Schlagwort-Archive: Fett

Abb. 96: Knochenmark unter dem Mikroskop


Unter dem Mikroskop fällt im Knochenmark zunächst das Fett (weiße Bereiche) auf. Die vielkernige Zelle links ist ein Megakaryozyt: eine Riesenzelle, von der sich zahlreiche Blutplättchen abschnüren. Die schraffierten kernhaltigen Zellen sind verschiedene weiße Blutkörperchen (Leukozyten) und deren Vorläuferzellen. Unter ihnen finden sich einige vesikelgefüllte Granulozyten, z. B. ganz oben rechts. Die kleinen Zellen mit den runden Kernen sind frühe Vorläufer roter Blutkörperchen (Erythrozyten). Wenn sie ihren Kern verlieren, werden sie zu Retikulozyten, also jungen Erythrozyten. Zwischen den Zellen sehen wir Bindegewebsfasern.

(Vorlage: Tafel 72 aus »Gray’s Anatomy«, 1918)

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Die Darmflora der Inuit

Vor zwei Jahren war ich in Grönland und habe gesehen, wie stark die Kultur dort bei aller Modernisierung noch durch die Jagd geprägt ist. Seither habe ich mich gefragt, wie sich die traditionelle, an tierischen Fetten und Proteinen außerordentlich reiche Kost der Inuit auf die Zusammensetzung und Diversität ihrer Darmflora auswirkt.

Vergleiche zwischen dem Mikrobiom von Menschen mit „westlicher“ Ernährung und solchen aus traditionellen Agrargesellschaften in Afrika (etwa in Burkina Faso) oder Nordamerika (etwa bei den Hutterern) habe ich hier im Blog bereits vor Jahren vorgestellt. Nach meiner Rückkehr war ich erpicht darauf, zu erfahren, wie die Darmflora der Inuit aussieht: Ist sie artenreicher als unsere verarmte „westliche“ Darmflora? Dominieren in ihr wegen der Fleischlastigkeit der Kost womöglich andere Schlüsselorganismen?

Zu meiner großen Verwunderung fand ich dazu absolut nichts in der Fachliteratur: keine einzige Arbeit. Genetische Anpassungen der Inuit an ihren Lebensraum und deren Auswirkungen auf ihre Gesundheit waren durchaus untersucht worden, ihre Darmflora aber nicht – obwohl das nun wirklich sehr nahe lag. Seither habe ich die Literatursuche ab und zu wiederholt – und inzwischen bin ich fündig geworden:

Forscherinnen und Forscher um B. Jesse Shapiro haben 2017 in zwei Arbeiten die Resultate ihrer 16S-rRNA-Analysen von Stuhl- und Toilettenpapier-Proben veröffentlicht, die sie zum einen in Inuit-Siedlungen in Resolute Bay (Nunavut, Kanada) und zum anderen in Montréal (Québec, Kanada) bei Nachfahren von Europäern gesammelt haben. Diese Nukleinsäuren stammen aus den Ribosomen von Bakterien, und es gibt große Datenbanken, in denen man einer bestimmten Basensequenz eine Bakterienart oder -Gattung zuordnen kann.

Zur Überraschung des Teams unterschied sich die typische Darmflora der weitgehend traditionell lebenden Inuit kaum vom Artenspektrum im Darm der „westlich“ lebenden Leute aus Montréal. Die Unterschiede zwischen den Individuen in beiden Gruppen waren viel größer als die zwischen den Gruppen. Auch war das Mikrobiom der Inuit nicht auffällig vielfältiger als das der „Westler“. Allerdings waren Bakterienarten der Gattung Prevotella, die vor allem Ballaststoffe aus pflanzlicher Nahrung aufschließen können, bei den Inuit signifikant schwächer vertreten als bei den Städtern europäischer Herkunft.

