Archiv der Kategorie: Allgemein

Patienten mit PBC zur Beurteilung einer Übersetzung gesucht

Eine Übersetzerin bat mich, auf dieses Lokalisierungsprojekt aufmerksam zu machen:

Gesucht werden fünf deutschsprachige Menschen mit primärer biliärer Zirrhose (PBC), die gegen eine Aufwandsentschädigung eine Übersetzung eines Textes über diese Autoimmunerkrankung prüfen und sich dazu persönlich interviewen lassen. Über die Auftraggeber weiß ich nichts; ich gebe die Information aber gerne weiter.

Alles Weitere steht auf der Projektseite.

Die X-Chromosom-Inaktivierung

Zum Ausgleich für die letzten Beiträge gibt es diesmal viele Skizzen. Wie bereits erwähnt, sind die Körper weiblicher Säugetiere Mosaiken aus Zellkolonien, in denen das von der Mutter geerbte X-Chromosom stillgelegt ist, und solchen, in denen das vom Vater geerbte X-Chromosom inaktiviert wurde. Die Entscheidung fällt während der frühen Embryogenese, und zwar zufällig, und sie wird von allen Tochterzellen dieser Embryonalzellen übernommen. Nur zur Verdopplung vor einer Zellteilung werden die kompakten inaktivierten X-Chromosomen (Xi oder Barr-Körperchen genannt) kurz dekomprimiert, damit Polymerasen und andere an der Replikation beteiligte Moleküle an die DNA-Stränge herankommen. Die Zelle merkt sich aber durch epigenetische Markierungen, dass diese X-Chromosomen anschließend wieder stillgelegt werden müssen.

Schildpattkatze_X-Inaktivierung_650
Unserem Körper sieht man nicht an, dass er ein solcher Flickenteppich ist. Bei Hauskatzen mit dem sogenannten Schildpatt-Muster ist das anders. Ihre Fellfarbe (rötlich oder schwarz) ist nämlich auf dem X-Chromosom codiert. Daher gibt es fast nur weibliche Schildpatt-Katzen, denn nur diese haben zwei X-Chromosomen, von denen in einigen Teilen der Haut das mütterliche und in anderen Hautpartien das väterliche Exemplar aktiv bleibt. (Die weißen – genauer: unpigmentierten – Schecken vieler Schildpatt-Katzen sind an einer anderen Stelle im Genom codiert.)

Dass die Inaktivierung eines der X-Chromosomen und damit das Schildpatt-Muster epigenetisch und nicht genetisch festgelegt ist, sieht man an der ersten geklonten Katze der Welt, die 2001 geboren wurde. Sie trägt den schönen Namen CC (für copy cat), ist genetisch mit einer Schildpatt-Katze identisch und hat dennoch ein anders gemustertes Fell.

Wie läuft die Inaktivierung ab, und wie sehr unterscheidet sich das Xi von den übrigen Chromosomen im Zellkern? Um das zu verstehen, muss man ein Missverständnis überwinden, das aus Schulzeiten stammt. Im Biologieunterricht lernt man beim Thema Zellkernteilung oder Mitose das folgende Schema auswendig, das die Phasen einer solchen Teilung zeigt. Es beginnt mit der Prophase (bei 1 Uhr) und läuft über die Metaphase (3 Uhr) und die Anaphase (7 Uhr) zur Telophase (8 Uhr). In diesen Phasen ist die Kernhülle aufgelöst, damit die Spindeln die Tochterchromatiden auseinander ziehen können. Anschließend schnürt sich die Zelle durch, und beide Tochterzellen bauen wieder Kernhüllen auf. In der Zeit zwischen zwei Zell- und Zellkernteilungen, der Interphase (12 Uhr, Sternchen), liegen die Chromosomen nicht in der uns so vertrauten, kompakten Transportform vor, sondern als dünne Schnüre, die den ganzen Kern ausfüllen.

