Schlagwort-Archive: Thymus

Abb. 100: Zentrale Toleranz

Die doppelte Selektion im Thymus führt zur zentralen Toleranz. Bei der positiven Selektion in der Rinde (Sieb) sondern kortikale Epithelzellen T-Zellen aus, die keine MHC-Moleküle binden können. Bei der negativen Selektion im Mark (Magnet) ziehen medulläre Epithelzellen T-Zellen aus dem Verkehr, die stark auf Autoantigene ansprechen und daher Autoimmunreaktionen auslösen würden. Übrig bleiben nur solche T-Zellen, die an MHC-Moleküle mit fremden Antigenen binden.

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Abb. 99: Negative Selektion im Thymus-Mark

Im Thymus-Mark findet die negative Selektion statt: Medulläre Thymus-Epithelzellen (mTEC) zaubern alle möglichen körpereigenen Stoffe aus dem Hut und beobachten, welche jungen T-Zellen ein solches Autoantigen erkennen. Solche T-Zellen müssen noch im Thymus ausgeschaltet werden, weil sie sonst Autoimmunreaktionen auslösen würden.

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Abb. 98: Feinbau des Thymus


Der Thymus besteht aus Läppchen, in denen man Rinde und Mark unterscheidet. Sie sind von einer Bindegewebskapsel umhüllt und durch Septen (schwarz) voneinander getrennt. In den Hohlräumen des Netzwerks, das die Thymus-Epithelzellen (schraffiert) aufspannen, drängen sich Thymozyten, also die T-Zell-Vorläufer – besonders dicht in der Rinde. Um die Zeichnung übersichtlich zu halten, sind sie nur im rechts angeschnittenen Läppchen eingezeichnet, in dem dafür alle übrigen Zellen ausgeblendet sind. In der Rinde halten die Epithelzellen engen Kontakt, während das Netz im Mark lockerer ist. Auf die übrigen Strukturen und Zelltypen im Thymus komme ich in Band 2 zurück.

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Abb. 97: Wo sitzt und was tut der Thymus?

Der Thymus ist ein kleines Organ hinter dem Brustbein. Unreife T-Zell-Vorläufer wandern aus dem Knochenmark in ihn ein. Nach ihrer Reifung und Selektion wandern sie weiter ins
periphere Lymphsystem, etwa in den Verdauungstrakt, die Milz oder die Lymphknoten.

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Die Milch macht’s – zumindest bei Mäusen

Dass Muttermilch Antikörper enthält, die das Neugeborene in den ersten Monaten vor Infektionen schützen, ist schon länger bekannt. Aber Milch leistet noch mehr für das Immunsystem des Nachwuchses, wie zwei neuere Arbeiten zeigen:

M. K. Ghosh et al. (2016): Maternal Milk T Cells Drive Development of Transgenerational Th1 Immunity in Offspring Thymus (Open Access); dazu auch die Pressemitteilung der Universität: Vaccinating Babies Without Vaccinating Babies

In der Vorläuferstudie hatten die Forscher herausgefunden, dass Mäuse ihrem Nachwuchs beim Säugen nicht nur durch Antikörper, sondern auch durch Immunzellen eine Immunität gegen Pathogene vermitteln, mit denen ihr eigenes Immunsystem kürzlich konfrontiert wurde. Seltsamerweise ist diese Immunität noch beim erwachsenen Nachwuchs nachzuweisen, obwohl dieser keinerlei mütterliche Immunzellen mehr enthält. Die Natur und die Entstehung der Zellen, die diese Immunität vermitteln, sollte hier untersucht werden. Um eine Übertragung im Mutterleib auszuschließen, ließ man die gegen das Bakterium Mycobacterium tuberculosis oder gegen den Pilz Candida albicans immunisierten Mäuseweibchen fremden Nachwuchs aufziehen.

Die Immunität wird offenbar von Gedächtnis-T-Zellen übertragen, die über CD4+-Marker und MHC-Klasse-II-Komplexe verfügen – eine kuriose Kombination, denn normalerweise empfangen CD4+-T-Zellen Signale von antigenpräsentierenden Zellen wie etwa dendritischen Zellen, die Antigene auf MHC-Klasse-II-Komplexen präsentieren. Dendritische Zellen sind aber viel zu kurzlebig, um die hier beobachteten Effekte zu erklären; es waren eindeutig antigenpräsentierende CD4+-T-Zellen, die die Immunität übertrugen – vielleicht, weil nur T-Zellen gezielt in den Thymus wandern können. Wie diese Zellen an die MHC-Klasse-II-Komplexe gelangt sind, ist unklar. Die Autoren vermuten Trogozytose: die Übergabe von Membranflößen einschließlich MHC-Komplex und Kostimulatoren an einer immunologischen Synapse, also einer Bindungsstelle zwischen der (primären) antigenpräsentierenden Zelle und einer T-Zelle, deren T-Zell-Rezeptor spezifisch an den Komplex bindet. Diesen Mechanismus habe ich hier bereits vorgestellt.

Nach der Aufnahme über die Muttermilch wandern diese ungewöhnlichen mütterlichen Gedächtnis-T-Zellen gezielt in den Thymus und die Milz der Mäusebabies. Um an den Grenzen – also am Brustdrüsen-, Darm- und Thymusepithel – nicht von anderen Immunzellen aufgehalten zu werden, „verschlucken“ sie vermutlich ihre MHC-Klasse-II-Komplexe samt Antigenen in Vesikeln und befördern sie erst am Ziel wieder an die Zelloberfläche. Im Thymus werden die MHC-Klasse-II-Komplexe einschließlich der Antigene womöglich durch eine weitere Trogozytose an „ordentliche“ antigenpräsentierende Zellen übergeben, oder die CD4+-T-Zellen werfen die Antigene ab, und antigenpräsentierende Zellen nehmen sie auf.