In einer weiteren Analyse hat das Team die Veränderung der Darmflora-Zusammensetzung im Jahresverlauf untersucht – in der Annahme, dass die Kost der Inuit sich mit den Jahreszeiten stärker verändert als in der Großstadt. Sie fanden zwar Unterschiede, aber auch diese waren außerordentlich subtil: Bei den Inuit erklärt die Saisonalität einen etwas höheren Prozentsatz der Variabilität der Mikrobiom-Zusammensetzung als bei den europäischstämmigen Städtern. Diese Schwankungen schlagen sich aber nicht in einer klaren Zu- oder Abnahme bestimmter Bakterienarten, -gattungen oder -familien im Jahreszyklus nieder, sondern nur in stärkeren Abweichungen zwischen den Individuen in der Inuit-Gruppe. Vermutlich ist deren Ernährung (noch) nicht so standardisiert wie bei den Nachfahren der Europäer in der großen Stadt.

Womöglich – so die Autorinnen und Autoren – ist die alles homogenisierende „Verwestlichung“ der Lebensweise und Ernährung bereits zu stark vorangeschritten, um noch markante Unterschiede zu entdecken. Jedenfalls ist das Inuit-Mikrobiom weder das „andere Extrem“ im Vergleich zur artenreichen Darmflora sehr fleischarm lebender ländlicher Gemeinschaften, nämlich besonders artenarm, noch ein weiteres Exempel für die größere Darmflora-Vielfalt nicht westlich lebender Menschen: Es ähnelt in fast allem unserem eigenen Mikrobiom.

 

Girard, Catherine et al. “Gut Microbiome of the Canadian Arctic Inuit.” Ed. Rosa Krajmalnik-Brown. mSphere 2.1 (2017): e00297–16. PMC. Web. 18 Aug. 2018.

Dubois, Geneviève et al. “The Inuit Gut Microbiome Is Dynamic over Time and Shaped by Traditional Foods.” Microbiome 5 (2017): 151. PMC. 

Fotos vom Arctic Circle Trail zwischen Kangerlussuaq und Sisimiut sowie von Fleischmarkt in Nuuk, Westgrönland, 2016

Knut und der ganze Rest: Urlaubsnachlese

Knut hat es postum noch ein vermutlich letztes Mal geschafft, das Sommerloch zu füllen: Während meines Urlaubs ging die Nachricht um, dass der Eisbär an einer Autoimmunerkrankung zugrunde gegangen ist, nämlich an einer Anti-NMDA-Rezeptor-Encephalitis. Hier der entsprechende Forschungsartikel von H. Prüss et al.: Anti-NMDA Receptor Encephalitis in the Polar Bear (Ursus maritimus) Knut.

Weitere Immunsystem-Meldungen und -Fachartikel der letzten Wochen; über einige davon werde ich demnächst noch bloggen:

Mikrobiom

Antibiotics and the Gut Microbiome
Antibiotics given to infant mice may have long-term effects on the animals’ metabolism and gut microbiota.

The Sum of Our Parts
Putting the microbiome front and center in health care, in preventive strategies, and in health-risk assessments could stem the epidemic of noncommunicable diseases.

How Fats Influence the Microbiome
Mice fed a diet high in saturated fat show shifts in their gut microbes and develop obesity-related inflammation.

Skin Microbes Help Clear Infection
In a small study, researchers find a link between an individual’s skin microbiome and the ability to clear a bacterial infection.
Die Studie (Open Access): The Human Skin Microbiome Associates with the Outcome of and Is Influenced by Bacterial Infection

Genetics, Immunity, and the Microbiome
The makeup of an individual’s microbiome correlates with genetic variation in immunity-related pathways, a study shows.
Die Studie (Open Access): Host genetic variation impacts microbiome composition across human body sites

Thymus

Nur 160 Plätze für T-Vorläuferzellen im Thymus frei
Abstract (Rest hinter Paywall): Multicongenic fate mapping quantification of dynamics of thymus colonization.

Lymphgewebe

Rethinking Lymphatic Development
Four studies identify alternative origins for cells of the developing lymphatic system, challenging the long-standing view that they all come from veins.

Brain Drain
The brain contains lymphatic vessels similar to those found elsewhere in the body, a mouse study shows.

Krebs und Autoimmunität

Body, Heal Thyself
Reviving a decades-old hypothesis of autoimmunity
Review (Open Access): Cancer-Induced Autoimmunity in the Rheumatic Diseases

Autoimmun-Uveitis

Bacteria to Blame?
T cells activated in the microbe-dense gut can spark an autoimmune eye disease, a study shows.