Zyklus_Mitose_und_Interphase_650

Diese Interphase ist viel, viel länger, als es das Diagramm suggeriert: Von den etwa 19,5 Stunden eines menschlichen Zellteilungszyklus entfallen etwa 18,5 Stunden auf die Interphase, in der der Zellkern wie eine Fadennudelsuppe aussieht. Nur während einer einzigen Stunde sind unsere Chromosomen so eng zusammengepackt, dass sie wie ein I oder (vor der Trennung der beiden im Zentromer zusammengehaltenen Chromatiden) wie ein X aussehen:

Länge_Interphase_Mitose_500

Der DNA-Faden wird in der Mitose um den Faktor 50.000 komprimiert, und zwar in mehreren Schritten bzw. Ebenen: von der DNA-Doppelhelix über die Perlenschnur, in der die DNA um puckförmige Proteinscheiben, sogenannte Nukleosomen, gewickelt ist, über Schlaufen erster und zweiter Ordnung bis hin zum kompletten Chromosom, das 700-mal dicker ist als eine Doppelhelix:

DNA_Komprimierung_Faktor_50000_650

In dieser stark komprimierten Form ist das Erbgut für die Transkriptionsmaschinierie völlig unzugänglich; die Gene können also nicht abgelesen werden. In der langen Interphase sieht das anders aus: Die nun wieder lockere DNA eines jeden Chromosoms nimmt einen großen Bereich im Zellkern ein und steht an dessen Rändern mit den Nachbarchromosomen in Kontakt. Ich habe hier, damit es nicht zu unübersichtlich wird, nur ein einziges Chromosom (unten) als Faden dargestellt und von den übrigen nur die Grenzen zwischen den Regionen angedeutet:Kern_mit_Chromosomen-Regionen_650

Chromosomenbereiche mit vielen Genen liegen im Allgemeinen eher in der Mitte des Zellkerns, an Genen arme Abschnitte eher in der Peripherie. Außerdem führen die Chromosomen im Kern einen komplizierten Tanz auf – wobei sie allerdings nicht so kompakt aussehen wie in dieser garantiert echten, jüngst auf einem Dachboden entdeckten Matisse-Vorstudie:

P1090479_Chromosomentanz_500

Die Chromosomen können die Position wechseln. So gelangen Gene, die gerade abgelesen werden müssen, aus der Peripherie in die Mitte, wo auch die nötigen Enzyme und Rohstoffe in höherer Konzentration vorliegen als am Rand.

Auch die meisten unsere Geschlechtschromosomen sind die meiste Zeit keineswegs X- oder Y-förmig. Ihre Namen verdanken sie elektronenmikroskopischen Aufnahmen von Chromosomen während der Mitose. Dann sieht das bereits verdoppelte X-Chromosom mit seinem Zentromer (der Einschnürung) und seinen langen und kurzen Armen den übrigen Chromosomen recht ähnlich. Beim viel kleineren Y-Chromosom sind die Arme so kurz, dass sie kaum zu unterscheiden sind:

Kondensiertes_X_und_Y_500

An den Enden der kurzen und der langen Arme beider Geschlechtschromosomen liegen sogenannte pseudoautosomale Regionen oder PARs. Hier sind X und Y einander so ähnlich, dass es zwischen ihnen während der Entwicklung der Keimzellen zum Austausch von Material, dem sogenannten Crossing-over kommen kann – genau wie zwischen den beiden Exemplaren eines normalen Chromosoms oder Autosoms; daher die Bezeichnung „pseudoautosomal“.

Da jede Zelle, ob männlich oder weiblich, über zwei Geschlechtschromosomen und damit über zwei PAR1 und zwei PAR2 verfügt, ist für diese Teile des X-Chromosoms keine Inaktivierung vonnöten: Ob die hier liegenden Gene nun von zwei X-Chromosomen oder von einem X- und einem Y-Chromosom abgelesen werden, ist gleichgültig. Anders sieht es mit der nicht-pseudoautosomalen X-Chromosom-Region (NPX) aus: Auf ihr liegen andere Gene als auf ihrem Pendant auf dem Y-Chromosom, MSY (für male-specific region of Y chromosome).

X_Y_Chromosom_PAR_500

Würden diese Teile auf beiden X-Chromosomen einer weiblichen Zelle normal abgelesen, lägen ihre Genprodukte in der Zelle in doppelt so hoher Konzentration vor wie in einer männlichen Zelle. Das mag bei bestimmten Genen, die an geschlechtsspezifischen Eigenschaften mitwirken, notwendig sein. Bei vielen anderen wichtigen Genen auf dem X-Chromosom, die nichts mit dem Geschlecht zu tun haben, wäre es dagegen fatal. Daher wird ein Großteil der Gene (etwa 85 Prozent) auf einem der beiden X-Chromosomen ausgeschaltet.

