Abb. 254: Die Rolle von Alpha-Interferon bei der Entstehung systemischer Autoimmunerkrankungen

Erläuterungen im Fließtext des Buches. Abk.:

MΦ = Makrophage

AG = Antigene

AK = Antikörper

IK = Immunkomplexe aus Antigenen und Antikörpern

B = B-Zelle/Plasmazelle

♀ = Estrogen

NK = natürliche Killerzelle

Σ >> 0 = Summe größer Null, also mehr aktivierende als hemmende Signale

pDC = plasmazytoide dendritische Zelle

α = Alpha-Interferon

TH = T-Helferzelle

APC = antigenpräsentierende Zelle

CD4+ = CD4+-T-Zelle, z. B. T-Helferzelle

CD8+ = zytotoxische T-Zelle

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Abb. 253: Systemische Autoimmunerkrankungen

Angeborene Abwehr (links) und erworbene Abwehr (rechts) können einander bei einer systemischen Autoimmunerkrankung pathologisch verstärken. Die angeborene Abwehr – hier vertreten durch eine dendritische Zelle, eine natürliche Killerzelle, einen eosinophilen Granulozyten, einen Monozyten und einen Makrophagen – aktiviert B- und T-Zellen zum Beispiel über Botenstoffe wie Alpha-Interferon (IFN-α), transforming growth factor beta (TGF-β), den B-Zell-Aktivierungsfaktor (BAFF), die verstärkte Präsentation von Autoantigenen auf einem Übermaß an MHC-Klasse-II-Molekülen und die Freisetzung immer weiterer Autoantigene im Zuge einer Entzündungsreaktion. Die erworbene Abwehr – hier vertreten durch verschiedene T- und B-Zellen sowie Antikörper – produziert ihrerseits Stoffe, die die angeborene Abwehr alarmieren, etwa IL-6, IL-17, Tumornekrosefaktor alpha (TNF-α), Lymphotoxin alpha (Lt-α), sowie Antikörper und Immunkomplexe.

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Abb. 252: Gestörte Einlasskontrolle

Bei Autoimmunerkrankungen werden die falschen Zellen in das tertiäre Lymphgewebe eingelassen: CD8+-T-Zellen, die auf die Eliminierung von Viren spezialisiert sind, werden ausgesperrt. Autoreaktive B-Zellen dürfen dagegen passieren und richten infolge ihrer Vermehrung und Affinitätsreifung viel Unheil an.

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Abb. 251: Tertiäres Lymphgewebe

Tertiäres Lymphgewebe entsteht in der Nähe hartnäckiger Entzündungsherde. Wie in normalen Lymphknoten durchlaufen aktivierte B-Zellen hier eine starke Vermehrung, einen Klassenwechsel und eine Affinitätsreifung, die ihre Schlagkraft erhöhen.

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Abb. 250: Idiotypische Dysregulation

Idiotypische Dysregulation ist eine mögliche Erklärung für die lange Zeitspanne zwischen dem ersten Anlass und dem Ausbruch einer Autoimmunerkrankung: Antikörper (AK) binden an ein Antigen (AG), das zum Beispiel von einer Infektion herrührt. Sie werden ihrerseits Antigene für Autoantikörper (AAK1). Später entstehen andere Autoantikörper (AAK2), die wiederum an die Antigen-Erkennungsstellen der ersten Autoantikörper binden, und so weiter. Jede zweite Generation hat eine ähnliche Antigen-Spezifität wie die Antikörper gegen das ursprüngliche Antigen, das längst aus dem Körper verschwunden ist. Durch eine Kreuzreaktion erkennen die neuen Autoantikörper aber auch ein Autoantigen (AAG).

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Abb. 249: Wie eine Immunneuropathie entsteht

1. Eine antigenpräsentierende Zelle (hier eine dendritische Zelle) gewinnt ein Antigen aus einem Pathogen. Die Infektion bemerken wir oft gar nicht; sie ist »stumm« oder »maskiert«.

2. Die antigenpräsentierende Zelle zeigt das Antigen und einen Kostimulator (die Kerze) vor. T-Helferzellen mit passendem T-Zell-Rezeptor werden aktiviert.