Jedenfalls werden die Antigene aus den Pathogenen, mit denen die Mütter infiziert waren, nun den unreifen Mäusebaby-Thymozyten präsentiert, die daraufhin zu CD8+-T-Zellen mit einer Spezifität für diese Antigene heranreifen. Diese Immunitätsübertragung nennen die Autoren „maternal educational immunity“, um sie von der passiven Immunität zu unterscheiden, die vor allem durch mütterliche Antikörper in der Milch übertragen wird und sich rasch verliert, da diese Antikörper im Jungtier nicht nachproduziert werden können.

In der Pressemitteilung der Universität finden sich interessante Spekulationen über eine mögliche Nutzung dieses Mechanismus zur „indirekten Impfung“ von Säuglingen (nämlich durch Impfung der Mütter während der Schwangerschaft) und über die hohe historische Überlebensrate von Kleinkindern aus Adelsfamilien, die häufig von Ammen aus der Unterschicht gestillt wurden und so vielleicht eine besonders gute „Immunsystem-Erziehung“ genossen. Dabei sollte aber nicht vergessen werden, dass die Reifung des Immunsystems bei jungen Mäusen anders verläuft als bei Menschenkindern.

M. A. Koch et al. (2016): Maternal IgG and IgA Antibodies Dampen Mucosal T Helper Cell Responses in Early Life (Bezahlschranke, nur Abstract und eine Abbildung); dazu auch Meldung „Breast Milk Primes Gut for Microbes“ in The Scientist

Mütterliche, über die Milch übertragene Antikörper der Typen IgG und IgA dienen vor allem dazu, Pathogene im Darm junger Mäuse zu bekämpfen, solange deren Immunsystem dazu noch nicht imstande ist – so glaubte man bisher. Jetzt zeigt sich, dass insbesondere IgG auch Immunreaktionen hemmt, und zwar solche gegen nützliche Bakterien, die nach der Geburt den Darm von Mäusebabies besiedeln. Fehlen die mütterlichen Antikörper, reagiert das Lymphgewebe am Darm heftig auf die neue Darmflora: Es entstehen viel mehr T-Helferzellen, die wiederum B-Zellen zur Produktion von Antikörpern gegen die gutartigen Darmbakterien anregen.

Allerdings scheinen die Mäuse, denen das mütterliche IgG vorenthalten wurde, keine langfristigen Gesundheitsschäden davonzutragen. Der Begleitartikel in The Scientist stellt dennoch Spekulationen über langfristige Folgen einer gestörten Mikrobiom-Entwicklung an, etwa Morbus Crohn und Colitis ulcerosa – nur um dann abzuwiegeln und auf die Unterschiede zwischen Mensch und Maus hinzuweisen. Zum Beispiel darauf, dass menschliche Muttermilch viel weniger IgG enthält als die von Mäusen. Es ist zum Mäusemelken.

Das vorgeburtliche Immunsystem: nicht unreif, sondern aktiv tolerant

In der Immunologie entwickeln sich die Techniken und mit ihnen im Idealfall auch die Einsichten so schnell, dass fünf oder gar zehn Jahre alte Arbeiten meist zum alten Eisen gehören. Aber es gibt Ausnahmen. Manches Konzept taucht irgendwann wieder aus der Versenkung auf, in der es verschwunden war, weil es zur Zeit seiner Entstehung nicht überprüft und weiterentwickelt werden konnte. Das gilt zum Beispiel für die Hypothese vom geschichteten oder gestaffelten Immunsystem, der layered immune system hypothesis, die 1989 von Leonore und Leonard Herzenberg aufgestellt wurde.

Die Schichten oder Phasen sind dabei ursprünglich sowohl stammes- als auch individualgeschichtlich zu verstehen. Auch wenn der Name Ernst Haeckel nirgends fällt, schwingt dessen biogenetisches Grundgesetz mit, also die Rekapitulationsregel: „Die Ontogenese rekapituliert die Phylogenese.“ In seiner dogmatischen Form war dieses „Gesetz“ nicht zu halten, und Haeckel hat der Sache mit seinen didaktisch geschönten grafischen Darstellungen keinen Gefallen getan.

Aber nach wie vor gilt: Je jünger ein Embryo, desto weniger spezifische Züge seiner Art trägt er, und desto mehr Züge hat er noch mit ähnlich frühen Entwicklungsstadien entfernt verwandter Arten gemeinsam – Züge, die evolutionär älter sind als die gattungs- und artspezifischen Ausdifferenzierungen der späteren Entwicklungsstadien. Auf das Immunsystem bezogen hieße das zum Beispiel: Die Elemente der evolutionär älteren angeborenen Abwehr bilden sich im werdenden Individuum früher heraus als die Bestandteile der evolutionär jüngeren erworbenen Abwehr.

Schon bei den Herzenbergs und erst recht in den neueren Arbeiten, die sich auf die Hypothese beziehen, steht aber die Ontogenese, die Embryonalentwicklung, im Vordergrund. Die Entwicklung des individuellen Immunsystems wird traditionell als Reifung verstanden: Vor der Geburt ist das System unreif – im Sinne von unterentwickelt oder nicht funktionstüchtig; nach der Geburt reift es durch den Kontakt mit Antigenen aus der Umwelt heran; im Alter erschöpft es sich.

In den letzten Jahren mehren sich aber die Anzeichen, dass das menschliche Immunsystem bereits weit vor der Geburt Funktionen erfüllt – nur eben andere als nach der Geburt. Die Geburt markiert also nicht den Beginn der Aktivität, sondern eine Änderung des Aufgabenprofils, die mit einer Änderung der zellulären Zusammensetzung und der „Gestimmtheit“ des Immunsystems einhergeht: mit dem Rückbau einer Ebene und dem Ausbau einer anderen.