Die Inaktivierung geht vom sogenannten X-Inaktivierungs-Zentrum (XIC) auf dem langen Arm des Chromosoms (Xq) aus. Dieser lange Arm wird auch als XCR (für X conserved region) bezeichnet, weil er evolutionär alte, stark konservierte Gene und Steuerungssequenzen enthält. Im Inaktivierungs-Zentrum liegt das Gen Xist, das kein Protein codiert, sondern eine RNA, die sich an alle möglichen Teile des X-Chromosoms anlagert, die sich in ihrer Nähe befinden – wobei „Nähe“ hier nicht eindimensional (benachbarte Sequenzen auf der DNA), sondern dreidimensional zu verstehen ist (im Einflussbereich liegende Schlaufen des X-Chromosom-Fadenknäuels).

Das können durchaus auch DNA-Schlaufen vom anderen Arm des X-Chromosoms sein, der jenseits des Zentromers liegt: Xp, auch XAR (für X added region) genannt, weil hier evolutionär jüngere Gene und Steuerungssequenzen liegen, die das Chromosom erst lange nach der Auseinanderentwicklung von X- und Y-Chromosom erworben hat. Auf diesem Arm liegen auch Gene, die mit einer ganzen Reihe von Autoimmunerkrankungen in Verbindung gebracht werden, etwa FoxP3 oder eine Reihe von Genen in der Region Xp22. Womöglich tragen Fehler bei der X-Chromosom-Inaktivierung zur höheren Prävalenz vieler Autoimmunerkrankungen bei Frauen bei, denn dann liegen die Produkte der fälschlich nicht inaktivierten Gene in weiblichen Zellen in stark überhöhter Konzentration vor.

Humanes_X-Chromosom_Aufbau_Xist_usw_500_n

Vorlage: W. H. Brooks, Y. Renaudineau (2015), doi: 10.3389/fgene.2015.00022

Wie das X-Chromosom trotz der Barriere, die das Zentromer darstellt, so zügig inaktiviert werden kann, war der Forschung lange ein Rätsel. Studien an Mäusen helfen bei der Aufklärung (wieder einmal) nicht weiter, da deren X-Chromosom zwar ähnlich lang ist wie das der Menschen, aber kein echtes Zentromer hat, sondern eine Zentromer-ähnliche Struktur an einem Ende. Hier gibt es also keine Barriere, die von der im XIC abgelesenden RNA überwunden werden müsste:

X-Chromosom_Mensch_Maus_500

Vorlage: W. H. Brooks, Y. Renaudineau (2015), doi: 10.3389/fgene.2015.00022

Wie sich die Xist-RNA und die von ihr rekrutierten übrigen Inaktivierungsfaktoren über das X-Chromosom ausbreiten, davon hat man erst seit kurzem eine genaue Vorstellung. Demnach bilden die RNA-Moleküle (dünne geschwungene Linien mit Schlaufe) in der Umgebung des Xist-Gens (dicker schwarzer Pfeil) eine regelrechte Wolke und lagern sich an so ziemlich alle X-chromosomalen DNA-Stränge (dicke Linien) an, die in diese Wolke hineinragen. Die Histone, die die Xist-RNA nach ihrer Bindung an die DNA rekrutiert (schraffierte Scheiben und anhängende schwarze Punkte), wickeln die DNA dann eng und ordentlich zusammen:

X-Inaktivierung_Xist-RNA_Histone_650

Vorlage: Engreitz et al. 2013, doi: 10.1126/science.1237973

Durch das Aufwickeln der DNA zieht der Komplex immer weitere X-chromosomale Sequenzen in die Xist-Wolke hinein. So kann sich die Inaktivierung schnell und von mehreren, nahezu beliebigen Startstellen aus über das gesamte X-Chromosom ausbreiten.

Die nunmehr stark komprimierte DNA ist nicht mehr ablesbar – genau wie in den übrigen Chromosomen während der Mitose. Allerdings ist der Komprimierungsmechanismus ein anderer als bei den Autosomen, der Komprimierungsgrad ist noch höher, und vor allem wird die Komprimierung auch während der Interphase aufrecht erhalten.

Das Xi bleibt allerdings nicht „von selbst“ inaktiv, sondern muss ständig überwacht und ggf. erneut epigenetisch markiert und verdichtet werden. Daher liegt es meist auch nicht am Rand des Kerns, sondern in unmittelbarer Nachbarschaft zum Nucleolus, einer besonders aktiven Kernregion:

