Schlagwort-Archive: Nukleotide

Abb. 57: DNA-Replikationsgabel

An einer sogenannten Replikationsgabel entstehen aus einem DNA-Doppelstrang zwei, die genau dieselben Erbinformationen enthalten: Die Abfolge der Puzzleteile – Nukleotide genannt – bleibt gleich. Jedes Nukleotid besteht aus einem Zucker, einer Phosphatgruppe und einer Base (s. o.). An der Verdopplung sind zahlreiche Enzyme beteiligt: Die Topoisomerase (T) windet die Doppelhelix auseinander, damit der Doppelstrang zugänglich wird. Die Helikase (H) mach aus dem Doppelstrang zwei Einzelstränge. Die Polymerasen (P) ergänzen jedes Nukleotid um das passende Gegenstück. Dabei wachsen beide neuen Einzelstränge in 5′-zu-3′-Richtung: in Richtung der Puzzleteil-Pfeile. Die Gabelung verschiebt sich allmählich nach links. Der obere der beiden neuen DNA-Stränge wächst einfach in dieselbe Richtung. Der untere neue Strang muss von links nach rechts wachsen, also notgedrungen stückchenweise. Dazu stellt die Primase
(PR) in bestimmten Abständen sogenannte Primer bereit, an denen jeweils ein neues Fragment beginnt. Wenn ein Fragment an den vorhergehenden Primer stößt, werden die Stücke verbunden. Weiter rechts (nicht im Bild) winden sich die beiden neuen Doppelstränge wieder zu Doppelhelices.

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Der Energiehaushalt der T-Zellen

Skizzen fürs Buch, angeregt durch Pearce E L et al. 2013, „Fueling immunity: insights into metabolism and lymphocyte function“:

P1180246_Stoffwechsel_T-Zellen_650Bei allem Nachdenken über Signalwege im Immunsystem sollte man nicht vergessen, dass Immunzellen auch einen Stoffwechsel haben: Gerade wenn sie sich stark teilen oder Infektionen bekämpfen sollen wie T-Zellen nach ihrer Aktivierung, benötigen sie enorm viel Energie – und zugleich müssen sie Nukleotide, Proteine und/oder Fette aufbauen.

Die Erläuterungen verschiebe ich größtenteils auf das Buch – hier nur etwas zur wohlgenährten T-Zelle in der Petrischale oben links: Die Ergebnisse von In-vitro-Versuchen mit T-Zellen sind unter anderem deshalb so schlecht auf die Verhältnisse im gesunden oder kranken Organismus zu übertragen, weil wir die kultivierten Zellen „verwöhnen“.

In unseren Lymphknoten und unserer Milz finden sie etwa 5-13% Sauerstoff, 5 mM Glukose, 0,5 mM Glutamin und ausreichend Nährstoffe vor; an ihrem Einsatzort im entzündeten oder infizierten Gewebe herrschen dagegen oft Sauerstoff- und Nährstoffmangel.

Eine Standard-Kulturlösung (Iscoves modifiziertes Dulbecco-Medium mit 10% Serum) enthält aber 20% Sauerstoff (2- bis 4-mal so viel wie in unserem Blut), 25 mM Glukose (5-mal so viel) und 4 mM Glutamin (8-mal so viel).

Ketten

Weitere Kettenmoleküle für den Einführungsteil des Buchs: Oben ein Lipopolysaccharid (LPS), in der Mitte ein Peptid, unten rechts eine Nukleinsäure.

P1170268_LPS_Aminosäure_Peptid_Nukleotid_Nukleinsäure_650Und unten links etwas, das sich bitte alle Sachbuchautoren hinter die Ohren schreiben möchten: Eine Nukleobase ist nicht dasselbe wie ein Nukleosid oder ein Nukleotid. Cytosin zum Beispiel ist eine Base und kein Nukleotid. Das kann doch nicht so schwer sein, Herrschaftszeiten!