Schlagwort-Archive: SCFA

Hunde, Vieh und Darmbakterien schützen vor Asthma

Die Durchsicht der seit Mitte September aufgelaufenen Wissenschafts-Newsletter hat ergeben: ausnahmsweise keine grundstürzenden Neuigkeiten auf dem Gebiet der Immunologie, insbesondere der Autoimmunerkrankungen. Zwei Arbeiten zum Asthma-Risiko haben Aufmerksamkeit erregt, obwohl sie nur bestätigen, was sich schon in den letzten Jahren abgezeichnet hat.

Bereits 2012 hatte ich hier kurz von einer finnischen Untersuchung berichtet, der zufolge Hun­de­hal­tung im länd­li­chen Raum für ein gesün­de­res ers­tes Lebens­jahr von Klein­kin­dern sorgt: weni­ger Ohr­ent­zün­dun­gen und Schnup­fen, weni­ger Anti­bio­ti­ka­be­hand­lun­gen. Wichtig war, dass die Haustiere genug Zeit an der frischen Luft verbrachten, um mit den nötigen Keimen in Berührung zu kommen.

Vermittelt wird die Schutzwirkung vermutlich – zumindest teilweise – über das Enzym A20 in unseren Schleimhäuten, dessen Aktivität durch Endotoxine (Lipopolysaccharide aus Bakterienzellwänden) angeregt wird.

Nun hat ein schwedisches Forscherteam in einer landesweiten Kohortenstudie über 600.000 zwischen 2001 und 2010 in Schweden geborene Kinder auf Zusammenhänge zwischen Asthma und Kontakt zu Hunden oder Vieh untersucht. Dabei zeigte sich: Kinder, die im ersten Lebensjahr Kontakt zu einem Hund hatten, hatten im Kindergarten- und Grundschulalter ein verringertes Asthma-Risiko. Kontakt zu Bauernhoftieren verringerte das Risiko, später an Asthma zu erkranken, noch stärker als Hundekontakt.

Doch nicht nur Bakterien aus der Tierhaltung, sondern auch solche aus unsere eigenen Darmflora können vor Asthma schützen. Kanadische Wissenschaftler haben die Bakterien im Kot von drei Monate alten Kindern analysiert und in den nächsten drei Jahren verfolgt, ob die Kinder Ekzeme oder Atemgeräusche entwickelten, die als erste Anzeichen von Asthma gelten. In der Darmflora von Säuglingen, die später diese Anzeichen zeigten, waren die Bakteriengattungen Faecalibacterium, Lachnospira, Veillonella und Rothia signifikant schwächer vertreten als bei den anderen Säuglingen, und ihr Kot enthielt weniger Acetat als normal – eine der kurzkettigen Fettsäuren (SCFA), von denen hier schon öfter die Rede war: Stoffwechselprodukte, mit denen bestimmte Darmbakterien unser Immunsystem beeinflussen. Diese Dysbiose war transient; später normalisierte sich die Zusammensetzung der Darmflora.

Im Tierversuch ließ sich das Asthma-Risiko durch Animpfen keimfrei geborener Mäuse mit Darmbakterien aus asthmatischen Artgenossen erhöhen, durch Übertragung der vier genannten Bakteriengattungen dagegen verringern. Ob das auch bei Menschen funktioniert, muss sich noch erweisen. Weiter untersucht werden sollte auch, ob neben dem Asthma-Risiko auch das Risiko von Autoimmunerkrankungen durch eine vorübergehende Dysbiose kurz nach der Geburt erhöht wird.

Literatur:

T. Fall et al.: Early Exposure to Dogs and Farm Animals and the Risk of Childhood AsthmaJAMA Pediatr. 2015;169(11):e153219. doi:10.1001/jamapediatrics.2015.3219 (nur Abstract frei);

dazu auch: Hunde senken Asthmarisiko. Früher Kontakt mit Hunden schützt Kinder gegen die Überreaktion des Immunsystems

M.-C. Arrieta et al.: Early infancy microbial and metabolic alterations affect risk of childhood asthmaScience Translational Medicine 30 Sep 2015: Vol. 7, Issue 307, pp. 307ra152, DOI: 10.1126/scitranslmed.aab2271 (nur Abstract frei);

dazu auch: Jef Akst: Gut Bacteria Linked to Asthma Risk. Four types of gut bacteria found in babies’ stool may help researchers predict the future development of asthma und Mit vier Bakterien gegen Asthma. Darmflora bei Säuglingen liefert vielversprechenden Ansatz für eine vorbeugende Therapie

Aus dem Bauch heraus: Mikrobiom beeinflusst Immunzellen im Gehirn

Unser Gehirn ist ein immunologisch privilegiertes Organ, in dem Immunreaktionen besonders strikt reguliert werden, um Kollateralschäden zu vermeiden. Dennoch enthält es Immunzellen, vor allem solche der angeborenen Abwehr – insbesondere Mikroglia.