P1270847_links_Xi_außerhalb_Nucleolus_500

Vorlage: W. H. Brooks, Y. Renaudineau (2015), doi: 10.3389/fgene.2015.00022

Einer derzeit beliebten Hypothese zufolge können Infektionen (zum Beispiel mit Viren) Autoimmunerkrankungen auslösen, indem sie den Nucleolus anschwellen lassen: Viren kapern bekanntlich die Reproduktionsmaschinerie unserer Zellen und lassen unseren Stoffwechel in großem Stil neue Kopien ihrer selbst anfertigen. Der erhöhte Bedarf an Ribosomen und anderen Teilen der Reproduktionsmaschine führt zu einer Vergrößerung des Nucleolus. So gerät das benachbarte inaktivierte X-Chromosom in weiblichen Zellen ins Innere des Nucleolus mit seinem lebhaften Stoffwechsel: 

P1270847_rechts_Nucleolus_geschwollen_n_500

Vorlage: W. H. Brooks, Y. Renaudineau (2015), doi: 10.3389/fgene.2015.00022

Substanzen im Nucleolus, insbesondere Polyamine und RNA-Polymerase III, könnten die Inaktivierung aufheben und zum Beispiel eine massenhafte Ablesung der vielen Alu-Sequenzen im PAR1 auf dem Xp-Arm auslösen. Die so in großer Menge erzeugte Alu-RNA könnte klassische Zellkern-Proteine wie Ro und La binden und modifizieren, wodurch sich diese Proteine in Autoantigene verwandeln würden. Tatsächlich werden im Serum von Lupus-, Sjögren- oder Rheuma-Patienten häufig Anti-Ro- und Anti-La-Antikörper nachgewiesen.

Aber bislang ist das wirklich nur eine weitere Hypothese: Dass die höhere Prävalenz vieler Autoimmunerkrankungen bei Frauen auf eine unvollständige X-Inaktivierung und diese wiederum auf eine infektionsbedingte Vergrößerung des Nucleolus zurückzuführen ist, klingt plausibel, ist aber nicht belegt.

 

Literatur und Abbildungsvorlagen muss ich noch nachtragen. Jetzt: Urlaub!

Peter Parham: The Immune System (4. Auflage)

Parham01

Kurzbesprechung: gutes Buch.

Etwas länger: Im Dezember 2014 habe ich hier einige immunologische Lehrbücher vorgestellt. Mit dem „Janeway’s“ bin ich nie recht warm geworden, und die mir vorliegende 7. Auflage ist hoffnungslos veraltet. Um mich terminologisch und konzeptionell auf den neusten Stand zu bringen, habe ich mir die Ende 2014 (laut Verlagswebsite) bzw. Anfang 2015 (laut Impressum) erschienene 4. Auflage von Peter Parhams „The Immune System“ zugelegt – mit nicht allzu hohen Erwartungen, da dieses Werk auf dem ebenfalls bei Garland Science verlegten „Janeway’s“ basiert. Es richtet sich an Studentinnen und Studenten, die die Immunologie nicht zu ihrem Schwerpunkt machen wollen, und kommt daher mit gut 500 Seiten plus Anhang schlanker daher.

In Rezensionen der Vorauflage wurde der Aufbau kritisiert, den ich auch beim „Janeway’s“ verwirrend fand. Aber die mir vorliegende 4. Auflage ist einleuchtend gegliedert. Zahlreiche klare Abbildungen und Tabellen erleichtern das Verständnis und die Einordnung des Stoffs. Der Härtetest: Lässt sich der Parham als Hauptinformationsquelle für die Anlage und Überarbeitung immunologischer Wikipedia-Artikel verwenden? Ja, das funktioniert – und das lässt sich von meinen anderen Lehrbüchern nicht behaupten.   Weiterlesen

Keimblätter und zelluläre Schicksalswege

Ich komme noch einmal auf die Meldung zurück, der zufolge unsere Gewebsmakrophagen überwiegend nicht von Stammzellen im Knochenmark abstammen, sondern von Vorläufern aus dem embryonalen Dottersack. Die meisten Nichtbiologen werden das schulterzuckend zur Kenntnis nehmen. Für Biologen ist es eine Sensation, da man bisher davon ausging, dass all unser Zellen, Gewebe und Organe auf eines der drei Keimblätter – Ectoderm, Mesoderm und Endoderm – zurückgehen, die während der sehr frühen Embryonalentwicklung angelegt werden.

P1260711_Keimblätter_Pflanze_200

Pflanzenkeim mit Keimblättern und erstem echtem Blätterpaar

Die Bezeichnung „Keimblätter“ erleichtert das Verständnis dieser Vorgänge leider überhaupt nicht, denn man denkt bei dem Wort an die ersten Blättchen keimender Pflanzen. Aus diesen simpel gebauten Blättchen entsteht aber später gar nichts; sie schützen und versorgen die junge Pflanze, bis sie die ersten echten Blätter ausgebildet hat, und verkümmern dann.