Die Entwicklungsphasen der tolerogenen Immunität durch fetale T-Zellen und der aggressiven Immunität durch adulte T-Zellen überlappen sich. Nach Burt 2013, Abb. 1

Die Entwicklungsphasen der tolerogenen Immunreaktionen durch fetale T-Zellen und der aggressiven Immunreaktionen durch adulte T-Zellen überlappen sich. Nach Burt 2013, Abb. 1

Die für eine Ebene oder Phase des Immunsystems typischen Lymphozyten besiedeln die Lymphorgane und die Peripherie nicht kontinuierlich, sondern in Wellen. Ein Beispiel sind die beiden B-Zell-Populationen, die bei Mäusen zu unterschiedlichen Zeiten auftauchen, von unterschiedlichen hämatopoetischen Stammzellen im Knochenmark abstammen und unterschiedliche Eigenschaften haben: In neugeborenen Mäusen dominieren die B-1-Zellen, die vor allem in der Bauchhöhle vorkommen; bei erwachsenen Mäusen herrschen B-2-Zellen vor, die schlagkräftigere Antikörper produzieren.

Auch das T-Zell-Repertoire entwickelt sich in Wellen. Wie bereits besprochen, entstehen beim Menschen während der 9. Schwangerschaftswoche zunächst γδ-T-Zellen, die bei Erwachsenen nur noch etwa fünf Prozent der T-Zellen ausmachen. Ab der 10. Woche werden αβ-T-Zellen produziert, und zwar sowohl zyto­to­xi­sche T-Zellen (CD8+) als auch CD4+-T-Zellen, die entweder zu Helferzellen oder zu regu­la­to­ri­schen T-Zellen (Tregs) werden. Die frühen CD4+-T-Zellen haben eine starke Neigung, sich – manchmal schon im Thymus, zu einem großen Teil aber erst in der Peripherie – zu Tregs zu entwickeln und fortan besänftigend auf das restliche Immunsystem einzuwirken.

Vor allem im zweiten Schwangerschaftsdrittel wimmelt es im Körper des werdenden Kindes von Tregs. In der 24. Schwangerschaftswoche machen sie 15 bis 20 Prozent aller CD4+-T-Zellen aus, während es bei der Geburt nur noch 5 bis 10 Prozent und bei Erwachsenen unter 5 Prozent sind. Fehlen sie, etwa aufgrund eines genetischen Defekts im Treg-typischen Gen FoxP3, so kommt es bereits kurz nach der Geburt zu einer massiven, viele Organe umfassenden Autoimmunreaktion (IPEX). Erst im dritten Trimester werden die tolerogenen fetalen T-Zellen allmählich von aggressiveren adulten T-Zellen abgelöst.

Das kam für viele Forscher überraschend, denn man hatte die Entwicklung der erworbenen Abwehr jahrzehntelang fast nur an Labormäusen erforscht, bei denen die T-Zell-Produktion knapp vor der Geburt anläuft und nicht bereits im ersten Trimester. Die ersten Tregs verlassen den Mäuse-Thymus sogar erst am dritten Tag nach der Geburt. Dieser grundlegende Unterschied zwischen Mensch und Maus ist – wie so vieles – mit der ebenso grundverschiedenen life history der beiden Arten zu erklären.

So, wie das mütterliche Immunsystem während der langen Schwangerschaft beim Menschen vor der Herausforderung steht, den (halb)fremden Fetus nicht abzustoßen, muss auch der Fetus mit (halb)fremden Eindringlingen zurechtkommen, nämlich mütterlichen Zellen und Antikörpern. Mikrochimärismus – der Einbau von Zellen aus der Mutter in den Organismus ihres Kindes ebenso wie der Einbau von Zellen des Kindes in den Organismus seiner Mutter – ist bei Menschen und anderen großen, langlebigen Säugetieren weit verbreitet und in den allermeisten Fällen völlig harmlos: Das Immunsystem lernt rechtzeitig, dass diese Zellen von nun an dazugehören, und die Einwanderer integrieren sich anstandslos. Zu ihnen zählen auch mütterliche Immunzellen aller Art, etwa Monozyten, natürliche Killerzellen, T- und B-Zellen. In den fetalen Lymphknoten präsentieren einige von ihnen den Immunzellen des Kindes mütterliche Antigene.

In der Mythologie ist die Chimäre ein Wesen, das vorne Löwe, in der Mitte Ziege und hinten Drachen ist. Wir alle sind Chimären: Unser Körper enthält Zellklone, die aus unseren Müttern stammen.

Die Chimäre der Mythologie ist vorne Löwe, in der Mitte Ziege und hinten Drache. Wir alle sind Chimären: Unsere Körper enthalten Zellklone, die aus unseren Müttern stammen.

Neben mütterlichen Zellen dringen auch mütterliche Antikörper in den Fetus ein, und zwar massenhaft: Gegen Ende der Schwangerschaft ist die Konzentration von mütterlichem Immunglobulin G (IgG) im Fetus höher als im mütterlichen Blut. Über die Muttermilch nimmt das Neugeborene weiter IgG auf. Diese Antikörper schützen das Kind in den ersten Lebensmonaten vor Infektionen. Antikörper sind bekanntlich Proteine und als solche nicht nur Waffen, sondern zugleich Ziele der Abwehr – sofern das Immunsystem nicht lernt, sie zu tolerieren.

Außer mütterlichen Antigenen tauchen währen der Entwicklung des Fetus auch immer wieder neue Gewebstypen und Organe auf und mit ihnen Autoantigene, auf die das Immunsystem nicht aggressiv reagieren darf. Und die bakterielle Flora, die unsere Haut und unsere Schleimhäute unmittelbar nach der Geburt besiedelt, muss zwar in ihre Grenzen verwiesen, aber ansonsten toleriert werden. Ähnliches gilt vermutlich für einige Pathogene, etwa Viren, die die Schutzwälle rings um den Fetus überwinden und ihn bereits vor der Geburt chronisch infizieren können: Auch sie müssen zwar eingedämmt, dürfen aber nicht aggressiv bekämpft werden, weil das für das werdende Kind das Ende bedeuten würde.

