Schlagwort-Archive: HIV

Jack/Du Pasquier: Evolutionary Concepts in Immunology, Teil 4: der Rest

Methicillin-resistenter Stamm des Bakteriums Staphylococcus aureus

Teil 1Teil 2Teil 3

Notizen/Exzerpte

Kapitel 5: Die andere Seite des Wettrüstens

Strategien der Pathogene: per Mutation und Selektion die Abwehr der Wirte ausschalten, also den Rezeptoren entwischen, den Signalweg stören oder dem terminalen Effektor entkommen. Oft kann Pathogen seine Fitness durch Mäßigung der Virulenz erhöhen, damit es länger in einem Wirt bleiben kann. Bsp.: Myxomatose in australischen Kaninchen. Ursprünglich tötete eingeführtes Virus 99,5% der Kaninchen, im Mittel in 11 Tagen. Durchgesetzt hat sich Mutante, die zu 90% tötet und dafür im Mittel 23 Tage braucht. Bsp. für Kompromiss: Wasserfloh Daphia magna und im Verdauungstrakt lebendes pathogenes Bakterium Pasteuria ramosa: Polymorphe Resistenzallele und polymorphe Virulenzallele -> dynamisches Gleichgewicht = negativ häufigkeitsabhängige Selektion; kein Bakterienstamm kann alle Wasserflöhe in einer Population befallen, kein Wasserfloh ist gegen alle Stämme resistent. Bsp. für trojanische Pferde/Zombies, um Hauptwirte zu infizieren: Toxoplasma gondii manipuliert Mäuseverhalten, um in Katzen zu gelangen; auch viele Bsp. im Insektenreich (parasitoide Wespen machen mit Viren-Hilfe Raupen zu Wächter-Zombies …). Bsp. Amöben, domestiziertes Mavirus und Mimivirus: s. Teil 1.

Strategien gg. angeborene Abwehr: 1. unsichtbar machen für Rezeptoren, z. B. durch Polysaccharidkapsel. Verlust der Kapsel beseitigt oder reduziert Pathogenität. Kapsel schränkt aber auch Virulenzmechanismen durch ggs. Abschirmung ein. Yersinia pestis verursacht Beulen- und Lungenpest mit sehr unterschiedlichem R0, hat zahlreiche Virulenzfaktoren, darunter strukturell verändertes Lipid-A in LPS durch temperaturabhängige Acyltransferase: Flöhe 26 °C -> normal -> Hexa-Acyl-Lipid A; Menschen 37 °C -> Enzym inaktiv -> Tetra-Acyl-Lipid-A, das TLR-4 nicht aktiviert -> Zeitgewinn. Auch Helicobacter pylori beherrscht den Trick, Hexa- in Tetra-A. umzuwandeln. 2. Praktisch alle Signalwege von Rezeptoren zu Effektoren wurden von irgendeinem Pathogen gehackt. 3. Effektoren ausschalten: z. B. Phagozytose: Listeria monocytogenes löst Endosom-Membran und flieht ins Cytosol, Salmonella manipuliert mit Mediatoren Zellskelett (MT) und repliziert in Endosomen; ist dort vor Lysosomen und Cytosol-Rezeptoren geschützt. Zellen versuchen die Bakterien auszuhungern, Salmonellen scheiden Siderophoren aus, um dennoch an divalente Metallionen heranzukommen.