Das ist bei den dreikeimblättrigen Tieren (allen bilateralsymmetrischen Tieren, also solchen mit einer linken und einer rechten Körperseite) ganz anders – und damit auch bei den Menschen. Während der sogenannten Gastrulation faltet sich der bis dahin zweischichtige Keim zu einem komplexeren dreischichtigen Gebilde zusammen.

Aus der äußeren, oberen Schicht, dem Ektoderm, werden später unter anderem die Haut und das Nervensystem. Aus der inneren, nach konventioneller Darstellung untersten, zum Dottersack orientierten Schicht, dem Endoderm, gehen unter anderem der Verdauungstrakt, die Leber und die Lunge hervor. Und die zuletzt durch Einwanderung von Zellen zwischen die beiden anderen Zelllagen entstandene mittlere Schicht, das Mesoderm, bringt später die Knochen, Muskeln und Nieren, das Herz und das Blut hervor – also auch die Stammzellen im Knochenmark, aus denen unsere Immunzellen entstehen.    Weiterlesen

Das Immunsystem in der Embryonalentwicklung: zwei Überraschungen

Nach langer Pause zwei schnörkel- und skizzenlose Anmerkungen zur Entwicklung des Immunsystems während der Embryogenese, die ich in Teil 4 des Buches behandle:

1. Aliens aus dem Dottersack

Bis vor wenigen Jahren dachte man, all unsere Immunzellen seien Nachfahren der Stammzellen im Knochenmark – und somit „Blätter“ am hämatopoetischen Stammbaum, den ich hier vor einer Weile in zwei Artikeln vorgestellt habe. Dann entdeckte man, dass das auf die Mikrogliazellen (makrophagenähnliche Zellen in unserem Gehirn) nicht zutrifft: Diese gehen vielmehr auf Vorläuferzellen zurück, die während der frühen Embryonalentwicklung noch vor der Schließung der Blut-Hirn-Schranke aus dem Dottersack (!) ins spätere Gehirn einwandern. Diese Ur-Mikrogliazellen sind also extraembryonale Aliens; sie gehören zu keinem der drei Keimblätter, aus denen ansonsten all unsere Gewebe und Organe entstehen: Endoderm, Mesoderm und Exoderm. Dass wir bis an unser Lebensende auf Zellen angewiesen sind, die nicht aus einem Keimblatt hervorgegangen sind, hätte man vor wenigen Jahren noch für völlig unmöglich erklärt.

Inzwischen hat sich herausgestellt, dass das auch auf viele andere Gewebsmakrophagen zutrifft – zum Beispiel die Makrophagen, die im Herzmuskelgewebe Patrouille laufen und die Homöostase aufrecht erhalten. Diese Zellen, die teils direkt auf Vorläufer im Dottersack, teils auf Dottersackzellen-Nachfahren aus der fetalen Leber zurückgehen, sind offenbar ebenfalls imstande, sich ein Leben lang durch Teilung selbst zu erhalten. Erst bei einer Entzündung wandern zusätzlich aus Knochenmark-Stammzellen entstandene Monozyten in das Gewebe ein, die dort zu Makrophagen heranreifen.

Diese „Notfall-Makrophagen“ siedeln sich aber in vielen Geweben nicht dauerhaft an, sondern werden nach erfolgreicher Bekämpfung der Entzündung von den örtlichen Gewebsmakrophagen abgetötet und beseitigt. In einjährigen Mäusen etwa stammen die meisten Makrophagen in der Leber, im Gehirn und in der Haut (also Kupffer-, Mikroglia- und Langerhans-Zellen) größtenteils noch von den Dottersack- und Leber-Vorfahren ab, während sich das Verhältnis in den Lungen mit zunehmendem Alter zugunsten der Monozyten-Makrophagen verschiebt.

Lit.: A. Dey, J. Allen, P. A. Hankey-Giblin (2015): Ontogeny and polarization of macrophages in inflammation: blood monocytes versus tissue macrophagesE. Gomez Perdiguero et al. (2015): Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors

2. Neonatales Immunsystem voll entwickelt und aktiv unterdrückt

Lange glaubte man, Neugeborene seien so anfällig für Infektionen, weil ihr Immunsystem noch sehr unreif sei. Wie sich Ende 2013 herausstellte, ist es tatsächlich bereits voll entwickelt: Das Knochenmark, aus dem die Zellen der angeborenen Abwehr und die B-Zellen hervorgehen, ist schon lange vor der Geburt aktiv, und auch der Thymus, in dem die positive und negative Selektion der T-Zellen stattfindet, hat seine Arbeit schon aufgenommen.

