Archiv der Kategorie: Zeichnungen

Die Zeichnungen aus meinem Buch zur freien Verwendung in Vorträgen, Flyern usw. Quellenangabe: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Abb. 251: Tertiäres Lymphgewebe

Tertiäres Lymphgewebe entsteht in der Nähe hartnäckiger Entzündungsherde. Wie in normalen Lymphknoten durchlaufen aktivierte B-Zellen hier eine starke Vermehrung, einen Klassenwechsel und eine Affinitätsreifung, die ihre Schlagkraft erhöhen.

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Abb. 250: Idiotypische Dysregulation

Idiotypische Dysregulation ist eine mögliche Erklärung für die lange Zeitspanne zwischen dem ersten Anlass und dem Ausbruch einer Autoimmunerkrankung: Antikörper (AK) binden an ein Antigen (AG), das zum Beispiel von einer Infektion herrührt. Sie werden ihrerseits Antigene für Autoantikörper (AAK1). Später entstehen andere Autoantikörper (AAK2), die wiederum an die Antigen-Erkennungsstellen der ersten Autoantikörper binden, und so weiter. Jede zweite Generation hat eine ähnliche Antigen-Spezifität wie die Antikörper gegen das ursprüngliche Antigen, das längst aus dem Körper verschwunden ist. Durch eine Kreuzreaktion erkennen die neuen Autoantikörper aber auch ein Autoantigen (AAG).

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Abb. 249: Wie eine Immunneuropathie entsteht

1. Eine antigenpräsentierende Zelle (hier eine dendritische Zelle) gewinnt ein Antigen aus einem Pathogen. Die Infektion bemerken wir oft gar nicht; sie ist »stumm« oder »maskiert«.

2. Die antigenpräsentierende Zelle zeigt das Antigen und einen Kostimulator (die Kerze) vor. T-Helferzellen mit passendem T-Zell-Rezeptor werden aktiviert.

3. Die T-Helferzellen aktivieren B-Zellen mit derselben Antigen-Spezifität.

4. Die B-Zellen stellen Antikörper gegen das Antigen her und bekämpfen so die Infektion.

5. Einige T-Zellen überwinden die Blut-Hirn-Schranke und verwechseln Teile der Myelinscheiden um die Nervenzellen mit dem Pathogen-Antigen.

6. Myelinscheiden sind fettreiche Membranen von Schwann-Zellen: Gliazellen, die um Axone (Nervenzellausläufer) gewickelt sind und eine Isolationsschicht bilden. Sie sind für die
Weiterleitung von Nervenimpulsen notwendig. Links ein Längsschnitt durch ein Axon und seine Myelinscheide, rechts ein Querschnitt.

7. Die autoreaktiven T-Zellen rekrutieren Zellen der angeborenen Abwehr, zum Beispiel Makrophagen.

8. Die angelockten Immunzellen greifen die Myelinscheiden an. Das kann zu einer Lähmung
führen.

9. Bei einigen Immunneuropathien aktivieren autoreaktive T-Helferzellen auch autoreaktive
B-Zellen.

10. Die B-Zellen stellen Autoantikörper her, die an Myelinscheiden binden und so die Attacken anderer Immunzellen verstärken. – Medikamente oder die Selbstregulation des Immunsystems können die Angriffe rechtzeitig beendet. Dann bauen überlebende Gliazellen die Myelinscheiden allmählich wieder auf. Die Nerven können wieder Impulse weiterleiten; die Lähmung geht zurück.

11. Bleibt die Myelinscheide dagegen defekt, strömen durch Ionenkanäle massenhaft Ionen (z. B. Kalzium) in die Nervenzellen ein. Die Mitochondrien schwellen an und schädigen die Axone (Sterne). Dann sterben die Axon-Enden (Kreuze), und der Kontakt zu anderen Nervenzellen bricht ab.

12. In der Nähe können sich Lymphfollikel bilden, in denen autoreaktive B-Zellen eine Affinitätsreifung durchlaufen. Außer antikörperproduzierenden Plasmazellen entstehen dabei Gedächtniszellen, durch die die Autoimmunreaktion chronisch werden kann.

13. In anderen Fällen verhindern regulatorische T-Zellen die Chronifizierung: Sie schicken die autoreaktiven Lymphozyten rechtzeitig vom Platz und beenden die Immunreaktion.

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Abb. 248: Gekaperte Immunzellen

Epstein-Barr-Viren nisten sich in langlebigen Gedächtnis-B-Zellen ein, programmieren sie subtil um und begeben sich in eine Art Langzeitschlaf: die Latenz. (In Wirklichkeit dringt nur die Viren-DNA in die Zellen ein – ohne die hier der Anschaulichkeit wegen dargestellten Virenhüllen.)