Strategien gg. adaptive Abwehr: HIV, HCMV (Humanes Cytomegalovirus), Mycobacterium tuberculosis oder Trypanosoma brucei entkommen ihr durch 1. brute force, 2. Totstellen oder 3. ständige Veränderung. 1. HIV vernichtet direkt die aktivierten CD4+-T-Zellen, HCMV reduziert Wirksamkeit der CD8+-T-Killerzellen. NK-Zellen als Backup aus dr angeborenen Abwehr, Missing self – aber HCMV exprimiert auf Oberfläche infizierter Zellen Moleküle, die MHC-Klasse-I-Molekülen sehr ähnlich sehen – usw. usf. 2. Latente Infektionen, ebenfalls bei HIV und HCMV. Tuberkulose: größter bakterieller Killer der Menschheit; etwa 90% der Infizierten bleiben symptomfrei. Makrophagen können die Bakterien nicht vertilgen, kapseln sie zusammen mit T-Zellen in Granulomen aus Bindegewebe ein. In deren Mitte gibt es praktisch keinen Sauerstoff, fast nur tote Zellen. M. tuberculosis kann in äußerst feindseliger Umwelt „schlafend“ überleben; ein paar aktive Bakterien verlassen als Scouts die Granulome. Sobald Wirt z. B. durch HIV-Infektion geschwächt ist, erwachen sie.  3. HIV: Hypermutation während reverser Transkription. Schlafkrankheit: Trypanosomen von Tsetsefliegen übertragen, sind im Blut von variablen Oberflächen-Glycoproteinen (VSG) bedeckt. Immunsystem sieht nur Spitzen dieser Fäden, die schlechtes Ziel sind. Die VSG werden im Fließbandverfahren so schnell von vorne nach hinten transportiert und am Flagellum recycelt, dass jedes Molekül, das von einem angeborenen Rezeptor erkannt wurde, nach spätestens 120 Sekunden verschwunden ist. Zwar sind VSG hervorragende Antigene, sodass sie viele Antikörper hervorrufen, aber ein paar Bakterien entkommen aufgrund ihrer Variabilität und breiten sich dann aus. Trypanosomen haben 2000 VSG-Gene, die durch Genkonversion zu einer riesigen Vielfalt gemixt werden.

Kapitel 6: Nachwort

Bei Infektionen und Abwehr geht es ums Überleben, da zählt nicht die eleganteste Lösung, sondern alles, was funktioniert. Ständig werden alte Gene ausgeborgt und durch Mutation zurechtgebogen oder durch Exon-Shuffling neu zusammengewürfelt; permanente Umwälzung.

 

Burning Down the House: Pyroptose

Im vorigen Beitrag habe ich einen Überblick über die Todesarten von Zellen gegeben. Eine Methode des zellulären Selbstmords, die Pyroptose, stelle ich hier ausführlicher vor.

Der 2001 geprägte Name bedeutet so viel wie „Feuertod“. Die Pyroptose ist ein stark entzündliches Todesprogramm, das vor allem mit Bakterien infizierte Zellen aktivieren, um eine Ausbreitung der Infektion zu verhindern. Der Zelltod wird durch einen Proteinkomplex namens Inflammasom vermittelt. Das klassische Beispiel sind Makrophagen, also professionelle Fresszellen aus der angeboren Abwehr, die von Salmonella typhimuroum, Shigella flexneri, Listerien, Legionellen oder anderen Bakterien befallen sind, die in ihrem Zytoplasma leben. Aber auch Zellen der Darmschleimhaut, die mit Salmonellen infiziert sind, sterben durch Pyroptose und entlassen dabei die Bakterien wieder in den Darm, aus dem sie gekommen sind. So verhindern sie, dass die Salmonellen durch die Darmschleimhaut-Barriere tiefer ins Gewebe eindringen.

Evolutionäres Wettrüsten

Zwischen innerzellulären Pathogenen und ihren Wirtszellen herrscht ein Wettrüsten: Die Keime versuchen mit immer neuen Gift- und Signalstoffen, die Selbstmordprogramme der Zellen entweder zu forcieren und zu ihrer eigenen Verbreitung zu nutzen oder zu unterbinden, um im Verborgenen überdauern zu können. Und die Zellen versuchen die Keime entweder zu verdauen oder auszuhungern – oder sich selbst stillzulegen, um die Vermehrung der Keime und damit die Ausbreitung der Infektion zu verhindern. Da Pathogene diese Strategie zu unterwandern versuchen, verfügen Zellen über mehrere Selbstmordprogramme: Im Fall einer Blockade können sie auf eine andere Todesart umschalten.