Die zentrale Toleranz durch die negative T-Zell-Selektion im Thymus reicht für diese Herunterregulierung der Abwehr offenbar nicht aus: Auch in der Peripherie muss Frieden gestiftet werden. Naive fetale CD4+--T-Zellen müssen sich bei Bedarf schnell zu antigenspezifischen Tregs weiterentwickeln können. Dazu brauchen sie Signale aus der TGF-β-Familie, die tatsächlich in fetalen Lymphknoten in viel höherer Konzentration vorliegen als in adulten Lymphknoten. Auch können sich fetale Tregs, wenn sie in den Lymphknoten mit Interleukin 2 angeregt werden, stark vermehren, selbst wenn ihre T-Zell-Rezeptoren gerade nicht durch das passende präsentierte Antigen stimuliert werden – was bei adulten Tregs eine strikte Voraussetzung für die Zellteilung ist.

Auch wenn sich fetale und adulte Tregs äußerlich zum Verwechseln ähneln: Sie stammen – wie Experimente an „humanisierten“ Mäusestämmen zeigen – von unterschiedlichen hämatopoetischen Stammzellen ab, haben unterschiedliche Genexpressionsprofile und Aktivierungsschwellen und gelangen in der Peripherie in unterschiedliche Signal-Landschaften, die ihr Verhalten und ihre weitere Entwicklung in entsprechende Bahnen lenken.

Einige Vertreter der Hypothese vom mehrschichtigen oder gestaffelten Immunsystem meinen, die individuell unterschiedliche Neigung zu Autoimmunerkrankungen, Allergien und Nahrungsmittelunverträglichkeiten könne mit dem Mischungsverhältnis zwischen fetalen und adulten T-Zell-Populationen zum Zeitpunkt der Geburt zusammenhängen: Neugeborene, die nur noch wenige fetale, tolerogene T-Zellen aufweisen und dafür bereits sehr viele aggressive T-Zellen vom adulten Typ, könnten im kritischen Zeitfenster nach der Geburt eine bleibende Neigung zu Überreaktionen auf Autoantigene und harmlose fremde Antigene ausbilden.

Die Hypothese vom layered immune system ist nach wie vor umstritten, wie die Diskussion zwischen Mold und Anderson (s. u.) zeigt. Aber sie passt zu den Arbeiten über die Hemmung des bereits voll einsatzfähigen neonatalen Immunsystems durch CD71+-Zellen (junge rote Blutkörperchen), die ich hier vor einigen Monaten in zwei Beiträgen besprochen habe: Offenbar kommen wir – zumindest immunologisch – keineswegs so unreif auf die Welt, wie man früher annahm. Wieder einmal zeigt sich, dass Menschen keine groß geratenen Mäuse sind.

Literatur (chronologisch)

Herzenberg, L. A., & Herzenberg, L. A. (1989). Toward a Layered Immune System. Cell, 59, 953-954. (PDF)

Mold, J. E., & McCune, J. M. (2011). At the crossroads between tolerance and aggression: Revisiting the “layered immune system” hypothesis. Chimerism,2(2), 35–41. http://doi.org/10.4161/chim.2.2.16329

Mold, J. E., & Anderson, C. C. (2013). A discussion of immune tolerance and the layered immune system hypothesis. Chimerism, 4(3), 62–70. http://doi.org/10.4161/chim.24914

Burt, T. D. (2013). Fetal Regulatory T Cells and Peripheral Immune Tolerance in utero: Implications for Development and Disease. American Journal of Reproductive Immunology (New York, N.Y. : 1989), 69(4), 346–358. http://doi.org/10.1111/aji.12083

Loewendorf, A. I., Csete, M., & Flake, A. (2014). Immunological considerations in in utero hematopoetic stem cell transplantation (IUHCT). Frontiers in Pharmacology, 5, 282. http://doi.org/10.3389/fphar.2014.00282

Yang, S., Fujikado, N., Kolodin, D., Benoist, C., Mathis, D. (2015). Immune tolerance. Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. Science, 2015 May 1;348(6234):589-94. http://doi.org/10.1126/science.aaa7017

 

Austausch eines einzigen Gens versetzt Mäuse-Thymus um 500 Millionen Jahre zurück

So zumindest der plakative Teaser einer Meldung, die vor gut einem Jahr bei „Science Daily“ erschien. Ein Forscherteam um J. B. Swann an der Uni Freiburg hatte transgene Mäuse hergestellt, in deren Zellen das Gen Foxn1, das einen Regulator der Thymusentwicklung codiert, durch das verwandte, aber evolutionär ältere Wirbeltier-Gen Foxn4 ersetzt ist. Während ein normaler Mäuse-Thymus nur wenige B-Zellen enthält, entsteht bei einer Produktion des Regulators FOXN4 ein Lymphorgan, das sowohl T- als auch B-Zellen heranreifen lässt und an den daher als „bipotent“ bezeichneten Thymus-Vorläufer bei Fischen erinnert. Die Arbeit ist frei verfügbar:

Jeremy B. Swann et al.: Conversion of the Thymus into a Bipotent Lymphoid Organ by Replacement of Foxn1 with Its Paralog, Foxn4. Cell Reports, 2014; DOI: 10.1016/j.celrep.2014.07.017 (PDF)

Der Transkriptionsfaktor FOXN1 ist in Säugetieren unabdingbar für die Differenzierung von TEC-Vorläuferzellen in reife TECs. Er ist vermutlich in einem Wirbeltier-Urahn durch Duplikation des älteren Gens Foxn4 entstanden und hat eine sehr ähnliche, aber im Detail andere DNA-Bindungs-Domäne.

Die Vorfahren der Wirbeltiere waren sogenannte Schädellose. Von diesem Unterstamm der Chordatiere leben nur noch die Lanzettfischchen. Im Embryo des Lanzettfischchens Branchiostoma floridae, das kein Foxn1-Gen hat, wird im Rachen-Endoderm Foxn4 exprimiert. Das brachte die Forscher auf den Gedanken, dass in dieser Region des Embryos, aus der bei Wirbeltieren ja die Thymusanlage entsteht, vor der Entstehung von Foxn1 der ältere Transkriptionsfaktor FOXN4 für die Ausbildung eines Thymus-ähnlichen Lymphorgans gesorgt hat. In den TECs im Thymus stammesgeschichtlich „mittelalter“ Wirbeltiere wie der Katzenhaie, Zebrafische und Reisfische werden sowohl Foxn1 als auch Foxn4 exprimiert, in Säugetier-TECs normalerweise nur noch Foxn1.