Multiple Sklerose

Melatonin for MS?
Improvements in multiple sclerosis symptoms correlate with higher levels of the sleep hormone, a study finds.

Taufliegen: Erhöhung der genetischen Vielfalt zur Pathogenabwehr

Fending Off Infection in Future Generations
Female fruit flies challenged with infection during their lifetimes have offspring with greater genetic diversity.

Plazenta

The Prescient Placenta
The maternal-fetal interface plays important roles in the health of both mother and baby, even after birth.

Asthma

Wie Bauernhöfe vor Asthma schützen
Spezifisches Protein senkt Überreaktionen des Immunsystems ab

Selbstmedikation von Affen bei Peitschenwurm-Infektionen

Sickness behaviour associated with non-lethal infections in wild primates (Abstract)

Die Darmflora der Hadza: die kleinen Helfer der Jäger und Sammler

Notizen noch nicht allgemein verständlich aufbereitet; für Teil 4 (Individualentwicklung Immunsystem) und Teil 5 (Evolution) des Buches:

Schnorr S. L. et al. (2014): Gut microbiome of the Hadza hunter-gatherers. Nature Communications 5: 3654, doi:10.1038/ncomms4654 (Open Access)

Abstract: Erstmals Darmflora ursprünglich lebender Jäger und Sammler analysiert und mit dem Mikrobiom von Italienern sowie Ackerbauern aus Burkina Faso und Malawi verglichen. Mikrobenreichtum und Biodiversität größer als in italienischer Stadtbevölkerung. Einzigartig: keinerlei Bifidobacterium; Unterschiede in der Darmflora von Männern und Frauen; Anreicherung von Prevotella, Treponema und unklassifizierten Bacteroidetes, die vermutlich beim Aufschluss ansonsten unverdaulicher Kohlenhydrate aus der überwiegend pflanzlichen Kost helfen; ungewöhnliche Proportionen bei den Clostridiales.

Intro: In Darmflora in ländlichen Gemeinschaften (wenig Antibiotika und „schlechtere“ Hygiene, unraffinierte, saisonal geprägte Kost) Bacteroidetes und Actinobacteria angereichert; in „westlicher Welt“ Diversität und Stabilität des Darm-Mikrobioms verringert. Wissenslücke: Darmflora von Jägern und Sammlern, obwohl das über 95% unserer Evolution unsere Lebensweise war. Hier: Stuhlproben von 27 Hadza aus zwei Lagern analysiert, die zu den etwa 200-300 letzten traditionell lebenden Hadza gehören – einer der letzten Jäger- und Sammler-Kulturen der Welt. Zwar sind sie moderne Menschen, aber sie leben am Eyasisee im Ostafrikanischen Graben in einer Umwelt, die derjenigen unserer Urahnen sehr ähnelt. Vergleich: Darmflora von 16 erwachsenen Italienern aus Bologna und Daten aus Burkina Faso und Malawi. Hadza und Italiener: selbes mittleres Alter (32 J.).   Weiterlesen

Knochenmark unter dem Mikroskop

Die Vorlage zu dieser Skizze kennt wohl jeder, der sich in der Wikipedia über das Knochenmark oder die Blutbildung schlau machen wollte: Sie stammt aus Gray’s Anatomy.

Knochenmark_Gray_Kerne_650Unter dem Mikroskop fällt im roten Knochenmark zunächst das Fett (weiße Bereiche) auf. Die vielkernige Zelle links ist ein Megakaryozyt: eine Riesenzelle, von der sich später zahlreiche Blutplättchen (Thrombozyten) abschnüren. Die übrigen schraffierten kernhaltigen Zellen sind verschiedene weiße Blutkörperchen (Leukozyten) und deren Vorläuferzellen. Unter ihnen finden sich einige vesikelgefüllte Granulozyten, z. B. ganz oben rechts. Die kleinen weißen kernhaltigen Zellen sind frühe Vorläufer roter Blutkörperchen (Erythrozyten). Wenn sie ihren Kern verlieren, werden sie zu Retikulozyten, also jungen Erythrozyten. Zwischen den Zellen sehen wir Bindegewebsfasern.