An der Pyroptose sind wie an der bekannteren intrinsischen Apoptose Enzyme aus der Caspase-Familie beteiligt. Die Ähnlichkeit der Wirkmechanismen könnte auf die Verwandtschaft von Bakterien und Mitochondrien zurückzuführen sein: Diese Zellkraftwerke, deren Durchlöcherung ein zentraler Schritt der intrinsischen Apoptose ist, sind evolutionär wohl aus innerzellulären Bakterien hervorgegangen. Pathogen-Bestandteile oder PAMPs (bei der Pyroptose) bzw. das Protein Cytochrom C aus den Mitochondrien (bei der Apoptose) lösen den Zusammenbau von Proteinkomplexen namens Inflammasom bzw. Apoptosom aus, die die späteren Schritte der Todesprogramme ausführen.

Ein Ende mit Knalleffekt

Ein Inflammasom besteht typischerweise aus Sensoren oder Rezeptoren für bakterielle Moleküle und andere Zellstress-Signale, dem Enzym Caspase-1 und Adapterproteinen. Die Zusammenlagerung dieser Komponenten im Inflammasom aktiviert die Caspase-1. Das Enyzm zerschneidet dann wohl einige Proteine, die an der Glykolyse – dem Zuckerabbau – beteiligt sind. So wird die Herstellung des Energieträgers ATP unterbunden: Sowohl den Pathogenen als auch der Wirtszelle geht gewissermaßen der Sprit aus.

Außerdem zerschneidet Caspase-1 die Vorformen der Zytokine IL-1β und IL-18, sodass sie aktiviert und ausgeschieden werden, in der Nachbarschaft Entzündungsalarm geben und Immunzellen anlocken können – vor allem Neutrophile, die dann Bakterien bekämpfen, die aus den infizierten Zellen ausgestoßen wurden oder entkommen sind. (Die Neutrophilen selbst können keine Pyroptose durchlaufen; sind gegen diese Form des infektionsinduzierten Selbstmords immun und daher ideale Bakterienbekämpfer.) Die gleichzeitige Freisetzung von Zytokinen, Bakterien, antimikrobiellen Substanzen und Alarmsignalen oder DAMPs – etwa dem kürzlich hier vorgestellten Molekül HMGB1 – sorgt für eine besonders energische Immunreaktion.

Anders als bei der weitgehend still verlaufenden Apoptose entstehen bei der Pyroptose außerdem Poren in der äußeren Membran der Zellen, die daraufhin wegen des osmotischen Drucks anschwellen und schließlich platzen (Lyse). In dieser Hinsicht ähnelt die Pyroptose der Nekrose.

Der Auslöser entscheidet über Tod oder Rettung

Der bloße Zusammenbau eines Inflammasoms und selbst die Aktivierung von Caspase-1 sind aber nicht immer ein Todesurteil für die Zelle: Ein Inflammasom, das in einer frisch infizierten Zelle zusammengesetzt wird, ist etwas anders aufgebaut als eines, dessen Zusammenbau durch Gefahrensignale aus der Umgebung der Zelle initiiert wird, etwa aus infizierten Nachbarzellen. Im ersten Fall wird die infizierte Zelle eliminiert und die Nachbarschaft mit starken Entzündungssignalen geflutet. Im zweiten Fall wird stattdessen ein Reparaturprogramm ausgeführt, bei dem die Zelle nicht stirbt, sondern sich selbst heilt, indem sie durch Autophagie defekte Komponenten und Mikroben abbaut und ggf. undichte Membranen flickt.

Wenn die Strategie der verbrannten Erde fehlschlägt

Normalerweise hilft die Pyroptose dem Organismus, infizierte Zellen und mit ihnen die Keime zu beseitigen. Ein exzessives pyroptotisches Makrophagensterben kann allerdings das Immunsystem schwächen, da es dann zu wenig professionelle Fresszellen und antigenpräsentierende Zellen für weitere Immunreaktionen gibt. Etwas ähnliches geschieht bei einer HIV-Infektion: Die Retroviren nisten sich in ruhenden T-Zellen ein, die daraufhin durch Pyroptose sterben. Die Viren werden dadurch aber nicht ganz eliminiert, sondern weichen in andere T-Zellen aus, die dann durch Apoptose sterben. Der Mangel an T-Helferzellen führt schließlich zu AIDS.