Das Immunsystem wird aber in den ersten Lebenswochen aktiv unterdrückt, um eine Besiedlung des Darms mit lebensnotwendigen Bakterien und anderen Mikroorganismen zu ermöglichen. Dafür sind spezielle rote Blutkörperchen oder Erythrozyten zuständig, die den Oberflächenmarker CD71 tragen und vor allem in wenigen Wochen vor und nach der Geburt hergestellt werden. Sie produzieren das Enzym Arginase-2, das zu einem Mangel an der Aminosäure Arginin führt. Dieser Mangel wiederum hemmt die Herstellung von Zytokinen in den Zellen der angeborenen Abwehr.

Zwar können sich Neugeborene wegen dieses Mangels an Abwehrstoffen leicht mit Erregern wie Escherichia coli oder Listeria monocytogenes anstecken. Aber dafür reagieren sie auf die Besiedlung mit unserem Mikrobiom-Starterkit nicht mit einer heftigen Immunreaktion, die noch weitaus gefährlicher wäre.

Lit.: S. Elahi et al. (2013): Immunosuppressive CD71+ erythroid cells compromise neonatal host defence against infection

Affinitätsreifung der B-Zellen in den Keimzentren

In den Follikeln des sekundären und tertiären Lymphgewebes kommt es nicht nur zum Immunglobulin-Klassenwechsel, den ich im letzten Beitrag skizziert habe, sondern auch zur Affinitätsreifung durch somatische Hypermutation und anschließende Selektion auf verbesserte Antigen-Bindungsstärke:

P1240180_Follikel_Affinitätsreifung_650

Im Uhrzeigersinn, bei 4 Uhr beginnend:

A  Eine B-Zelle, die ein Antigen aufgenommen hat, präsentiert ihren Fund einer T-Helferzelle und wird vollends aktiviert, sofern der T-Zell-Rezeptor das Antigen erkennt. Sie erhält von der T-Helferzelle die Lizenz, in das Keimzentrum des Follikels einzutreten.

B  Im Keimzentrum des Follikels vermehrt sich die B-Zelle stark durch Teilung. Währenddessen verändert das Enzym AID in dem Gen, das die antigenspezifische Bindungsstelle des Immunglobulins codiert, nach dem Zufallsprinzip einzelne Basen (A, T, C, G). Diesen Vorgang nennt man somatische Hypermutation.

C  Die B-Zellen treten aus der dunklen Zone des Keimzentrums in die helle Zone über, wo sie von dendritischen Zellen (DC) erwartet werden und nach der Mutation eine Selektion durchlaufen.

D  Die dendritischen Zellen präsentieren ihnen das Antigen, um die Bindungsstärke des mutierten B-Zell-Rezeptors zu prüfen.

E  Hat die Mutation die Bindung der Immunglobuline an das Antigen geschwächt, stirbt die B-Zelle durch Apoptose kontrolliert ab.

F  Hat die Mutation die spezifische Bindung an das Antigen gestärkt, so führt die B-Zelle dieses Antigen nun auf ihrem MHC-Klasse-II-Komplex einer follikulären T-Helferzelle vor, die es mit ihrem spezifischen T-Zell-Rezeptor erkennt. Durch diesen Kontakt wird auch der Klassenwechsel bei den Immunglobulinen ausgelöst, sodass die B-Zelle nun kein IgM mehr herstellt, sondern IgG, IgE oder IgA – je nachdem, welchen Botenstoff die T-Helferzelle ausschüttet.

Je nach Bedarf und dem Ergebnis dieser weiteren Prüfung schlägt die B-Zelle danach einen von vier Wegen ein:

G  Die B-Zelle ist unbrauchbar, weil sie der T-Zelle ihr Antigen nicht effizient präsentiert, und stirbt durch Apoptose.

H  Die B-Zelle ist zur humoralen Abwehr geeignet, verlässt das Keimzentrum und entwickelt sich zur Plasmazelle weiter, die massenhaft Antikörper erzeugt.

I  Einige B-Zellen reifen stattdessen zu Gedächtniszellen heran, die mit ihrem Wissen um die aktuelle Infektion dafür sorgen, dass das Immunsystem auf ein späteres erneutes Auftreten desselben Antigens schneller und stärker reagieren kann.