Wenn man aber in transgenen Mäusen die Foxn1-Expression ausschaltet und zugleich die FOXN4-Produktion erhöht, kann dieses Protein FOXN1 bei der Thymusentwicklung zumindest teilweise ersetzen. Es entstehen normal funktionierende cTECs und mTECs. Allerdings ist ihre Keratin-Expression abnorm: Die meisten TECs exprimieren nun sowohl den Cortex-Marker Keratin 8 als auch das Mark-typische Keratin 5. Außerdem kommen im Thymus der FOXN4-produzierenden Mäuse zahlreiche unreife B-Zellen vor, die sich dort auch teilen. Sie halten sich vor allem rings um die Blutgefäße auf, die den Thymus durchziehen – vermutlich, weil die Fibroblasten dort FLT3-Ligand exprimieren, ein Schlüsselelement der B-Zell-Entwicklung, die sich normalerweise im Knochenmark abspielt. Das FOXN4-produzierende Thymus-Epithel ist also nicht nur zur T-Zell-Entwicklung imstande, sondern bietet auch B-Zellen ein entwicklungsfreundliches Umfeld. Bei Fischen, die von Natur aus sowohl Foxn1 als auch Foxn4 exprimieren, ist die Anwesenheit von B-Zellen im Thymus dann auch normal. Unklar bleibt, ob die im Thymus der transgenen Mäuse entstehenden B-Zellen und T-Zellen vom selben Vorläufer-Zelltyp abstammen, der sich erst im Thymus für einen Entwicklungsweg entscheidet, oder von zwei unterschiedlichen Vorläufern, die bereits „vorbestimmt“ aus dem Knochenmark in den Thymus einwandern.

Die T-Zell-Reifung im Säugetier-Thymus hängt von vier FOXN1-abhängigen Faktoren ab: CCL25, CXCL12, KITL und DLL4. DLL4 steht dabei an der Spitze der Hierarchie. Die B-Zell-Entwicklung im Thymus der genetisch veränderten, Foxn4 exprimierenden Mäuse ist zusätzlich vom allgemeinen Lymphopoese-Faktor IL-7 abhängig. Das Verhältnis von DLL4 zu IL-7 entscheidet darüber, ob der Thymus viele oder wenige unreife B-Zellen hervorbringt. DLL4 ist membrangebunden, das Zytokin IL-7 diffundiert.

Evolution: Man vermutet heute, dass es separate B- und T-Zell-ähnliche Zelltypen bereits in den Urahnen aller Wirbeltiere gab und die immense, durch somatische Rekombination entstehende B- und T-Zell-Rezeptorvielfalt erst später hinzukam. Die ersten Thymus-ähnlichen Lymphorgane entstanden wohl mit Hilfe des Transkriptionsfaktors FOXN4. Nach dessen Duplikation wurden FOXN4 und FOXN1 wohl gemeinsam exprimiert. Auf dem Weg zu den Säugetieren übernahm dann FOXN1 allein die Aufgabe; das Expressionsniveau von Dll4 in den TECs stieg an, und der Thymus war fortan nicht mehr bipotent, sondern nur noch für die T-Zell-Reifung zuständig.

Thymus-Veränderungen und Autoimmunerkrankungen

Wenn schon die Struktur des Thymus, die Funktion einiger seiner Bestandteile und die Vor- und Nachteile seiner Rückbildung ab der Kindheit nicht vollständig aufgeklärt sind, wundert es nicht, dass auch das Verhältnis zwischen einer normalen oder abweichenden Entwicklung des Thymus und allen möglichen Autoimmunerkrankungen strittig ist.

Wie so oft sind zum Beispiel Ursache und Wirkung nicht leicht zu unterscheiden: Entwickelt sich der Thymus wegen einer Autoimmunerkrankung merkwürdig? Zieht eine anomale Entwicklung des Organs die Entlassung autoreaktiver T-Zellen in die Peripherie und damit eine Autoimmunstörung nach sich? Schaukeln sich beide Entwicklungen gegenseitig hoch? Oder sind sowohl die Autoimmunerkrankung als auch die Fehlentwicklung des Thymus Folgen von etwas Drittem, etwa einer genetischen Abweichung in den T-Zell-Vorläufern?

Ich versuche gar nicht erst, aus der Literatur ein stimmiges Gesamtbild abzuleiten, sondern stelle die Aussagen verschiedener Autoren einfach nebeneinander.

1. Thymome und Autoimmunerkrankungen

Eric A. Engels (2010): Epidemiology of thymoma and associated malignancies (Volltext)

Bei Thymomen (Tumoren aus Thymus-Epithelzellen) gelangen häufig abnorm konditionierte T-Zellen in den Kreislauf, die wahrscheinlich für die mit Thymomen assoziierten Autoimmunerkrankungen wie Myasthenia gravis (MG) verantwortlich sind. Was Thymome verursacht, ist unbekannt.

C. R. Thomas, C. D. Wright und P. J. Loehrer (1999): Thymoma: state of the art (PDF)

10-15 Prozent der MG-Patienten haben ein Thymom; 30 Prozent der Patienten mit einem Thymom haben MG. Mit Thymomen sind außerdem unter anderem assoziiert (bei weniger als 5-10 Prozent der Patienten): akute Perikarditis, Morbus Addison (Nebennierenrindeninsuffizienz), Agranulozytose, Alopecia areata, Colitis ulcerosa, Morbus Cushing, hämolytische Anämie, limbische Enzephalopathie, Myokarditis, nephrotisches Syndrom, Panhypopituitarismus, perniziöse Anämie, Polymyositis, rheumatoide Arthritis, Sarkoidose, Sklerodermie, sensorimotorsche Radikulopathie, Stiff-Person-Syndrom, systemischer Lupus erythematosus (SLE) und Thyroiditis. Die meisten dieser Krankheiten sind Autoimmunerkrankungen.