Auch droht eine Sepsis, wenn aus zahlreichen pyroptotischen Zellen große Mengen an Alarmsignalen oder DAMPs austreten. Dann bricht ein sogenannter Zytokinsturm los, bei dem eine Massenausschüttung von Zytokinen zahlreiche Immunzellen anlockt, die ihrerseits massenhaft Zytokine ausschütten. Dieser Entzündungsteufelskreis lässt sich oft nicht rechtzeitig stoppen.

Und spätestens bei „Teufelskreis“ ahnt man es: Auch bei einigen Autoimmunerkrankungen könnte Pyroptose eine unglückliche Rolle spielen, weil bei der Lyse der Zellen Autoantigene freigesetzt werden, was Attacken autoreaktiver Immunzellen auslösen oder verstärken kann. Allerdings konnte man bisher nur in wenigen Fällen Bakterien oder andere Pathogene nachweisen, die sich langfristig in unseren Zellen einnisten, so ständig die Pyroptose anheizen und damit schließlich Autoimmunreaktionen auslösen. Wahrscheinlicher ist es, dass in den Zellen von Menschen mit entsprechender genetischer Disposition auch ohne Infektion als Auslöserreiz gelegentlich Inflammasomen zusammengebaut werden, sodass Caspase-1 in Aktion tritt und zur Ausschüttung entzündungsfördernder Zytokine führt: sozusagen ein falscher Feueralarm, der dann wirklich zu einem Brand führt.

Literatur:

Dave Boucher, Kaiwen W. Chen, Kate Schroder (2015): Burn the house, save the day: pyroptosis in pathogen restriction (PDF)

Katherine Labbé, Maya Saleh (2011): Pyroptosis: A Caspase-1-Dependent Programmed Cell Death and a Barrier to Infection (PDF)

Christopher N. LaRock, Brad T. Cookson (2013): Burning Down the House: Cellular Actions during Pyroptosis

Epstein-Barr-Viren kapern und überdauern in B-Zellen

P1230954_EBV-Schläfer_in_B-Zelle_650

Etliche Bakterien und Viren entziehen sich der Abwehr, indem sie sich ausgerechnet im Inneren von Immunzellen einnisten. Eines der bekanntesten Beispiele ist das Humane Immundefizienz-Virus (HIV), das in T-Zellen überdauert. Viel häufiger und zum Glück weniger gefährlich ist das Epstein-Barr-Virus (EBV), das zu den Herpes-Viren gehört und sich in unseren B-Zellen versteckt. Einmal infiziert, trägt man es so ein Leben lang mit sich herum, und meistens bemerkt man davon nichts.

Bis zum 35. Lebensjahr haben sich über 95 Prozent aller Menschen das Virus zugezogen. Während sich in den Entwicklungsländern – wie früher auch bei uns – die meisten bereits als Kleinkinder symptomfrei anstecken, infizieren sich etliche Menschen in hoch entwickelten Ländern mit guter Hygiene erst als Jugendliche oder junge Erwachsene und entwickeln dann das Pfeiffer-Drüsenfieber. Nach einer akuten Infektionsphase in den Mandeln startet das Virus ein Latenzprogramm: Es nistet sich in langlebigen B-Gedächtniszellen ein, in denen es nicht weiter stört, aber die Funktion der B-Zellen subtil beeinflussen kann. Die B-Gedächtniszellen wandern über die Blutbahn in andere Organe.

