Schlagwort-Archive: Affinitätsreifung

Abb. 252: Gestörte Einlasskontrolle

Bei Autoimmunerkrankungen werden die falschen Zellen in das tertiäre Lymphgewebe eingelassen: CD8+-T-Zellen, die auf die Eliminierung von Viren spezialisiert sind, werden ausgesperrt. Autoreaktive B-Zellen dürfen dagegen passieren und richten infolge ihrer Vermehrung und Affinitätsreifung viel Unheil an.

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Abb. 251: Tertiäres Lymphgewebe

Tertiäres Lymphgewebe entsteht in der Nähe hartnäckiger Entzündungsherde. Wie in normalen Lymphknoten durchlaufen aktivierte B-Zellen hier eine starke Vermehrung, einen Klassenwechsel und eine Affinitätsreifung, die ihre Schlagkraft erhöhen.

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Abb. 212: Sekundäre Immunantwort

Während der primären Immunantwort produzieren B-Zellen vor allem die großen IgM-Pentamere, die Fremdkörper im Blut verklumpen lassen. Bei einer erneuten Infektion mit demselben Pathogen werden dank des Klassenwechsels und der Affinitätsreifung kleinere Antikörper hergestellt, die das Blut verlassen können und besser an ihr Antigen binden. Die meisten B-Zellen sterben danach ab. Einige werden zu Gedächtniszellen und gehen in das Archiv unserer Infektionsgeschichte ein.

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Abb. 123: Affinitätsreifung

In den Follikeln der Lymphknoten und des tertiären Lymphgewebes kommt es zur Affinitätsreifung. Sie erhöht die Antigen-Bindungsstärke der Immunglobuline, also der B-Zell-Rezeptoren und der Antikörper. Im Uhrzeigersinn, bei 4 Uhr beginnend:

A Eine B-Zelle, die bereits ein Antigen aufgenommen hat, präsentiert ihren Fund einer T-Helferzelle (TH) und wird vollends aktiviert, sofern der T-Zell-Rezeptor das Antigen erkennt. Sie erhält von der T-Helferzelle die Lizenz, in das Keimzentrum des Follikels einzutreten.

B Im Keimzentrum des Follikels vermehrt sich die B-Zelle stark durch Teilung. Währenddessen verändert ein Enzym nach dem Zufallsprinzip einzelne Basen (A, T, C, G) in dem Gen, das die antigenspezifische Bindungsstelle des Immunglobulins codiert. Diesen Vorgang nennt man somatische Hypermutation.

C Die mutierten B-Zellen treten aus der dunklen Zone des Keimzentrums in die helle Zone über, wo sie von dendritischen Zellen (DC) erwartet werden. Diese sind für die Selektion zuständig.

D Die dendritischen Zellen präsentieren ihnen das Antigen, um die Bindungsstärke des mutierten B-Zell-Rezeptors zu prüfen.

E Hat die Mutation die Bindung der Immunglobuline an das Antigen geschwächt, stirbt die B-Zelle durch Apoptose kontrolliert ab.

F Hat die Mutation die spezifische Bindung an das Antigen gestärkt, so führt die B-Zelle dieses Antigen nun auf ihrem MHC-Klasse-II-Molekül einer follikulären T-Helferzelle (TFH) vor, die es mit ihrem spezifischen T-Zell-Rezeptor erkennt. Durch diesen Kontakt wird der Klassenwechsel bei den Immunglobulinen ausgelöst, sodass die B-Zelle nun kein IgM mehr herstellt, sondern IgG, IgE oder IgA – je nachdem, welchen Botenstoff die follikuläre T-Helferzelle ausschüttet. Dazu mehr in der nächsten Abbildung. Je nach dem Ergebnis dieser zweiten Prüfung schlägt die B-Zelle einen von vier Wegen ein:

G Die B-Zelle ist unbrauchbar, weil sie der T-Zelle ihr Antigen nicht effizient präsentiert, und stirbt.

H Die B-Zelle ist zur humoralen Abwehr geeignet, verlässt das Keimzentrum und entwickelt sich zur Plasmazelle weiter, die massenhaft Antikörper erzeugt.

I Einige B-Zellen reifen stattdessen zu Gedächtniszellen heran, die mit ihrem Wissen um die aktuelle Infektion dafür sorgen, dass das Immunsystem auf ein späteres erneutes Auftreten desselben Antigens schneller und stärker reagiert.

