Schlagwort-Archive: Epigenetik

miRNA aus pflanzlicher Nahrung reguliert Proteinsynthese in Säugern

In Zusammenhang mit der Hypothese, dass Umweltveränderungen in der industriellen und globalisierten Welt hinter der Zunahme vieler Autoimmunerkrankungen stecken, stellt sich die Frage nach den Mechanismen, über die Substanzen in der Umwelt auf unser Immunsystem einwirken könnten. Epigenetische Effekte wie Histonmodifikationen oder DNA-Methylierung dürften dabei eine große Rolle spielen. Ein weiterer Weg rückt allmählich ins Rampenlicht: miRNA.

Diese aus höchstens 22 Nukleotiden bestehenden Ribonukleinsäuren regulieren die Synthese zahlreicher Proteine in Pflanzen und Tieren, indem sie an deren von der DNA abgelesene „Bauanleitungen“, die Messenger-RNA, binden und sie damit für die proteinherstellenden Ribosomen unlesbar machen.

Wie spektrumdirekt berichtet, haben chinesische Wissenschaftler um Junfeng Zhang von der Nanjing-Universität nun nachgewiesen, dass miRNA aus Reis in Mäusen und vermutlich auch in Menschen den Cholesterinstoffwechsel beeinflusst — nicht nur über eine Artgrenze, sondern sogar über die Grenze zwischen Pflanzen- und Tierreich hinweg.

Bislang reine Spektulation (und zwar meine, nicht die der Forscher oder der spektrumdirekt-Autoren): Könnte miRNA aus unserer Nahrung auch das Immunsystem beeinflussen und dort womöglich — direkt oder indirekt — Kontrollmechanismen schwächen, die Immunreaktionen gegen körpereigene oder fremde, aber harmlose Antigene normalerweise hemmen?

Ist die Methylierung von Lysin 27 im Histon H3 wirklich ein epigenetischer Marker?

In einem kritischen Kommentar für The Scientist hinterfragt der Harvard-Genetiker Robert E. Kingston die weit verbreitete Überzeugung, dass die Methylierung der Aminosäure Lysin an Position 27 der Polypeptidkette des Histons H3 ein epigenetischer Marker sei, der das Ablesen eines Gens verhindert und bei der Replikation des DNA-Doppelstrangs stabil vererbt wird. Wie dieser Einbau von neuem, entsprechend methyliertem Histon an exakt der richtigen Stelle der neu synthetisierten DNA funktionieren soll, ist nämlich – anders als bei epigenetischen Modifikationen an spezifischen Sequenzen der DNA selbst – alles andere als klar.

Kingston zufolge wäre es sehr zu wünschen, dass diese Annahme bald durch Versuche überprüft wird, bei denen man das Lysin an Position 27 durch eine andere Aminosäure ersetzt. Leider gibt es sowohl im Drosophila- als auch im Mäuse-Genom jeweils über 20 H3-Gene, was solche Versuche massiv erschwert, denn man müsste entweder überall die richtige Punktmutation herbeiführen oder die nicht mutierten Gene stilllegen.

Ob sich jemand diese Mühe machen wird, solange die Mehrheit der Kollegen an dem „Glaubenssatz“ von den stabil vererbten epigenetischen H3-Markern festhält? Kingston mahnt: „Der Umstand, dass eine Hypothese einleuchtend klingt, enthebt uns nicht der Notwendigkeit, sie so streng wie möglich zu prüfen.“

Frank Ryan: Virolution – Die Macht der Viren in der Evolution, Kap. 7

Fortsetzung meiner Exzerpte von Kap. 5 und Kap. 6, ebenfalls noch nicht allgemeinverständlich aufbereitet

7. Machen endogene Retroviren uns krank?

Mutationen können in Wirbeltiergenen neue Stopcodons erzeugen, also jene Drei-Basen-Signale, die der Transkriptionsmaschinierie im Zellkern das Ende eines Gens anzeigen. Ein Stopcodon mitten in einem Gen sorgt dafür, dass die Messener-RNA zu kurz gerät und normalerweise nicht als Bauanleitung für ein funktionsfähiges Protein dienen kann.