Schon lange steht das Virus im Verdacht, bei Menschen mit entsprechender genetischer Veranlagung den Ausbruch von Autoimmunerkrankungen zu fördern, etwa Lupus, Multiple Sklerose, rheumatoide Arthritis, Hashimoto-Thyreoiditis, Sjögren-Syndrom, Typ-1-Diabetes, systemische Sklerose oder chronisch-entzündliche Darmerkrankungen. Gegen welches Organ oder Gewebe sich die Autoimmunreaktionen richten, scheint von ererbten Risikoallelen abzuhängen, insbesondere von bestimmten MHC-Klasse-II-Genvarianten und einer Veranlagung zu einem Mangel an regulatorischen T-Zellen (Tregs). Aber wie tragen die Viren zum Ausbruch der Autoimmunerkrankung bei? Alle möglichen Mechanismen werden in der Literatur diskutiert: molekulare Mimikry zwischen EBV-Proteinen wie EBNA-1 und menschlichen Proteinen wie dem Lupus-Autoantigen Ro, Bystander Activation autoreaktiver T-Zellen durch Entzündungssignale aus den infizierten B-Zellen, Epitope Spreading über das anfangs dominante EBV-Antigen hinaus oder polyklonale Antikörperbildung im Zuge der Vermehrung und Aktivierung der befallenen B-Zellen.

Außerdem wurde spekuliert, die Viren könnten naive autoreaktive B-Zellen so umprogrammieren, dass sie sich auch ohne Aktivierung durch Autoantigen-Kontakt in sehr langlebige Gedächtnis-B-Zellen umwandeln, die dann später Autoimmunreaktionen auslösen. Die Viren könnten auch endogene Retroviren wie HERV-K18 oder HERV-W aktivieren, die normalerweise untätig in unserem Genom schlummern, nach ihrer Erweckung durch EBV aber Superantigene herstellen, die zahlreiche T-Zellen polyklonal aktivieren könnten. Bewiesen ist aber nichts.

Dass im Blut von Patienten mit Autoimmunerkrankungen manchmal deutlich mehr Anti-EBV-Antikörper oder EBV-DNA-Moleküle nachzuweisen sind als bei Gesunden, belegt noch keine Verursachung der Erkrankung durch EBV: Vielleicht stört umgekehrt die Autoimmunerkrankung das Gleichgewicht in den infizierten B-Zellen, sodass die Viren aus ihrem Latenzzustand erwachen und sich vermehren. Da die üblichen Tiermodelle für Autoimmunerkrankungen, insbesondere Mäuse- und Rattenstämme, sich nicht mit EBV infizieren lassen, können auch Tierversuche keine rasche Klärung bringen.

Neue Literatur bis einschließlich Dezember 2013, Teil 2

Weiter geht’s mit der Ausbeute der aufgelaufenen Wissenschafts-Newsletter. T1-T5 sind die Buchteile, für die der Artikel jeweils relevant sein könnte (T1 Einführung, T2 Grundlagen Immunsystem, T3 Ablauf [Auto]Immunrekation, T4 Entwicklung Immunsystem von der Zeugung bis ins Alter, T5 Evolution Immunsystem).

How HIV Destroys Immune Cells T3

Dogs, Dust Microbes, and Allergies T4, T5 (Koevolution Immunsystem – Mikrobiom)

Nishikawa H et al. (2013): Sex differences in the protection of host immune systems by a polyembryonic parasitoid (Abstract) T3, T5

Kallio ER et al. (2013): Maternal antibodies contribute to sex-based difference in hantavirus transmission dynamics (Abstact) T4

Bolte S et al. (2913): Specific immune priming in the invasive ctenophore Mnemiopsis leidyi (Abstract) T5

Rosengaus RB et al. (2013): Immune-priming in ant larvae: social immunity does not undermine individual immunity (Abstract) T3, T5

McFall-Ngai M et al. (2913): Animals in a bacterial world, a new imperative for the life sciences (Open Access) T4, T5 (Mikrobiom)

Zuk M, Borrello ME (2103): Parasites and altruism: converging roads (Open Access) T5

Potlukova, Eliska, et al. (2013): Association between Low Levels of Mannan-Binding Lectin and Markers of Autoimmune Thyroid Disease in Pregnancy (Open Access) T3, T4