Zu deren Aufgaben gehört das Pruning: das Wegschneiden überflüssiger Verbindungen (Synapsen) zwischen Nervenzellen, vor allem während der Kindheit und Adoleszenz. Mikroglia sind gewissermaßen die Gärtner des Gehirns, die die Sträucher regelmäßig zurückschneiden, bevor sie zu einem undurchdringlichen, dysfunktionalen Gestrüpp zusammenwuchern. Krankhaft überaktive Mikroglia übertreiben das Stutzen; sie zerstören auch Verbindungen zwischen Neuronen, die für die Gehirnfunktion notwendig sind. Andererseits sind auch erschöpfte, nicht hinreichend aktive Mikroglia schädlich, denn sie kommen mit dem Aufräumen, dem Entsorgen von Krankheitskeimen oder toten oder erkrankten Nervenbestandteilen nicht mehr hinterher. Abnorme Mikroglia werden unter anderem mit Multipler Sklerose, aber auch mit Alzheimer-Demenz und Schizophrenie in Verbindung gebracht.

Offenbar wird ihre Aktivität unter anderem von unserer Darmflora reguliert. Vermittelt wird diese Fernwirkung vermutlich über sogenannte kurzkettige Fettsäuren (short-chained fetty acids = SCFA), also Gärungsprodukte wie Essig-, Propion- und Buttersäure, die die Darmbakterien aus unserer Nahrung gewinnen. Diese durchdringen das Darmepithel und gelangen dann entweder selbst über das Blut ins Gehirn, oder sie regen in unserem Darmgewebe Zellen zur Ausschüttung von Botenstoffen an, die dann ihrerseits über die Adern ins Gehirn kommen.

Im Gehirn von Menschen, die ein hohes Schizophrenie-Risiko haben oder sich bereits in der Frühphase der Erkrankung befinden, ist die Konzentration von Zytokinen erhöht; ihre graue Materie geht zurück, und ihre Mikroglia sind überaktiv: Anzeichen für eine Entzündung. Je stärker ihre Mikroglia aktiviert sind, desto stärker sind die Schizophrenie-Symptome, wenn die Erkrankung schließlich ausbricht. Die zeitliche Abfolge lässt vermuten, dass die Mikroglia-Aktivierung nicht lediglich eine Folge einer bereits eingetretenen Störung im Gehirn ist, sondern diese mit verursacht. Dazu passt auch das Lebensalter, in dem Schizophrenie und weitere psychische Erkrankungen besonders häufig ausbrechen: während oder kurz nach der Adoleszenz – genau dann, wenn die Mikroglia im Frontalkortex viel Pruning betreiben.

Literatur:

D. Erny et al.: Host microbiota constantly control maturation and function of microglia in the CNSNature Neuroscience 18, 965–977 (2015), doi:10.1038/nn.4030 (nur Abstract frei)

Dazu auch Katrin Zöfel: Bakterien für ein gesundes Gehirn (09.10.2015)

P. S. Bloomfield et al.: Microglial Activity in People at Ultra High Risk of Psychosis and in Schizophrenia: An [11C]PBR28 PET Brain Imaging StudyAmerican Journal of Psychiatry, http://dx.doi.org/10.1176/appi.ajp.2015.14101358 (nur Abstract frei)

Dazu auch Mo Costandi: Brain’s immune cells hyperactive in schizophrenia (16.10.2015)

Auswertung Wissenschafts-Newsletter, Teil 1

Nach langer Pause wegen Überstunden und Krankheit stürze ich mich wieder in die Arbeit am Buch. Ich bin immer noch mit der Beschreibung der wichtigsten Mechanismen beschäftigt, über die Infektionen mutmaßlich Autoimmunerkrankungen auslösen: molekulare Mimikry, Bystander Activation, Epitope Spreading und polyklonale Aktivierung, z. B. durch Superantigene.

Nebenbei wühle ich mich durch die Wissenschafts-Newsletter der letzten Monate. Evtl. fürs Buch relevante Meldungen verlinke ich hier. Den Anfang macht The Scientist, vor allem mit Meldungen zum Mikrobiom.

Microbes Fight Chronic Infection: Eine am 23.10.2014 in Nature veröffentlichte Studie zeigt, dass Clostridium scindens und in geringerem Umfang 10 weitere Bakterien-Taxa aus dem Darm-Mikrobiom Antibiotika-behandelte (und daher dysbiotische) Mäuse vor Infektionen mit Clostridium difficile schützen können. Evtl. lässt sich daraus eine Therapie für dysbiotische Menschen entwickeln, die weniger riskant ist als die Stuhltransplantationen, die derzeit in, äh, aller Munde sind.