2. Thymus-Involution und Autoimmunerkrankungen

M. Meunier et al. (2013): Incomplete thymic involution in systemic sclerosis and rheumatoid arthritis (nur Abstract gelesen)

In der Studie wurde bei Patienten mit systemischer Sklerose (SSc) und rheumatoider Arthritis (RA) nach Thymus-Anomalien gesucht, wie sie für andere Autoimmunerkrankungen bereits nachgewiesen wurden. Alle Studienteilnehmer waren mindestens 40 Jahre alt. Eine unvollständige Thymus-Involution (Thymus-Reste über 7 mm dick) trat signifikant häufiger bei Patienten mit SSc (15 Prozent) und RA (14 Prozent) auf als in der Kontrollgruppe (0 Prozent).

Brandon D. Coder et al. (2015): Thymic Involution Perturbs Negative Selection Leading to Autoreactive T Cells That Induce Chronic Inflammation (nur Abstract gelesen)

Die Thymus-Involution und die aus ihr folgende vermehrte Freisetzung autoreaktiver T-Zellen erhöht den Autoren zufolge das Risiko für Autoimmunerkrankungen im Alter. In der Studie sollte an Foxn1-Knockout-Mäusen untersucht werden, ob das auch für chronische Entzündung (Inflammaging) gilt: ja. Wird das Gen Foxn1 „ausgeknockt“, läuft die Involution beschleunigt ab, während der Rest des Körpers jung bleibt. Die Involution führt dazu, dass T-Zellen kurz nach Verlassen des Thymus aktiviert werden, was mit Anzeichen einer chronischer Entzündung einhergeht: Zell-Infiltration in Nicht-Lymphgewebe, erhöhte TNF-α-Produktion, erhöhter IL-6-Spiegel im Serum. Nicht eine verminderte Treg-Produktion, sondern ein Versagen der negativen Selektion durch einer verringerte Aire-Expression führt zur Entstehung autoreaktiver T-Zell-Klone.  Weiterlesen

Entstehung und Niedergang des Thymus: Kalbsbries ja, Rinderbries nein

Wie bin ich noch gleich auf das Thema Thymus gekommen, damals im September? Ach ja: Ich wollte im Autoimmunbuch-Manuskript „mal rasch“ erklären, wann und wie der Thymus während der Embryonalentwicklung entsteht. Ha! Haha! Nach der einen oder anderen Abschweifung komme ich nun auf diese Frage zurück – und verfolge den Werdegang des Organs gleich bis ins hohe Alter.

Entstehung des Thymus

Der Thymus wird beim Menschen recht früh angelegt, und zwar nicht dort, wo sich das Organ später befindet (zwischen Brustbein und Herz), sondern weiter oben: in der Region der dritten Kiementasche am Hals des Embryos. Dass Säugetier-Embryonen zunächst Kiementaschen ausbilden, ist einer der zahlreichen Belege für unsere stammesgeschichtliche Verwandtschaft mit den Fischen, die ja ebenfalls zu den Wirbeltieren gehören und auch (mindestens) einen Thymus haben. (Haie haben fünf Thymi, Knochenfische nur einen, wie wir Säugetiere.)

Stammzellen aus dem Endoderm – dem innersten der drei Keimblätter im jungen Embryo, aus dem unter anderem der Verdauungstrakt, die Leber und die Lunge entstehen – entwickeln sich hier zu Epithelzellen. In manchen, durchaus auch neuen Lehrbüchern ist noch von einer Beteiligung eines zweiten Keimblatts die Rede, nämlich des Ektoderms, das unter anderem die Haut und das Nervensystem hervorbringt. Tatsächlich haben Thymuszellen mit diesen Organen einiges gemeinsam, etwa die Keratinproduktion oder die Kommunikation über Neuropeptide. Nach derzeitigem Wissensstand stammen sie dennoch alle aus dem Endoderm.

Anfangs ist noch kein Unterschied zwischen einer Rinde und einem Mark zu erkennen, und es fehlen die Hohlräume zwischen den Zellen sowie die Blutgefäße. Besiedelt wird der junge Thymus mit T-Zell-Vorläufern aus dem blutbildenden Knochenmark, das wiederum dem mittleren Keimblatt entstammt: dem Mesoderm, das neben Knochen und Blut auch die Muskeln, die Nieren und das Herz hervorbringt. Die Besiedlung beginnt etwa ab Tag 60 der Schwangerschaft. Die durch Lockstoffe (Chemokine) angezogenen und anfangs – mangels Blutgefäßen – direkt durch das Gewebe einwandernden T-Zell-Vorläufer regen den jungen Thymus zur Ausbildung seiner charakteristischen Schwammstruktur, zur Differenzierung in Rinde und Mark sowie zur Ausbildung von Blutgefäßen an, über die dann weitere Prä-Thymozyten nachkommen.

Die T-Zell-Produktion setzt weit vor der Geburt ein

Sobald die Architektur steht, setzen die positive und die negative Selektion ein. Ab der 9. Schwangerschaftswoche produziert der junge Thymus zunächst sogenannte γδ-T-Zellen, die bei Erwachsenen nur etwa fünf Prozent aller Lymphozyten ausmachen und vor allem in der Haut und den Schleimhäuten sehr schnell auf Gewebsveränderungen (etwa durch Infektionen) reagieren können, da sie bereits voraktiviert in das Gewebe einwandern. Ihre T-Zell-Rezeptoren bestehen aus einer Gamma- und einer Delta-Kette und weisen eine viel geringere Diversität auf als die später viel häufigeren αβ-T-Zellen.

Ab der 10. Woche werden auch T-Zellen mit Rezeptoren aus α- und β-Ketten hergestellt, also Helferzellen (CD4+), zytotoxische T-Zellen (CD8+) und regulatorische T-Zellen (Tregs). Die Nachfahren der Einwanderer aus dem Knochenmark vermehren sich dabei enorm, sowohl im Thymus als auch anschließend in der Peripherie. So ist jeder individuelle T-Zell-Rezeptor mit dem ihm eigenen Antigen-Erkennungsmuster, der die Selektion im Thymus bestanden hat, im menschlichen Körper auf schätzungsweise 1000 bis 10.000 naiven (d. h. noch nie mit „ihrem“ Antigen konfrontiert gewesenen) T-Zellen vertreten, die von einem einzigen Thymozyten abstammen, also einen Klon bilden. Wenn eine T-Zelle ein Antigen erkennt, setzt eine weitere starke Vermehrung ein, damit der expandierte Klon die Gefahr schnell und gründlich eindämmen kann.

