Schlagwort-Archive: Lactat

Geschlechtsspezifische Unterschiede im Mikrobiom von Menschen mit chronischem Erschöpfungssyndrom

Vor knapp zwei Jahren war ich noch skeptisch und auch ein wenig spöttisch, was das sogenannte Mikrogenderom angeht. Damals waren geschlechtsspezifische Unterschiede im Mikrobiom, die mit Autoimmunerkrankungen korrelieren, ausschließlich bei einem Tiermodell für Diabetes (NOD-Maus) nachgewiesen. Die in der Fachpresse suggerierte Übertragbarkeit auf den Menschen erschien mir fraglich, da man bis dahin nur bei traditionell lebenden Hadza in Tansania gewisse Unterschiede in der Zusammensetzung der Bakterienpopulationen im Darm gefunden hatte, die vermutlich auf die unterschiedliche Kost von Männern und Frauen zurückgehen: „Mag sein, dass wir nur noch genauer hinsehen müssen, um auch in anderen menschlichen Populationen geschlechtsspezifische Darmflora-Nuancen zu entdecken, die, wenn es sie gibt, dann vermutlich auch (auf höchst subtile und verschachtelte Weise) mit unserem Immunsystem wechselwirken und insofern womöglich ihr Scherflein zu den höheren Autoimmunerkrankungsrisiken von Frauen beitragen. Aber das ist noch ein langer Weg, den wir auch ohne Kunstworte aus der Hölle beschreiten können.“

Inzwischen sind wir einen Schritt weiter: Ein australisches Autorenteam um Amy Wallis hat 2016 und 2017 auf kleine bis mittelstarke geschlechtsspezifische Interaktionen zwischen Darmbakterien aus der Abteilung der Firmicutes und den Symptomen von Menschen mit chronischem Müdigkeits- oder Erschöpfungssyndrom (CES) hingewiesen.

CES trifft Frauen häufiger und schwerer

CES ist eine chronische Erkrankung unter Beteiligung des Nerven- und Immunsystems, die sich unter anderem durch pathologische Abgeschlagenheit und starke Erschöpfung bereits nach leichter körperlicher Betätigung auszeichnet. Die Ursachen sind nicht bekannt, und wie bei einigen Autoimmunerkrankungen belasten die schwierige, oftmals um Jahre verzögerte Diagnose und ärztliche Ignoranz die Betroffenen zusätzlich. Einiges spricht für eine starke Beteiligung des Immunsystems an der Erkrankung, aber offenbar eher des angeborenen als des erworbenen Arms unserer Abwehr. Damit ist CES wohl keine Autoimmunerkrankung, sondern eher eine chronische Entzündung.

Wie viele Autoimmunerkrankungen trifft auch CES mehr Frauen als Männer, etwa im Verhältnis 2:1. Bei 9 von 13 durch Fragebögen erhobenen Faktoren berichteten die hier befragten Patientinnen stärkere CES-Symptome als Patienten, was vermutlich nicht auf ein sogenanntes overreporting, also – salopp gesagt – eine größere Wehleidigkeit von Frauen zurückzuführen ist, sondern tatsächlich auf schwerere Beeinträchtigungen. So gehen die höheren Symtomberichtswerte von Frauen oftmals mit höheren Zytokinwerten im Blut einher.

Bakteriensuppe durchsequenzieren – oder Bakteriengattungen kultivieren?

Interessanterweise mussten die Forscher nun ganz genau hinschauen, um geschlechtsspezifische Unterschiede in der Darmflora der untersuchten und befragten 274 Patientinnen und Patienten zu entdecken. Grundsätzlich kann man die Zusammensetzung der Darmflora auf zwei Weisen analysieren:

Entweder durch Metagenomik, also indem man – wiederum salopp gesagt – eine Stuhlprobe komplett durch einen DNA-Sequencer jagt und die gefundenen Basensequenzen mit Datenbanken abgleicht, in denen die Erbinformationen von Bakterien hinterlegt sind. So findet man sehr viele Bakterienarten oder sogar -stämme, aber man weiß nicht, ob es sich bei diesen Organismen um etablierte „Mitbewohner“ handelt oder um Verunreinigungen oder „Durchreisende“, etwa aus einer Mahlzeit oder einer akuten Infektion.

Oder durch den Versuch, möglichst viele der Organismen in Kulturmedien anzusiedeln, die den Lebensbedingungen im Darm nahekommen, und sie auszuzählen. Bei dieser Kultivierung kann man nur die Gattung der Bakterien bestimmen, aber dafür kann man gut abschätzen, wie groß ihr Anteil an der Darmflora ist. Die Forscher haben sich für Letzteres entschieden.