Gut Microbes Trigger Malaria-Fighting Antibodies: Eine am 04.12.2014 in Cell veröffentlichte Studie zeigt, dass E. coli im Darm von Mäusen die Bildung von Antikörpern gegen den Kohlenwasserstoff Galα1-3Galb1-4GlcNAc-R (kurz: α-gal) auslöst, der sowohl an der Oberfläche der Bakterien als auch auf Malaria-Erregern (bei Mäusen Plasmodium berghei, bei Menschen Plasmodium falciparum) zu finden ist. Diese Antikörper sind auch im Blut gesunder Menschen in großen Mengen anzutreffen. Dank einer Dreifach-Mutation in den gemeinsamen Vorfahren der Menschen und der Menschenaffen stellen unsere Zellen kein α-gal mehr her, sodass die Antikörper nicht den eigenen Körper angreifen. Mit P. berghei infizierte Mäuse mit den durch das Bakterium induzierten Antikörpern im Blut erkrankten nur halb so häufig an Malaria wie Mäuse ohne die Antikörper.    Weiterlesen

Die Darmflora der Hadza: die kleinen Helfer der Jäger und Sammler

Notizen noch nicht allgemein verständlich aufbereitet; für Teil 4 (Individualentwicklung Immunsystem) und Teil 5 (Evolution) des Buches:

Schnorr S. L. et al. (2014): Gut microbiome of the Hadza hunter-gatherers. Nature Communications 5: 3654, doi:10.1038/ncomms4654 (Open Access)

Abstract: Erstmals Darmflora ursprünglich lebender Jäger und Sammler analysiert und mit dem Mikrobiom von Italienern sowie Ackerbauern aus Burkina Faso und Malawi verglichen. Mikrobenreichtum und Biodiversität größer als in italienischer Stadtbevölkerung. Einzigartig: keinerlei Bifidobacterium; Unterschiede in der Darmflora von Männern und Frauen; Anreicherung von Prevotella, Treponema und unklassifizierten Bacteroidetes, die vermutlich beim Aufschluss ansonsten unverdaulicher Kohlenhydrate aus der überwiegend pflanzlichen Kost helfen; ungewöhnliche Proportionen bei den Clostridiales.

Intro: In Darmflora in ländlichen Gemeinschaften (wenig Antibiotika und „schlechtere“ Hygiene, unraffinierte, saisonal geprägte Kost) Bacteroidetes und Actinobacteria angereichert; in „westlicher Welt“ Diversität und Stabilität des Darm-Mikrobioms verringert. Wissenslücke: Darmflora von Jägern und Sammlern, obwohl das über 95% unserer Evolution unsere Lebensweise war. Hier: Stuhlproben von 27 Hadza aus zwei Lagern analysiert, die zu den etwa 200-300 letzten traditionell lebenden Hadza gehören – einer der letzten Jäger- und Sammler-Kulturen der Welt. Zwar sind sie moderne Menschen, aber sie leben am Eyasisee im Ostafrikanischen Graben in einer Umwelt, die derjenigen unserer Urahnen sehr ähnelt. Vergleich: Darmflora von 16 erwachsenen Italienern aus Bologna und Daten aus Burkina Faso und Malawi. Hadza und Italiener: selbes mittleres Alter (32 J.).   Weiterlesen

Wer ist Gärtner, wer Rasen?

Kürzlich habe ich mich hier über die Rasenpflege-Metapher von Lozupone et al. mokiert, der zufolge unsere Darmflora im Gleichgewichtszustand so etwas wie ein gut gestutzter und gedüngter Rasen ist, wie man ihn in amerikanischen Vorstadtgärten findet. Die Gärtner wären demnach unsere Darmepithel- und lokalen Immunzellen. Diese einseitige Sicht wird der über Jahrmillionen herausgebildeten Symbiose aber nicht gerecht. Daher hier eine Gegendarstellung:

P1180249_Akkermansia_muciniphila_isst_Schleim_500

Stellvertretend für die vielen Bakterien in unserer Darmflora betrachten wir die 2004 entdeckte Art Akkermansia muciniphila, die in der Schleimschicht in unserem Dickdarm lebt. Wie der zweite Teil ihres Namens („schleimliebend“) andeutet, ernährt sich sich vom Schleim. Das heißt aber nicht, dass sie uns schaden würde. Vielmehr sorgen ihre Stoffwechselprodukte – unter anderem die bereits mehrfach erwähnten kurzkettigen Fettsäuren (SCFA) – dafür, dass die Darmepithelzellen noch mehr Schleim herstellen. Hier ist das Bakterium der Gärtner, der den Rasen – die Schleimschicht – stutzt und den Boden – die Epithelzellen – düngt, wodurch die Barriere sich ständig erneuert und für Pathogene im Normalfall undurchdringlich bleibt:

P1180254_Akkermansia_SCFA_Ebdocannabinoide_650Außerdem regt Akkermansia muciniphila unseren Körper zur Produktion von Endocannabinoiden wie 2-Arachidonylglycerol (2-AG) an, die entzündungshemmend wirken, die Epithelschicht abdichten und die Produktion antibakterieller Peptide regulieren. Im Tiermodell kann man mit der Verabreichung lebender Akkermansia-Bakterien chronische Entzündungen hemmen und Fettleibigkeit verhindern.

Ob ein Probiotikum aus Akkermansia auch beim Menschen gegen Typ-2-Diabetes, Fettleibigkeit oder chronische Darmentzündungen helfen würde, ist damit noch nicht gesagt. Menschen sind halt keine Mäuse.

Dorfkinder in Burkina Faso haben eine andere Darmflora als Stadtkinder in Florenz

Neue Skizze fürs Buch; Erläuterungen folgen dort. Quelle: De Filippo et al., „Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa“, PNAS 107/33, 17.08.2010, 14691-14696