3. Die T-Helferzellen aktivieren B-Zellen mit derselben Antigen-Spezifität.

4. Die B-Zellen stellen Antikörper gegen das Antigen her und bekämpfen so die Infektion.

5. Einige T-Zellen überwinden die Blut-Hirn-Schranke und verwechseln Teile der Myelinscheiden um die Nervenzellen mit dem Pathogen-Antigen.

6. Myelinscheiden sind fettreiche Membranen von Schwann-Zellen: Gliazellen, die um Axone (Nervenzellausläufer) gewickelt sind und eine Isolationsschicht bilden. Sie sind für die
Weiterleitung von Nervenimpulsen notwendig. Links ein Längsschnitt durch ein Axon und seine Myelinscheide, rechts ein Querschnitt.

7. Die autoreaktiven T-Zellen rekrutieren Zellen der angeborenen Abwehr, zum Beispiel Makrophagen.

8. Die angelockten Immunzellen greifen die Myelinscheiden an. Das kann zu einer Lähmung
führen.

9. Bei einigen Immunneuropathien aktivieren autoreaktive T-Helferzellen auch autoreaktive
B-Zellen.

10. Die B-Zellen stellen Autoantikörper her, die an Myelinscheiden binden und so die Attacken anderer Immunzellen verstärken. – Medikamente oder die Selbstregulation des Immunsystems können die Angriffe rechtzeitig beendet. Dann bauen überlebende Gliazellen die Myelinscheiden allmählich wieder auf. Die Nerven können wieder Impulse weiterleiten; die Lähmung geht zurück.

11. Bleibt die Myelinscheide dagegen defekt, strömen durch Ionenkanäle massenhaft Ionen (z. B. Kalzium) in die Nervenzellen ein. Die Mitochondrien schwellen an und schädigen die Axone (Sterne). Dann sterben die Axon-Enden (Kreuze), und der Kontakt zu anderen Nervenzellen bricht ab.

12. In der Nähe können sich Lymphfollikel bilden, in denen autoreaktive B-Zellen eine Affinitätsreifung durchlaufen. Außer antikörperproduzierenden Plasmazellen entstehen dabei Gedächtniszellen, durch die die Autoimmunreaktion chronisch werden kann.

13. In anderen Fällen verhindern regulatorische T-Zellen die Chronifizierung: Sie schicken die autoreaktiven Lymphozyten rechtzeitig vom Platz und beenden die Immunreaktion.

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Abb. 248: Gekaperte Immunzellen

Epstein-Barr-Viren nisten sich in langlebigen Gedächtnis-B-Zellen ein, programmieren sie subtil um und begeben sich in eine Art Langzeitschlaf: die Latenz. (In Wirklichkeit dringt nur die Viren-DNA in die Zellen ein – ohne die hier der Anschaulichkeit wegen dargestellten Virenhüllen.)

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Abb. 247: Epitope spreading

Unter epitope spreading versteht man die allmähliche Ausweitung einer spezifischen Abwehrreaktion über das erste erkannte (»dominante«) Epitop eines fremden Antigens hinaus (Schlange, oben). Leider kann sich so auch eine Immunreaktion gegen harmlose Autoantigene (Blindschleiche, unten) ausweiten. Der gestrichelte Pfeil vom oberen zum unteren dominanten Epitop stellt eine Kreuzreaktion dar.

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Abb. 246: Polyklonale Aktivierung verstärkt Autoimmunstörungen

Polyklonale Aktivierung hat den Nachteil, dass sie auch Autoimmunreaktionen verstärkt. Denn durch die Präsentation mehrerer Epitope aus demselben körpereigenen Antigen können rasch mehrere autoreaktive Zellklone entstehen.

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Abb. 245: Polyklonale Aktivierung

Ein Antigen enthält mehrere Epitope, also Erkennungsmerkmale für die spezifische Abwehr. Daher können gleichzeitig mehrere Lymphozyten-Klone aktiviert werden und expandieren. Das beschleunigt die Bekämpfung etwa von Pathogenen.

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de