Gut für das eine Geschlecht, schlecht für das andere?

Auf der Ebene der Bakterien-Gattungen waren die Mikrobiome der Frauen und Männer im Durchschnitt nahezu gleich zusammengesetzt. Aber es gab zahlreiche Korrelationen zwischen den CES-Symptomstärken und dem Anteil der Gattungen im Mikrobiom der Patientinnen und Patienten – und viele dieser positiven wie negativen Korrelationen waren geschlechtsspezifisch. Beispielsweise kamen im Darm von Frauen, die besonders starke Erschöpfung nach körperlichen Tätigkeiten angaben, mehr Clostridien vor als im Darm von Patienten, die nach einer Kraftanstrengung weniger erschöpft waren – aber bei Männern, die stark unter diesem CES-Symptom litten, war der Clostridien-Anteil nicht erhöht. Zweites Beispiel: Im Darm männlicher Patienten, die besonders stark unter Schmerzen litten, fanden sich deutlich weniger Eubakterien als bei Betroffenen, die schwächere Schmerzen hatten – aber auch weniger als bei Frauen, die besonders starke Schmerzen hatten. Der Darm von Frauen mit starken Schmerzen enthielt dafür signifikant weniger Streptokokken als der Darm von Betroffenen mit schwächeren Schmerzen – aber auch von Männern mit starken Schmerzen.

Besonders stark klafften die Korrelationen zwischen Bakterienhäufigkeit und Symptomstärke bei der letztgenannten Gattung auseinander: Bei 9 der 13 erhobenen Symptomfaktoren unterschieden sich die Korrelationen zwischen männlichen und weiblichen CES-Patienten signifikant, und stets war die Korrelation bei den Frauen negativ und bei den Männern positiv. Wollte man diese Zusammenhänge kausal interpretieren, hieße das: Streptokokken schützen Frauen vor heftigen Symptomen, verstärken aber die Belastung der Männer durch die Krankheit.

Das andere Extrem waren die Bifidobakterien, die nicht zur Abteilung Firmicutes gehören, sondern zu den Actinobakterien: Nur bei einem einzigen Symptom unterschied sich die Korrelation zwischen Bifidobakterien-Häufigkeit im Darm und Symptomschwere signifikant zwischen den Geschlechtern; insgesamt schienen diese Bakterien – wiederum kausal gedeutet – beide Geschlechter eher vor schweren Symptomen zu schützen.

Wie wirkt der Darminhalt auf das Nervensystem ein?

Über die Mechanismen, die solche kausalen Zusammenhänge möglicherweise vermitteln, konnten die Autoren nur Hypothesen aufstellen, denn ein mutmaßlich entscheidender Vermittlungsweg – der Hormonstatus – war bei den Patientinnen und Patienten nicht erhoben worden. Bekannt ist, dass viele Darmbakterien Hydroxysteroid-Dehydrogenasen produzieren, also Enzyme, die Vorformen von Sexualhormonen verstoffwechseln und so zum Beispiel den Estrogen-Pegel im Körper beeinflussen können. Unsere Sexualhormone wiederum docken an die Hormonrezeptoren vieler Zellen an und beeinflussen so unter anderem das Immun- und das Nervensystem – und damit zum Beispiel unsere Schmerzwahrnehmung.

Es gibt aber auch einen Rückkanal, und damit ist die Richtung des Kausalzusammenhangs offen: Ein durch eine Erkrankung aus dem Lot geratenes Hormonsystem kann die Darmflora durcheinander bringen, teils durch direkte Einwirkung auf die Bakterien, teils vermittelt durch die Darmschleimhautzellen. Und schließlich könnte beides – ein Ungleichgewicht in der Darmflora und starke CES-Symptome – Folge von etwas Drittem sein, zum Beispiel von Vorlieben für bestimmte Nahrungs- oder Genussmittel. Ernährungsgewohnheiten wiederum können vom Geschlecht beeinflusst sein, teils kulturell, teils hormonell vermittelt. Vor allem bei männlichen CES-Patienten scheint der D-Laktat- oder -Milchsäure-Spiegel im Blut sowohl mit der Schwere kognitiver und neurologischer Symptome als auch mit der übermäßigen Vermehrung bestimmter Bakterien im Darm zusammenzuhängen.