Der Thymus schrumpft – relativ ab der Geburt, absolut spätestens ab der Pubertät

Im voll entwickelten Thymus kommen auf jede Thymus-Epithelzelle etwa 1000 Thymozyten, also künftige T-Zellen. Bei der Geburt des Kindes wiegt das Organ – nunmehr an seiner endgültigen Position vor dem Herzen angelangt – etwa 15 Gramm, in der Pubertät etwa 35 Gramm, mit 25 Jahren etwa 25 Gramm, bei 60-Jährigen höchstens noch 15 Gramm und mit 70 Jahren gelegentlich sogar weniger als 5 Gramm. Das relative Gewicht sinkt bereits von der Geburt an kontinuierlich.

Thymusgewicht_Schwangerschaft_nach_FitzSimmons1988_650

Das Thymusgewicht erreicht zur Geburt seinen vorläufigen Höhepunkt. In der Kindheit wächst der Thymus zwar weiter, aber langsamer als der Rest des Körpers. Nach FitzSimmons et al. (1988): Normal length of the human fetal gastrointestinal tract.

Schon mit etwa einem Jahr setzt beim Menschen die sogenannte Involution oder Atrophie des Thymus ein, die von außen nach innen voranschreitet: Thymus-Epithelzellen werden durch Adipozyten, also Fettzellen, sowie Bindegewebszellen ersetzt. Durch diesen Umbau kann das Gewicht noch einige Jahre weiter ansteigen, obwohl die Involution bereits in vollem Gange ist. Übrig bleiben schließlich in jedem Läppchen vereinzelte Inseln mit einem Rinden- und einem Mark-Anteil, getrennt durch nichtfunktionales Gewebe. Durch den Schwund des funktionalen Thymusgewebes sinkt auch der tägliche Output an neuen naiven T-Zellen.    Weiterlesen

Hassall-Körperchen: Friedhöfe oder Missionshelfer?

Im letzten Beitrag habe ich die späteren Phasen der Thymozytenreifung, die teils an der Grenze zwischen Rinde und Mark, teils im Mark selbst ablaufen, weitgehend ausgespart. Dabei gibt es auch im Mark rätselhafte Strukturen, deren Funktion noch nicht geklärt ist: die sogenannten Hassall-Körperchen (Hassall’s corpuscles), die aus zahlreichen konzentrisch aneinandergelagerten Zellen oder Zellüberresten bestehen und in Mikroskopaufnahmen oft an Rosenblüten erinnern, weil sie den roten Farbstoff Eosin sehr gut annehmen.

Die Körperchen wurden erstmals 1846 von dem Arzt Arthur Hill Hassall beschrieben. Sie bestehen, wie man heute weiß, aus alten medullären Thymus-Epithelzellen (mTECs) und sind bereits in Embryonen nachweisbar. Ihre Zahl steigt bis zur Pubertät an und sinkt anschließend mit dem altersbedingten Abbau des funktionsfähigen Thymusgewebes wieder. Mäuse und Ratten haben relativ wenige und kleine Hassall-Körperchen, was die Erforschung dieser Gebilde erschwert.

P1310468_Hassall-Körperchen_650

Wie die Bezeichnung „Thymus-Epithelzellen“ schon andeutet, haben mTECs viel mit den Epithelzellen in unserer Oberhaut, den Keratinozyten, gemeinsam: Beide können Keratin produzieren. Beide bilden Schichten aus, indem sie sich über sogenannte Desmosomen – scheibenförmige Kontaktflächen – mit benachbarten Zellen zusammenschweißen. Die Keratinozyten in unserer Oberhaut bilden flache Schichten, verhornen mit zunehmendem Alter und werden von jüngeren Zellen nach oben weggeschoben, bis sie abschilfern. Die alten mTECs in einem Hassall-Körperchen lagern sich dagegen in konzentrischen Schichten ab. Die Augen in der Zeichnung sollen andeuten, dass die Zellen in den äußeren Schichten noch Kerne haben und auch sonst intakt und lebendig sind. In den älteren, weiter innen abgelagerten Zellresten ist dagegen keine Struktur mehr zu erkennen.

Früher hielt man die Hassall-Körperchen für Müllhalden oder Friedhöfe für alte mTECs oder aussortierte Thymozyten. Schließlich gehen im Rahmen der sogenannten negativen Selektion sehr viele der scheinbar ziellos im Mark herumirrenden Thymozyten zugrunde, wenn ihre Rezeptoren zu stark auf irgendein Autoantigen ansprechen, das ihnen die medullären Thymus-Epithelzellen, die Makrophagen oder die dendritischen Zellen präsentieren:

P1310777_Thymozytenreifung_sw_650_Klein2014_Paul2013_Parham189

Unter den dendritischen Zellen sind sowohl solche, die im Thymus entstanden sind und ihn nie verlassen haben, als auch eine Teilpopulation, die über die Blutgefäße aus anderen Teilen des Körpers in den Thymus eingewandert ist und von dort Autoantigene zur Präsentation mitgebracht hat. Medulläre Thymus-Epithelzellen dagegen stellen mithilfe ihres besonderen Transkriptionsfaktors Aire für kurze Zeit alle möglichen Autoantigene her, die sonst nur in bestimmten Organen oder Gewebetypen produziert werden. Hier noch einmal eine ältere Zeichnung, die zwei Thymozyten zeigt, die eines dieser aus dem Hut gezauberten Autoantigene erkennen – und sich damit disqualifiziert haben:

P1110584_Thymus_AIRE_zentrale_Toleranz_Zauberer_650

Aber wieso sollten die Hassall-Körperchen etwas mit der Entsorgung der autoreaktiven und damit disqualifizierten Thymozyten zu tun haben? Die Beseitigung schädlicher Zellen und Zellreste übernehmen normalerweise Fresszellen wie Makrophagen.