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Abb. 247: Epitope spreading

Unter epitope spreading versteht man die allmähliche Ausweitung einer spezifischen Abwehrreaktion über das erste erkannte (»dominante«) Epitop eines fremden Antigens hinaus (Schlange, oben). Leider kann sich so auch eine Immunreaktion gegen harmlose Autoantigene (Blindschleiche, unten) ausweiten. Der gestrichelte Pfeil vom oberen zum unteren dominanten Epitop stellt eine Kreuzreaktion dar.

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Abb. 246: Polyklonale Aktivierung verstärkt Autoimmunstörungen

Polyklonale Aktivierung hat den Nachteil, dass sie auch Autoimmunreaktionen verstärkt. Denn durch die Präsentation mehrerer Epitope aus demselben körpereigenen Antigen können rasch mehrere autoreaktive Zellklone entstehen.

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Abb. 245: Polyklonale Aktivierung

Ein Antigen enthält mehrere Epitope, also Erkennungsmerkmale für die spezifische Abwehr. Daher können gleichzeitig mehrere Lymphozyten-Klone aktiviert werden und expandieren. Das beschleunigt die Bekämpfung etwa von Pathogenen.

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Abb. 244: Von der Krebsvorstufe zur Autoimmunerkrankung


1. Eine Zelle wird zur Krebsvorläuferzelle; sie produziert sehr viel von einem für unreife Zellen
typischen Protein.

2. Eine Mutation (MUT) in einer solchen Zelle verändert das Protein.

3. Im Tumor kommen Zellen mit der Mutation und solche mit dem normalen Protein vor, dem
sogenannten Wildtyp (WT).

4. Aus mutierten Zellen wird das veränderte Protein freigesetzt, zum Beispiel, wenn sie sterben.

5. Antigenpräsentierende Zellen nehmen dieses Antigen auf und präsentieren es zusammen mit Kostimulationssignalen (Kerze).

6. Das Antigen wird wegen seiner Fremdartigkeit als gefährlich eingestuft und aktiviert das Immunsystem.

7. Die aktivierten Effektorzellen bekämpfen den Tumor. Dabei treten weitere Proteine aus – sowohl veränderte als auch unveränderte.

8. Auch das normale Protein wird nun als Antigen präsentiert, zusammen mit Kostimulationssignalen.

9. Im Kontext der laufenden Immunreaktion wird auch das normale Autoantigen als gefährlich eingestuft (molekulare Mimikry); autoreaktive Lymphozyten werden aktiviert (bystander activation).

10. Fernab vom Tumor, zum Beispiel in Blutgefäßwänden, produzieren unreife Zellen dasselbe Antigen und werden damit zum Ziel der Abwehr.

11. Die Lymphozyten greifen die unreifen Zellen an und setzen so noch mehr der Autoantigene frei, auf die sie reagieren.

12. Dieser Teufelskreis läuft auch weiter, wenn der Tumor längst verschwunden ist: Die Autoimmunerkrankung hat sich etabliert.

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Abb. 243: Bystander activation

Bei einer bystander activation liefert eine bereits laufende Abwehrreaktion, zum Beispiel gegen eine lokale Infektion, fälschlich Aktivierungssignale an unbeteiligte T-Zellen.

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Abb. 242: Systemische Sklerose und Krebs

Oben: Kreuzreaktion. Unser Immunsystem bekämpft nicht nur Krankheitserreger, sondern auch mutierte Zellen, aus denen Krebs entstehen kann. Bei einigen Patienten mit Krebs und der Autoimmunerkrankung systemische Sklerose ist das Protein RPC1 mutiert, das vor allem in unreifen Zellen vorkommt. Die mutierte Form wird nur von Krebsvorläuferzellen hergestellt, und zwar in großen Mengen. Diese Kombination – ein ungewöhnliches Antigen, das außergewöhnlich stark exprimiert wird – alarmiert das Immunsystem. Die daraufhin produzierten Antikörper unterscheiden nicht zwischen der mutierten und der normalen Version von RPC1: Offenbar binden sie an Stellen, die sich in beiden Proteinvarianten gleichen.


Unten: Die Masse macht’s. Ob aus einer Kreuzreaktion eine langfristige Autoimmunstörung wird, hängt wiederum von den Mengenverhältnissen ab. Einige autoreaktive Immunzellen gibt es in jedem Körper. Normalerweise sind sie harmlos: Wenn ihr Autoantigen in ihrer Umgebung nur vereinzelt vorkommt (links), bleibt der Reiz unterhalb der Aktivierungsschwelle. Wird die Umgebung jedoch mit dem Autoantigen überschwemmt, etwa weil bei einer Entzündung oder bei der Tumorbekämpfung viele Zellen absterben und »auslaufen«, erwachen die wenigen autoreaktiven Immunzellen aus ihrem Schlummer, schlagen Alarm und vermehren sich (rechts). Entstehen dabei auch Gedächtniszellen, laufen die Autoimmunattacken unter Umständen weiter, obwohl die Auslöser (etwa die Krebsvorstufen) längst beseitigt wurden.

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de