Ignorieren gilt nicht

Erschwerend kommt hinzu, dass nicht nur der aktuelle Hormonspiegel geschlechtsspezifische Interaktionen – etwa zwischen Darmflora und Gehirn – vermitteln kann, sondern unter Umständen auch der ehemalige Hormonstatus des Embryos oder des Neugeborenen. Denn wie ich im übernächsten Beitrag darlegen werde, prägt insbesondere Testosteron die Entwicklung des männlichen Nerven- und Immunsystems bereits kurz vor und nach der Geburt, in der sogenannten Minipubertät. Obwohl Jungen während ihrer Kindheit kaum noch Testosteron produzieren, hält diese frühe Wirkung an, weil sie sich epigenetisch dauerhaft niederschlägt: durch die Methylierung der DNA und damit die Ablesbarkeit zahlreicher Gene auf all unseren Chromosomen.

Dieses Durcheinander aufzuklären, wird nicht leicht. Dazu müsste man (1.) in allen klinischen Studien zwischen Männern und Frauen und möglichst auch in allen präklinischen Tierversuchen zwischen Männchen und Weibchen unterscheiden, (2.) stets auch den Hormonstatus ermitteln – und (3.) die Zusammensetzung des Mikrobioms noch genauer aufklären, am besten durch Kombination beider oben erläuterter Ansätze (Metagenomik und Kulturen).

Einfach nur die durchschnittliche Häufigkeit der Bakterien-Gattungen in Proben aus Männern und Frauen zu vergleichen und dabei keine Auffälligkeiten festzustellen, reicht jedenfalls nicht aus, um die Existenz und medizinische Bedeutung eines Mikrogenderoms beim Menschen auszuschließen.

Literatur

A. Wallis et al. (2016): Support for the Microgenderome: Associations in a Human Clinical Population

A. Wallis et al. (2017): Support for the microgenderome invites enquiry into sex differences

 

T-Zellen mit Stoffwechselproblemen

Es geht, wie so oft, um Ressourcen-Allokation. Wir können jede Kalorie nur einmal ausgeben: zum Nachdenken, für die Vermehrung, im Dienste der Abwehr – am besten dort, wo sie im Moment am dringendsten benötigt wird. Und wenn gerade alles im Lot ist, lagern wir sie ein für kommende Notlagen.

Wohin die Energie fließt, das regelt der Stoffwechsel oder Metabolismus. Er umfasst sowohl biochemische Reaktionswege, auf denen einfachen Rohstoffe unter Energieeinsatz zu komplexeren Strukturen aufgebaut werden, als auch Pfade, auf denen komplexe Biomoleküle zu einfachen Komponenten zerlegt werden, wobei Energie frei wird. Kurz: Metabolismus = Anabolismus + Katabolismus. Damit sich diese Prozesse nicht in die Quere kommen, laufen sie oftmals in getrennten innerzellulären Räumen oder zu unterschiedlichen Zeiten ab.

P1180246_Stoffwechsel_T-Zellen_Energie_oder_Baustoff_650

Action und Substanz: Teile des Zellstoffwechsels machen aus dem Zucker Glukose Energiewährung wie ATP. Andere Zweige des Stoffwechsels produzieren Protein- und Lipidbausteine wie Amino- oder Fettsäuren.

Energie ist eine knappe Ressource; jede Investition in einen Lebensbereich wird mit einem Mangel in einem anderen Bereich erkauft. Das gilt zum einen für ganze Organismen und ihre Organe, etwa für Guppies. Ein Forscherteam hat einen Stamm dieser Aquarienfische über einige Generationen hinweg auf besonders große und besonders kleine Gehirne hin selektiert und dann die Stärke der Immunreaktionen auf transplantierte Guppy-Schuppen gemessen: Die angeborene Abwehr wird schwächer, wenn mehr Energie in die Ausbildung und den Unterhalt eines großen Gehirns fließt. Die erworbene Abwehr bleibt dagegen gleich stark (A. Kotrschal et al., 2016, PDF).

Das gilt aber auch für einzelne Zelltypen wie Tumorzellen oder die Zellen des Immunsystems, die mit Krebszellen einiges gemeinsam haben – etwa die Fähigkeit zur raschen Vermehrung, für die in kurzer Zeit viel Energie benötigt wird. Die Energiequelle ist Glukose oder Traubenzucker, der aus dem Blut in die Zellen gelangt. Naive, d. h. noch nicht mit einem passenden Antigen konfrontierte T-Zellen haben zunächst einen niedrigen Energieumsatz. Sobald sie aber ein zu ihren Rezeptoren passendes Antigen präsentiert bekommen und dadurch aktiviert werden, geht es los: Sie müssen sich massiv vermehren, u. U. weit und mühsam an ihren Einsatzort wandern und eine Menge Wirkstoffe wie Zytokine herstellen. Anschließend leben einige von ihnen als sogenannte Gedächtniszellen noch Jahre bis Jahrzehnte weiter, um bei einem erneuten Auftreten desselben Antigens, also der Rückkehr derselben Gefahr, sehr schnell wieder aktiv zu werden.