Doch auch wenn die Hassall-Körperchen nicht an der Beseitigung autoreaktiver T-Zellen beteiligt sind, dürften sie ihren Beitrag zur Etablierung der sogenannten zentralen Toleranz im Immunsystem leisten. Wie oben in der zweiten Zeichnung zu sehen, wandern nicht nur die einfach positiven, nunmehr reifen CD4+- oder CD8+-T-Zellen aus dem Thymusmark in die Blutgefäße aus, sondern noch ein dritter Zelltyp: die natürlichen regulatorischen T-Zellen oder nTregs.

Diese nTregs gehen aus autoreaktiven CD4+-T-Zellen hervor, die der negativen Selektion irgendwie entgehen – offenbar mit Hilfe bestimmter dendritischer Zellen, die wiederum von den Hassall-Körperchen unterstützt werden. Aber wie läuft diese Konversion potenziell gefährlicher, weil autoreaktiver CD4+-T-Zellen zu Friedensstiftern ab?

Die äußeren, lebendigen Epithelzellen in den Hassall-Körperchen produzieren kein Aire mehr und damit auch kaum noch präsentationsfähige Autoantigene. Stattdessen stellen sie den Botenstoff TSLP (thymic stromal lymphopoietin) her. Dieser hindert unreife dendritische Zellen in der Umgebung einerseits an der Produktion entzündungsfördernder Zytokine wie Interleukin 12 oder TNF-α, die für die meisten anderen dendritischen Zellen typisch sind, und regt dafür die Produktion anderer Zytokine wie TARC oder MDC an. Zum anderen steigert er die Herstellung von MHC-Klasse-II-Molekülen (den Antigen-Präsentiertellern, die für den Kontakt mit T-Zellen nötig sind) und startet in den dendritischen Zellen die Produktion der Kostimulatoren CD80 und CD86, die den mit ihnen in Kontakt tretenden T-Zellen Überlebenssignale senden.

Diese besondere Population dendritischer Zellen regt einfach positive CD4+-Thymozyten nicht nur zum Überleben, sondern auch zur Vermehrung und zur Expression des Treg-typischen Markers CD25 an. Die so entstandenen CD4+-CD25+-Thymozyten sind ausschließlich im Umfeld von Hassall-Körperchen tief im Inneren des Thymus anzutreffen und produzieren den Transkriptionsfaktor FoxP3, womit sie sich als regulatorische T-Zellen zu erkennen geben. Sie wandern dann in die Blutbahn aus und üben später im Körper einen besänftigenden Einfluss auf alle anderen T-Zellen in ihrer Nachbarschaft aus, sobald sie durch eine beginnende Autoimmunreaktion auf das Autoantigen aktiviert werden, das ihre T-Zell-Rezeptoren erkennen.

Die nTregs rekrutieren sich aus autoreaktiven Thymozyten, die von ihrer Autoantigen-Bindungsstärke her eigentlich zu normalen CD4+-T-Zellen (also Helferzellen) werden oder aber der negativen Selektion anheimfallen und im Thymus sterben müssten. Im folgenden Diagramm sind sie zwischen den beiden gestrichelten Linien angesiedelt:

Thymus_Kurve_positive_negative_Selektion_Tregs_TGF-beta_Paul_650

Lange hat man sich gefragt, wie identische Autoantigen-Bindungsstärken zu so unterschiedlichen Schicksalen führen können. Wie so oft in der Biologie dürfte die Lösung in der komplexen räumlichen Struktur des Organs liegen: Künftige nTregs mögen zwar ebenso stark reagierende T-Zell-Rezeptoren haben wie viele der Thymozyten, die zu normalen T-Helferzellen werden oder aber abgetötet werden – aber sie bewohnen eine andere ökologische Nische im Thymus: Sie haben andere Nachbarn, die ihre weitere Entwicklung mit ihren Zytokinen beeinflussen. Nur da, wo Hassall-Körperchen sind, können sie zu regulatorischen T-Zellen heranreifen.

Vermutlich sorgt eine fein austarierte Rückkopplung dafür, dass die nTregs – normalerweise etwa 10 Prozent aller CD4+-T-Zellen im Körper – nicht auf Kosten der T-Helferzellen überhand nehmen oder umgekehrt: Tregs produzieren den Botenstoff TGF-β, der im Immunsystem viele Aufgaben erfüllt, zum Beispiel Entzündungsreaktionen unterdrückt. Im Thymus scheint er die Weiterentwicklung alter mTECs zu Hassall-Körperchen zu hemmen. Solange der Thymus genug nTregs hervorbringt, sorgt deren TGF-β dafür, dass keine weiteren Hassall-Körperchen und damit keine neuen „Treg-Missionsschulen“ entstehen. Gibt es dagegen zu wenige Tregs, so sinkt die TGF-β-Konzentration im Thymusmark, sodass sich neue Hassall-Körperchen bilden, und so weiter.

Die mutmaßliche Funktion der Hassall-Körperchen als Treg-Missionsschulen schließt übrigens weitere Aufgaben, etwa in der negativen Selektion, nicht aus. So könnten die Proteine, aus denen die alten mTECs in den Hassall-Körperchen ihre scheibenförmigen Zellkontaktstellen (Desmosomen) herstellen, von benachbarten antigenpräsentierenden Zellen aufgenommen, zu Autoantigenen weiterverarbeitet und den im Mark umherwandernden Thymozyten präsentiert werden, um T-Zellen auszusortieren, die auf diese typischen Epithelzellen-Produkte ansprechen.

Wie schon das Ammenmärchen endet also auch dieser Beitrag offen: Die Fachwelt ist sich noch uneins, wozu Hassall-Körperchen wirklich gut sind. Dass sie reine Abfallprodukte sind, wage ich angesichts ihres Aufbaus, ihrer Lage im Thymus und ihrer regen Kommunikation mit den Zellen in ihrer Nachbarschaft aber auszuschließen.