern über die ersten beiden Lebensjahre verfolgt und festgestellt, dass neben der Geburtsmethode und Antibiotika auch die Muttermilch bzw. Muttermilchersatz die Zusammensetzung des Mikrobioms beeinflussen. Kausale Zusammenhänge zwischen diesen Faktoren und später auftretenden Störungen des Immunsystems wie Allergien oder Autoimmunerkrankungen lassen sich mit solchen Studien allerdings nicht nachweisen.

Einen Schritt zur Aufklärung des Zusammenhangs zwischen früher Darmflora-Dysbiose und späterem Asthma hat das Team um K. E. Fujimura in seiner Arbeit „Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation“ unternommen, über die ebenfalls The Scientist berichtet: Neonatal Gut Bacteria Might Promote Asthma. Kinder, in deren Darmflora im Alter von einem Monat vier „gute“ Bakteriengruppen (Bifidobacteria, Lactobacillus, Faecalibacterium und Akkermansia) schwächer und zwei Pilze (darunter Candida) stärker vertreten waren als bei den meisten Gleichaltrigen, hatten im Alter von zwei Jahren ein dreimal höheres Allergierisiko und im Alter von vier Jahren ein deutlich erhöhtes Asthmarisiko. Diese Risiken werden offenbar durch Stoffwechselprodukte der Darmflora vermittelt, die die Entwicklung der T-Zellen beeinflussen. Den Allergie- und Asthma-anfälligen Kindern fehlten entzündungshemmende Fettsäuren und Oligosaccharide (Zucker), die die Darmflora aus der Muttermilch produziert. T-Zellen aus gesunden Erwachsenen, die Stoffwechselprodukten der Mikrobiome der Hochrisiko-Kinder ausgesetzt wurden, entwickelten sich bevorzugt zu Th2-Helferzellen, die mit Allergien in Verbindung gebracht werden. Zugleich bildeten sich weniger regulatorische T-Zellen (Tregs), die Allergien dämpfen können. Unter den Darmflora-Produkten fielt vor allem das Lipid 12,13-DiHOME auf, das alleine schon die Entwicklung von T-Zellen zu Tregs verhindern konnte.

Um Allergierisiken geht es auch in einem weiteren The-Scientist-Artikel: Study: Nail-Biters, Thumb-Suckers Have Fewer Allergies. In einer Längsschnittstudie haben Stephanie J. Lynch und ihre Kollegen gut 1000 Neuseeländer untersucht, die 1972 oder 1973 geboren wurden. Unter denjenigen, die als Kinder am Daumen gelutscht oder an ihren Nägeln geknabbert hatten, reagierten 39 Prozent in einem Allergietest positiv auf mindestens ein gängiges Allergen. Wer nichts davon getan hatte, kam auf 49 Prozent. Und nur bei 31 Prozent derer, die früher sowohl am Daumen gelutscht als auch an den Nägeln gekaut hatten, schlug der Allergietest an: eine Bestätigung der Hygiene-Hypothese, denn durch das Lutschen und Knabbern nehmen Kinder Mikroorganismen aus ihrer Umwelt auf. Bei Asthma oder Heuschnupfen zeigten sich dagegen keine Unterschiede zwischen den Gruppen.

Auch zur alten Streitfrage, ob eine frühe Allergen-Exposition spätere Überreaktionen des Immunsystems eher fördert oder hemmt, gibt es Neues. Unter dem Titel Further Support for Early-Life Allergen Exposure berichtet The Scientist über eine Metaanalyse von 146 Studien mit zusammen über 200.000 Kindern. Die Ergebnisse: Kleinkinder, die schon früh Eier oder Erdnüsse zu sich nehmen, haben ein geringeres Risiko, später allergisch auf diese Lebensmittel zu reagieren. Bei Milch, Fisch und Muscheln, Nüssen und Weizen gab es dagegen keine hinreichenden Indizien für eine Schutzwirkung durch frühe Aufnahme in den Speiseplan. Auch für einen Schutz vor Autoimmunerkrankungen wie Zöliakie durch eine frühe Konfrontation des Immunsystems mit Weizen oder anderen Gluten-Quellen fanden die Forscher keine Hinweise.

Frühe Antibiotika-Gaben verändern Mikrobiom, Gen-Expression im Darm, Immunsystem und Diabetes-Risiko

Bevor ich die vor dem Urlaub begonnene Artikelserie zum Immunsystem, Krebs und Autoimmunerkrankungen zu Ende bringe, möchte ich auf einige neuere Arbeiten über das Immunsystem und das Mikrobiom von Menschen- und Mäusekindern hinweisen. Den Anfang macht eine Studie an jungen NOD-Mäusen:

Antibiotic Therapy During Infancy Increases Type 1 Diabetes Risk in Mice: eine Meldung zu A. E. Livanos et al., „Antibiotic mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice“ (Bezahlschranke, daher nur Abstract gelesen)

Für Typ-1-Diabetes gibt es genetische Risikofaktoren, aber auch Trigger in unserer Lebenweise – anders lässt sich der rasante Anstieg der Prävalenz in den westlichen Ländern im letzten halben Jahrhundert nicht erklären. Schon länger hat man die Veränderung der frühkindlichen Darmflora durch Antibiotika im Verdacht, den Ausbruch der Erkrankung in späteren Jahren zu fördern.

In dieser Studie erkrankten Mäuse des für Typ-1-Diabetes anfälligen NOD-Stamms mit höherer Wahrscheinlichkeit, wenn sie in der ersten Lebensphase mit Antibiotika behandelt wurden. Die Jungmäuse erhielten die erste Tylosin-Gabe, während sie noch gesäugt wurden, und zwei kurz danach. Diese Pulse sollten dem Timing vieler Antibiotika-Behandlungen von Kleinkindern entsprechen.

Mit 32 Wochen war der Anteil der an Diabetes erkrankten männlichen Mäuse im Tylosin-Arm doppelt so hoch wie im Vergleichsarm. Kurz nach den Antibiotika-Gaben veränderte sich zudem die Darmflora der männlichen Tiere; vor allem Bifidobacteria und die Bacteroidales der S247-Familie gingen zurück. Diese Bakterien-Taxa werden beim Menschen mit einer gesunden, ungestörten Darmflora assoziiert: Bifidobacteria helfen Säuglingen, den Zucker aus der Muttermilch abzubauen, und S247-Bacteroidales sind bei isoliert lebenden indigenen Gruppen viel stärker vertreten als bei US-Amerikanern.

Auch das Immunsystem der Mäuse veränderte sich infolge der Antibiotika-Gaben: In der Darmschleimhaut fanden sich weniger Th17-Helferzellen und weniger regulatorische T-Zellen (Tregs), zu deren Aufgaben die Abwehr von Pathogenen gehört. Im Darm der behandelten Mäuse wurde unter anderem das Gen für das Protein Serum-Amyloid A (SAA) schwächer exprimiert. Normalerweise regen Darmbakterien die Darmschleimhautzellen zur Produktion von SAA an, das wiederum Th17-Helferzellen anlockt. Auch der Lipidstoffwechsel der Bakterien und die Expression von Mäusegenen, die an der Cholesterinsynthese beteiligt sind, waren gestört. – Zu prüfen wäre nun, ob Antibiotika bei Menschenkindern ähnlich wirken.