Choi YM et al. (2013): Low Levels of Serum Vitamin D3 are Associated with Autoimmune Thyroid Disease in Pre-Menopausal Women (Abstract) T3, T4

Miskinyte M et al. (2013): The Genetic Basis of Escherichia coli Pathoadaptation to Macrophages (Open Access) T3, T5
Dazu auch How Bacteria Evade the Immune System

David LA et al. (2013): Diet rapidly and reproducibly alters the human gut microbiome (Abstract) T4, T5
Dazu auch Gut Bacteria Vary with Diet

Probst AJ et al. (2013): Archaea on Human Skin (Open Access) T4, T5
Dazu auch Neue Mitbewohner auf der menschlichen Haut entdeckt

Ristori G et al. (2103): Effects of Bacille Calmette-Guérin after the first demyelinating event in the CNS (Abstract)  T3
Dazu auch TB Vaccine Protects Against MS

Hsiao EY et al. (2013): Microbiota Modulate Behavioral and Physiological Abnormalities Associated with Neurodevelopmental Disorders (Open Access) T4
Dazu auch Gut Microbes and Autism

Joseph CG et al. (2013): Association of the Autoimmune Disease Scleroderma with an Immunologic Response to Cancer (Abstract) T3
Dazu auch A Cancer Culprit in Autoimmunity

Immunschwäche durch Autoimmunreaktion

Gamma-Interferon, Grafik von Nevit Dilmen, GNU Free Documentation License, Wikimedia

In der vergangenen Woche wurde unter anderem bei Spiegel Online über eine neue Aids-ähnliche Immunschwäche berichtet, die vor allem bei älteren Erwachsenen aus Thailand und Taiwan auftritt und nicht durch HIV-Viren ausgelöst wird, sondern durch Autoantikörper gegen das Zytokin Gamma-Interferon (IFN-γ).

Der Fachartikel ist nicht frei zugänglich, würde mir für mein Buch aber auch nicht weiterhelfen, da die Mechanismen, die zu der Autoimmunreaktion führern, noch völlig unklar sind. Aus dem Abstract geht hervor, dass 88 Prozent der Betroffenen, bei denen – ähnlich wie bei unbehandelten Aids-Patienten – zahlreiche opportunistische Infektionen auftreten, Autoantikörper im Serum haben, die das körpereigene Gamma-Interferon attackieren und ausschalten. Dieser wichtige Botenstoff wird bei bakteriellen Infektionen von Th1-Zellen ausgeschüttet, sobald sie Kontakt mit einer antigenpräsentierenden Zelle hatten (einem Makrophagen, der Bakterien oder Bakterienteile verschlungen hat). Er aktiviert weitere Makrophagen und löst die Herstellung antibakterieller Peptide aus. Durch seinen Ausfall können die Infektionen nicht richtig bekämpft werden.

Aufgrund der ähnlichen Symptome kann die Erkrankung leicht mit Aids oder mit Tuberkulose verwechselt werden. Da sie nicht familiär gehäuft auftritt, ist sie wohl nicht im engeren Sinne erblich. Warum sie aber bisher nur bei Asiaten nachgewiesen wurde, ist unklar. Wenn ich raten sollte: Vielleicht betreibt irgendein ansonsten harmloser Erreger, der vor allem in Asien auftritt, molekulare Mimikry mit Gamma-Interferon als „Vorlage“, sodass unsere gegen den Erreger gerichteten Antikörper bei entsprechender genetischer Prädisposition (z. B. bei bestimmten MHC-Varianten, die vielleicht auf Asiaten beschränkt sind) übers Ziel hinausschießen und auch das ähnlich strukturierte Gamma-Interferon angreifen.

Der Fall zeigt, dass Immunschwäche und Autoimmunerkrankungen, obwohl sie gewissermaßen entgegengesetzte Störungen (Unter- und Überreaktionen) des Immunsystems sind, einander nicht ausschließen: Eine Autoimmunreaktion kann, wenn sie sich ausgerechnet gegen eine andere Komponente des Immunsystems richtet, auch zu einer Immunschwäche führen.