J  Einige besonders schlagkräftige B-Zellen erhalten die Order, erneut in das Keimzentrum einzutreten, um sich zu vermehren und durch Mutation und Selektion weiter zu verbessern. So steigert der Organismus die Affinität der Immunglobuline zu einem bestimmten Antigen mit der Zeit. Diesen Vorgang nennt man Affinitätsreifung.

T-Zell-Rezeptoren sind degeneriert

Manche Fachbegriffe fordern Missverständnisse geradezu heraus; „degeneriert“ gehört sicherlich dazu. Gemeint ist, dass das Repertoire der T-Zell-Rezeptoren in jedem einzelnen Menschen zwar groß ist (schätzungsweise 1-100 Millionen unterschiedliche Typen), aber längst nicht ausreicht für eine hochspezifische 1:1-Erkennung jeweils eines Antigen-Peptids durch einen Rezeptortyp. Die Zahl der Peptide, die die antigenpräsentierenden Zellen im Laufe unseres Lebens auf ihren MHC-Molekülen präsentieren können, ist einfach gigantisch. Daher muss ein T-Zell-Rezeptor auf zahlreiche verschiedene Peptid-MHC-Komplexe reagieren können. Und so geht’s:

P1240133_TCR-Degeneration_650

 

Unten das MHC-Molekül, das als Präsentierteller in der Membran einer antigenpräsentierenden Zelle (etwa einer dendritischen Zelle oder einer B-Zelle) verankert ist. In der Mitte das Peptid, also die Aminosäurenkette, die diese Zelle aus einem aufgenommenen Antigen gewonnen hat und nun vorführt. Und oben der T-Zell-Rezeptor, der in der Membran einer T-Zelle verankert ist. Dieser Rezeptor braucht nur an wenige Stellen – teils an der Oberfläche des MHC-Moleküls, teils an der ihm zugewandten Seite des Peptids – wirklich gut zu binden, um die T-Zelle zu aktivieren. Die Hohlräume zeigen: Welche Aminosäure-Seitenketten ihm an den anderen Stellen entgegengestreckt werden, ist dem Rezeptor egal.

Folglich erkennt eine T-Zelle mit ihrem individuellen Rezeptortyp nicht nur ein Antigen, sondern etliche. Hier sind es zwei Pickelhauben (in meinen Cartoons die typische Kopfbedeckung pathogener Bakterien), aber leider auch ein harmloser Bauhelm – also ein Antigen, das vielleicht von einem Pflanzenpollenkorn, von einem gutartigen Bakterium aus unserem Mikrobiom oder von einer körpereigenen Zelle stammt:

P1240133_TCR-Degeneration_Helme_650

Und hier noch eine „realistischere“ oder zumindest weniger schematische Darstellung der Bindungsstelle eines MHC-Moleküls und des passenden T-Zell-Rezeptors:

MHC-Peptid-TCR-Bindung_650

Wir blicken aus der Perspektive der T-Zelle auf die Front eines MHC-Moleküls der antigenpräsentierenden Zelle. Die Kontur des darauf präsentierten Antigen-Peptids ist gepunktet. Die sechs „Würmer“ sind die entscheidenden Erkennungsschlaufen an der Front des ansonsten unsichtbaren T-Zell-Rezeptors. Normalerweise binden nur die mittleren zwei oder drei Schlaufen Aminosäuren des Antigen-Peptids, während die äußeren Schlaufen vor allem mit der Oberfläche des MHC-Moleküls Kontakt haben.

Da die mittleren Schlaufen nicht starr, sondern ein wenig verformbar sind, akzeptieren sie unterschiedliche Peptide als Bindungspartner. Ab und zu leider auch solche, die aus Autoantigenen stammen. Und wenn dann noch ein paar Kontrollmechanismen versagen, kommt eine Autoimmunreaktion in Gang.

Polyklonale Aktivierung

Die heutige Skizze zeigt – nach molekularer Mimikry, Bystander Activation und Epitope Spreading – den letzten der vier wichtigsten molekularen Mechanismen, über die Infektionen zu Autoimmunerkrankungen führen können: die polyklonale Aktivierung. Dabei expandiert nicht nur ein einziger, für ein Antigen spezifischer B- oder T-Zell-Klon, sondern es bilden sich mehrere Lymphozyten-Klone, die jeweils ein anderes Epitop des Antigens erkennen:

P1240050_polyklonale_Aktivierung_650

Was im Falle einer Infektion gut ist, weil das Pathogen auf diese Weise rasch von mehreren Seiten attackiert werden kann, kann im Falle eine irrtümlichen Reaktion auf ein Autoantigen leider ebenso zuverlässig zu einer Ausweitung der Abwehr führen – in diesem Fall gegen Epitope aus einer Darmepithelzelle:

P1240054_polyklonale_Aktivierung_Autoantigen_650

Immunologie-Lehrbücher

P1230953-Immunologie-Lehrbücher

Kürzlich habe ich meine Bibliothek um „Immunologie für Dummies“ von Bärbel Häcker erweitert – nicht, weil ich daraus inhaltlich Neues zu lernen hoffte, sondern weil mich die Darstellung des Immunsystems interessierte. Ich finde es enttäuschend, muss aber einräumen, dass ich mich nur noch schwer in die Lage etwa einer Studentin versetzen kann, die sich immunologisches Grundwissen aneignen möchte. Vielleicht ist es für einen ersten Überblick ganz in Ordnung. Dennoch: Die zum Teil sinnlosen oder ungeschickt aufgemachten Abbildungen, die wenigen, bemerkenswert witzlosen Cartoons, das reihentypische Layout, das auf mich bieder und lieblos wirkt, der plötzliche Einsatz von Fachbegriffen, die vorher nicht erklärt wurden, und Unstimmigkeiten z. B. in der Kategorisierung von Immunzellen* machen auf mich keinen guten Eindruck.

* Dendritische Zellen zählen mal wohl, mal nicht zu den Phagozyten.

Auch mit „Grundwissen Immunologie“(2. Aufl., 2009) von Christine Schütt und Barbara Bröker bin ich nie richtig warm geworden. Allerdings fällt es mir schwer, das zu begründen: Ich habe es mehrmals versucht, fand die Lektüre aber immer wieder zäh und kam mit dem Aufbau nicht zurecht. Unter den deutschsprachigen Einführungen sagt mir die „Immunpharmakologie“ (2010) von Klaus Resch, Michael U. Martin und Volkhard Kaever noch am ehesten zu: klarer Aufbau, klare Sprache, klare Abbildungen.

Auch unter den beiden großen englischsprachigen Lehrbüchern habe ich einen eindeutigen Favoriten, nämlich „Cellular and Molecular Immunology“ (7. Aufl., 2012) von Abul K. Abbas, Andrew H. Lichtman und Shiv Pillai. Und wieder kann ich nicht richtig benennen, was mich am anderen Buch – „Janeway’s Immunobiology“ (7. Aufl., 2008) von Kenneth Murphy, Paul Travers und Mark Walport – stört. Obwohl (oder weil?) der Janeway’s mit etwa 900 Seiten mehr Raum bietet als der Abbas mit seinen gut 500 Seiten, habe ich aus dem Abbas mehr gelernt. Solide gemacht sind sie beide.

Das Monstrum „The Autoimmune Diseases“ (5. Aufl., 2014) mit seinen 1700 Seiten läuft außer Konkurrenz. Ich bereue die Anschaffung nicht; es gibt kein anderes Buch, das einen so umfassenden und halbwegs aktuellen Überblick über das Thema vermittelt. Allerdings merkt man den einzelnen Kapiteln die Lehrmeinung der jeweiligen Autoren stark an. Im Kapitel über die Autoimmunerkrankungen der Schilddrüse blickt man beispielsweise sehr durch die Brille von Anthony B. Weetman. Es handelt sich also nicht um ein Lehrbuch, sondern eher um eine Sammlung subjektiv gefärbter Reviews.

Umso wichtiger ist die begleitende Lektüre der Arbeiten anderer Autoren. Ohnehin können Bücher die Lektüre aktueller Fachartikel nicht ersetzen, sondern nur unterfüttern. Es dauert etliche Jahre, bis wichtige neue Erkenntnisse in Lehrbücher hineindiffundieren, und umgekehrt steht in ihnen – trotz aller Vorsicht – vieles, was schon kurz nach Erscheinen veraltet ist. In einem so dynamischen Feld wie der Immunologie ist das unvermeidlich.

 

Gewichtige Lektüre

Nach langer Blogpause ein kurzes Update: Ich war im Urlaub, habe dann eine Weile gebraucht, um wieder in das Manuskript des Buches hineinzufinden, und sitze jetzt täglich daran – schreibend, überarbeitend oder lesend. Spätestens zu Halloween gibt es einen neuen Blogartikel mit Skizzen. Und ich habe mir ein gewichtiges Nachschlagewerk gegönnt:

P1230834_AID-Buch

 (5. Auflage, 2014)