J Einige besonders schlagkräftige B-Zellen erhalten die Order, erneut in das Keimzentrum einzutreten, um sich zu vermehren und durch Mutation und Selektion weiter zu verbessern. So steigert der Organismus die Affinität der Immunglobuline zu einem bestimmten Antigen mit der Zeit.

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Follikuläre T-Helferzelle

Die Produktivität hat ab Mittag unter den Nachrichten aus Frankreich gelitten. Aber eine Zeichnung gibt es:

P1240183_Tfh_Rezeptoren_und_Liganden_650

Follikuläre T-Helferzellen nehmen in den Lymphknoten mit follikulären B-Zellen Kontakt auf und versorgen sie, sofern sie die Qualitätsprüfung bestehen, mit Informationen, Überlebenssignalen und Stimulatoren für Zellteilungen, Affinitätsreifung und Immunglobulin-Klassenwechsel. Für einen erfolgreichen Kontakt müssen mindestens acht verschieden geartete Signale ausgetauscht werden.

Was passiert bei Immunneuropathien?

Ich habe meine Fazialislähmung zum Anlass genommen, für das Buch zu skizzieren, wie eine Immunneuropathie abläuft. Zu den Immunneuropathien zählen Autoimmunerkrankungen wie Multiple Sklerose, das Guillain-Barré-Syndrom, chronisch inflammatorische demyelinisierende Polyneuropathie (CIDP) oder vaskulitische Neuropathie. Bei einigen ist das periphere, bei anderen das zentrale Nervensystem betroffen. Oft beschränkt sich die Störung (wie bei der Fazialislähmung) auf einen einzelnen Nerv.

Am Anfang steht vermutlich immer die Reaktivierung eines latenten Virus (z. B. Herpes) oder eine oftmals unbemerkte, da symptomfreie (sogenannte stumme oder maskierte) Infektion, hier durch ein maskiertes Bakterium dargestellt. Eine in der Blutbahn oder im Gewebe patrouillierende Immunzelle – hier eine dendritische Zelle (DC) – entdeckt den Eindringling:

Die dendritische Zelle nimmt Teile des Erregers auf und verarbeitet sie zu einem präsentablen Antigen weiter. Sie verwandelt sich in eine antigenpräsentierende Zelle (APC), die einer T-Helferzelle das Antigen auf ihrem MHC-Klasse-II-Rezeptor (hier: Tablett) präsentiert. Damit es nicht zu Fehlalarmen kommt, gibt es einen Sicherheitsmechanismus: T-Helferzellen reagieren nur dann auf ein Antigen, wenn ihnen gleichzeitig auf einem anderen Rezeptor ein sogenanntes kostimulierendes Signal präsentiert wird, das anzeigt, dass wirklich eine Infektion oder eine andere Gefahr vorliegt, die bekämpft werden muss (hier: Kerze). Auf der Oberfläche der T-Zelle gibt es für beide Signale spezifische Rezeptoren (hier: Augen/Blickkontakt):

Die T-Helferzellen reichen die Information über das Vorliegen eines Gefahr (Kerze) und über die genaue Art der Gefahrenquelle, also das Antigen (Augenbinde des Bakteriums), über Rezeptoren und Signalstoffe (Sprechblase) an B-Zellen weiter und regen diese so zur Produktion spezifischer Antikörper an:

Die B-Zellen schütten massenhaft Antikörper aus (Eimer), die spezifisch an „ihr“ Antigen binden und die Gefahrenquellen so zum Teil direkt schachmatt setzen, zum Teil zur anschließenden Zerstörung und Entsorgung markieren:

Diese normale Immunreaktion spielt sich in der Blutbahn, im Lymphgewebe und lokal im infizierten Gewebe ab. Aber manchmal läuft etwas schief: Aktivierte T-Zellen können die Blut-Nerven-Schranke durchdringen und von der Blutbahn (im nächsten Bild links) in einen Nerv (rechts) überwechseln. Das sollte eigentlich nicht passieren, da Nerven zu den sogenannten immunprivilegierten Orten im Körper gehören: Da Entzündungsreaktionen hier viel Schaden anrichten können, sind diese Orte für die meisten Immunzellen tabu. Weiterlesen