P1180246_Stoffwechsel_T-Zellen_naiv_aktiviert_Gedächtnis

Wird eine naive T-Zelle durch ein Antigen aktiviert (Blitz), kurbelt sie die Glykolyse (G) an, um als Effektor-T-Zelle schnell schlagkräftig zu werden und sich zu vermehren. Als langlebige Gedächtniszelle (M für memory) setzt sie sie danach stärker auf die oxidative Phosphorylierung (O).

Ihr Stoffwechsel passt sich dem Bedarf in diesen drei Lebensphasen an, wobei jede T-Zell-Subpopulation (etwa CD4+, CD8+ oder Treg) ein etwas anderes Programm verfolgt.

Im Ruhezustand gewinnen die naiven T-Zellen Energie aus allen möglichen Quellen, nämlich Glukose, Fettsäuren und Aminosäuren, und zwar größtenteils in ihren Mitochondrien, den Kraftwerken unserer Zellen. Die darin ablaufenden Stoffwechselwege heißen Citratzyklus und oxidative Phosphorylierung, kurz OXPHOS. Sie sind sehr effizient, liefern also sehr viel von dem Energieträgermolekül ATP – das aber recht langsam: ideal für ruhende T-Zellen, die gemächlich durch die Blutgefäße und die Lymphknoten patrouillieren und auf die Präsentation eines Antigens warten, das zu ihren Rezeptoren passt.

Bei ihrer Aktivierung schalten die T-Zellen auf einen als Glykolyse bezeichneten Stoffwechselweg um, der stattdessen im Zellplasma abläuft und Glukose abbaut, um daraus möglichst rasch ATP und die einfachen Grundbausteine Pyruvat und Lactat zu gewinnen. Aus diesen Zwischenprodukten wird dann Zellsubstanz aufgebaut (im Wesentlichen Nukleinsäuren, Fette und Proteine) und die Zellteilung sowie die Wirkstoffproduktion angetrieben. Die Glykolyse hat eine schlechtere Energiebilanz als die Stoffwechselwege in den Mitochondrien, aber dafür ist sie schnell – und auf Tempo kommt es an, wenn eine T-Zelle ihr passendes Antigen erkannt hat und sich rasant vermehren muss, um die Gefahrenquelle zu bekämpfen, bevor der Körper großen Schaden nimmt.

Gedächtnis-T-Zellen sind dagegen wieder auf den Citratzyklus und OXPHOS angewiesen, denn sie müssen sehr lange überleben, um als Archiv für ehemalige Infektionen und andere überstandene Gefahren zu dienen. Sie müssen aber, solange sie nicht reaktiviert werden, kaum Immunsystem-Wirkstoffe herstellen oder einlagern, können also Aminosäuren und Fettsäuren aus nicht mehr benötigten Proteinen und Lipiden ruhig abbauen bzw. in Energieträgermoleküle umwandeln.

Ein Forscherteam um Zhen Yang ist 2015 der Frage nachgegangen, ob die autoreaktiven T-Zellen, die bei Autoimmunerkrankungen auftreten, womöglich einen charakteristisch veränderten Zellstoffwechsel aufweisen. Ihre Idee: Eine Stoffwechselstörung, etwa eine ständige Überproduktion von Energie, könnte die Immunzellen chronisch überaktiv machen – und eine chronische Entzündung unter Beteiligung autoreaktiver T-Zellen ist für Autoimmunerkrankungen typisch, etwa für rheumatoide Arthritis (RA) oder systemischen Lupus erythematodes (SLE). Dann könnte man diese Erkrankungen womöglich durch Eingriffe in den Stoffwechsel der T-Zellen bremsen oder gar heilen.

Das wäre natürlich zu schön gewesen. Leider stellt sich die Lage komplexer dar: Sowohl bei RA als auch bei SLE ist der Stoffwechsel der T-Zellen verändert – aber nicht gleichartig.

Bei RA fahren frisch stimulierte CD4+-T-Zellen die Glykolyse nicht so schnell hoch wie bei Gesunden; sie produzieren nicht so viel ATP und Lactat, teilen sich aber trotzdem lebhaft. Die Bremse ist ein Glykolyse-Enzym mit dem furchteinflößenden Namen 6-Phosphofructo-2-Kinase/Fructose-2,6-Bisphosphatase 3, das wir zum Glück PFKFB3 nennen dürfen. An diesem Enzym herrscht in den T-Zellen von Rheumatikern Mangel, da das entsprechende Gen viel zu schwach abgelesen wird. Die Zwischenprodukte, die sich vor diesem Nadelöhr in der Glykolyse anstauen, weichen auf einen anderen Stoffwechselweg aus: den Pentosephosphatweg. Das führt zu einem Mangel an sogenannten reaktiven Sauerstoffspezies (ROS). Ein ROS-Mangel wiederum geht mit starken Gelenkentzündungen einher; ROS schützt vor Arthritis.