Dasselbe kann auch in den Gensequenzen endogener Retroviren geschehen, aber diese können durch Rekombination mit dem Erbgut weiterer endogener oder exogener Viren repariert und somit „wiederbelebt“ werden. (Rekombination ist auch für die Häufigkeit und Heftigkeit von Grippe-Epidemien verantwortlich: Das „Schweinegrippe“-Virus beispielsweise ist ein Patchwork aus Menschen-, Schweine- und Vogelviren aus Nordamerika, Europa und Asien.) Zudem kann eine durch ein Stopcodon verkürzte virale Sequenz im holobiontischen Genom einfach eine neue Funktion übernehmen.   Weiterlesen

Epigenetik für Einsteiger

The Scientist hat kürzlich eine schöne Infografik veröffentlicht, in der die wichtigsten Grundlagen der Epigenetik erklärt werden: Epigenetics – A Primer.

Das Genetic Science Learning Center der Universität von Utah hat einen anschaulichen, knapp zwei Minuten kurzen Animationsfilm gedreht: The Epigenome at a Glance.

Großartig finde ich auch diesen knapp fünf Minuten langen Film aus demselben YouTube-Kanal, in dem mit einfachen, selbstgebastelten Modellen erläutert wird, warum eineiige Zwillinge einander im Lauf der Jahre immer weniger ähneln: The Epigenetics of Identical Twins.

The Epigenetics of Autoimmune Diseases, Kap. 8: Stress und Schilddrüsen-Autoimmunität

Notizen zum 8. Kapitel des Buches von Moncef Zouali (Hg.), Autor: Agathocles Tsatsoulis; noch nicht allgemein verständlich aufbereitet

Einführung

Schilddrüsen-Autoimmunkrankheiten wie Hashimoto-Thyreoiditis oder Morbus Basedow stellen sich ein, wenn das Immunsystem seine Toleranz gegen Selbst-Antigene in der Schilddrüse einbüßt. Ob es zu Morbus Basedow und damit zu einer Überfunktion (Hyperthyreose) kommt oder zu Hashimoto-Thyreoiditis und damit langfristig zu einer Unterfunktion (Hypothyreose), wird wohl nicht nur durch genetische Faktoren beeinflusst, sondern auch durch epigenetische Effekte, die wiederum von Umweltfaktoren wie Stress verändert werden können.

Stress wirkt über neuroendokrine Signale (Hormone) auf das Immunsystem. Während einer Stressreaktion werden die Hypothalamus-Hypophysen-Achse und das sympathische Nervensystem aktiviert, was zu Erhöhungen der Glucocorticoid- und Katecholamin-Konzentrationen führt. Beide Systeme sollen den Stressoren entgegenwirken und die Homöostase erhalten.

Lange glaubte man, Stresshormone – vor allem Glucocorticoide – würden allgemein immunsuppressiv wirken, doch Stress wirkt unterschiedlich aufs Immunsystem.   Weiterlesen

The Epigenetics of Autoimmune Diseases, Kap. 1: Transkriptionsregulierung der T-Zell-Toleranz

Notizen zum 1. Kapitel des Buches von Moncef Zouali (Hg.), Autoren: Brian T. Abe et al.; noch nicht allgemein verständlich aufbereitet

Einführung

Im Körper entstehen gelegentlich Lymphozyten (T-Zellen, B-Zellen und natürliche Killerzellen; Untergruppe der Leukozyten), die auf körpereigenes Gewebe reagieren. Diese Selbstreaktivität kann zu Autoimmunkrankheiten führen. Ihre Eindämmung erfolgt auf zwei Ebenen: zentrale und periphere Toleranz. Sowohl selbstreaktive B-Zellen als auch selbstreaktive T-Zellen können eliminiert oder tolerant gemacht werden. Schwerpunkt dieses Kapitels sind die T-Zellen.   Weiterlesen

Moncef Zouali (Hg.), The Epigenetics of Autoimmune Diseases – Vorwort

Dieses 2009 bei Wiley-Blackwell erschienene Fachbuch, das zum Glück in der Deutschen Zentralbibliothek für Medizin in Köln zu entleihen ist, wird mich noch eine ganze Weile beschäftigen – so sehr ballen sich auf über 400 Seiten die Informationen über die Schnittmenge zwischen der Erforschung der Autoimmunkrankheiten und dem „shooting star“ unter den biologischen Disziplinen, der Epigenetik.

Ich werde die 23 Kapitel peu à peu durcharbeiten und ihre Kernaussagen hier vorstellen. Dabei bemühe ich mich noch nicht um Allgemeinverständlichkeit; es handelt sich eher um leicht geglättete Exzerpte. Erläutert werden die Fachbegriffe und Sachverhalte später in Beiträgen der Kategorie „Neues vom Buch“ und in meinen Videobeiträgen.   Weiterlesen