Warum das Enzym PFKFB3 nicht richtig abgelesen wird, ist unklar. Die T-Zellen von RA-Patienten altern vorzeitig. Aber ob diese zelluläre Frühvergreisung durch Energiedefizite aufgrund des Enzymmangels zustande kommt oder umgekehrt das Enzym nicht richtig abgelesen wird, weil die Zellvergreisung das Erbgut schädigt und die Gen-Expression beeinträchtigt, weiß man nicht. Jedenfalls sterben T-Zellen, die nicht genug ATP produzieren, vorzeitig ab. Der dadurch drohende Lymphozyten-Mangel (Lymphopenie genannt) zwingt den Organismus, die Produktion neuer naiver T-Zellen zu beschleunigen. Das geschieht bei älteren Erwachsenen nicht etwa im Thymus, der sich ja bereits zurückgebildet hat, sondern durch verstärkte Teilung der schon im Körper kreisenden naiven T-Zellen: die sogenannte homöostatische T-Zell-Proliferation. Bei diesem Prozess scheinen sich autoreaktive T-Zellen bevorzugt zu vermehren, was zu einer Autoimmunerkrankung führen kann.

P1310948_Homöostatische_Proliferation_Oligonale_Expansion_n_650

Homöostatische T-Zell-Proliferation: Das Repertoire der naiven T-Zellen mit unterschiedlichen Rezeptoren (oberste Reihe: drei Zellklone) bleibt normalerweise bis ins Alter erhalten, weil Verluste durch Teilung der übrigen Zellen kompensiert werden. Bei einer Lymphopenie, also dem massenhaften vorzeitigen Sterben von T-Zellen, wird die homöostatische Proliferation verstärkt. Dabei können Klone verloren gehen (weiß) und autoreaktive T-Zellen (schwarz) sich so stark vermehren, dass eine Autoimmunerkrankung ausbricht.

Auch die T-Zellen von Lupus-Patienten haben einen auffälligen Stoffwechsel. Aber sie produzieren ihr ATP primär auf dem OXPHOS-Weg in den Mitochondrien, nicht durch Glykolyse. Sie produzieren mehr ROS als normale T-Zellen, nicht weniger. Ihre Energiegewinnung ist gestört; sie bauen weder Glukose noch Fettsäuren noch Aminosäuren so effizient ab wie normale T-Zellen. Vor allem freie Fettsäuren häufen sich wegen des gestörten Abbaus an. Der gestörte Fettstoffwechsel wirkt sich auch auf die Fähigkeit der T-Zell-Rezeptoren zur Wahrnehmung von Antigenen aus: Die Zellmembranen von SLE-Patienten enthalten übermäßig viele Glycosphingolipide, also Lipide mit außen anhängenden Zuckermolekülen. Diese speziellen Lipide lagern sich in der ansonsten nahezu flüssigen Zellmembran gerne zu festeren Regionen zusammen, sogenannten Lipid-Flößen, in die wiederum viele T-Zell-Rezeptoren eingebettet sind. Wohl daher nehmen die T-Zellen von Lupus-Patienten besonders leicht Autoantigen-Signale wahr und aktivieren dann ihrerseits B-Zellen, die Autoantikörper herstellen.

Was lehren uns diese gegensätzlichen Stoffwechseldefekte von T-Zellen bei zwei wichtigen Autoimmunerkrankungen aus dem rheumatischen Formenkreis? Dass die Erkrankungsmechanismen ganz verschieden sein können, auch wenn es sich in beiden Fällen um chronische Entzündungen handelt, bei denen das Immunsystem körpereigenes Gewebe angreift. Dass es daher vermutlich nicht das eine Heilmittel geben und überhaupt noch lange dauern wird, bis wir Autoimmunerkrankungen heilen können. Aber auch, dass man vor lauter Botenstoffen, Signalkaskaden und Erbinformationsableserei den Energiehaushalt des Immunsystems nicht außer Acht lassen darf: Das ist nicht etwa reine Information, die da zwischen und in den Zellen weitergeleitet wird. Es sind vielmehr Substanzen, deren Herstellung und Beseitigung zur rechten Zeit, am rechten Ort und in der rechten Menge Kraftakte und logistische Meisterleistungen des Zellstoffwechsels sind.