Schlagwort-Archive: Chemotaxis

Abb. 198: Homing im Darm und in der Haut

Darmzellen – und nur sie – stellen aus unserer Nahrung Vitamin A her. Dieses Molekül löst in den örtlichen dendritischen Zellen die Herstellung bestimmter Zytokine aus, die wiederum in den aktivierten T-Zellen die Produktion darmspezifischer Lockstoff-Rezeptoren bewirken. Der Darm wird diesen T-Zellen gewissermaßen als Heimatort in den Pass eingetragen, und wenn sie bei ihrer Wanderung durch die Blutgefäße in eine Gegend kommen, die entsprechende Lockstoffe herstellt, beenden sie ihre Reise und nehmen ihre Arbeit auf.

In den Hautzellen – und nur in ihnen – entsteht durch die UV-B-Strahlung Vitamin D3. Dieses Molekül löst in den dendritischen Zellen der Haut die Herstellung von Substanzen aus, die in aktivierten T-Zellen die Produktion hautspezifischer Lockstoff-Rezeptoren bewirken. In den Reisepass wird also die Heimat Haut eingetragen.

Nach diesem Prinzip gelangen auch alle anderen T-Zellen an ihren Einsatzort. Durch die Rezirkulation nach ihrer Aktivierung agieren die T-Zellen nicht nur in der engsten Umgebung ihres Aktivierungsorts, sondern im gesamten Organ oder Gewebe. Die chemische Erkennung ihres Reiseziels verhindert, dass sie am falschen Ort ihr Pulver verschießen oder Schaden anrichten.

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Abb. 192: Homing

Junge Lachse kehren nach einigen Jahren im Meer an die Laichplätze ihrer Eltern zurück. Dabei orientieren sie sich am Geruch des Wassers, den sie sich in ihrer ersten Lebensphase eingeprägt haben. Auch Lymphozyten finden ihre Einsatzorte durch Duftmarken.

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Abb. 185: Desorientierte Würmer

Desorientiert: Becherzellen produzieren einen Wirkstoff, der das chemische Orientierungsvermögen von Würmern stört. So können sich die Parasiten schlechter in der Darmschleimhaut ansiedeln.

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Neutrophile legen Brotkrumenspuren für T-Zellen aus

P1320571_Neutrophiler_Chemokin-Brotkrumen_T-Zelle_650

Schon lange ist bekannt, dass aktivierte Zellen des Immunsystems mithilfe von Lockstoffen an die Stelle gelotst werden, an der sie benötigt werden – etwa an den Ort einer Infektion, im Fall einer Influenza also zu den virenbefallenen Epithelzellen der Atemwege. Allerdings sind diese Stoffe, Chemokine genannt, löslich; sobald sie in die Gewebsflüssigkeit oder in die Blutbahn ausgeschüttet wurden, werden sie verdünnt oder fortgespült. Daher hat man sich lange gefragt, wie beispielsweise zytotoxische T-Zellen bei einer Grippe so schnell an genau die richtige Stelle gelangen.

Ein Forscherteam um Kihong Lim hat jetzt herausgefunden, dass die Neutrophilen – jene Zellen der angeborenen Anwehr, die als „erste Verteidigungslinie“ gegen eine Influenza besonders früh am Infektionsort eintreffen – bei ihrem geschäftigen Kommen und Gehen eine Art Membran-Schleppe ausbilden, von der sie ständig kleine Membransäckchen abschnüren, die mit dem Chemokin CXCL12 gefüllt sind. Sie legen gewissermaßen Brotkrumenspuren, die umso dichter sind, je näher der Infektionsort ist – einfach aufgrund der Zahl der dort verkehrenden Neutrophilen, ähnlich wie die Duftstraßen der Ameisen in der Nähe des Nests oder einer Nahrungsquelle.

Das Chemokin diffundiert dann langsam aus den Membrankügelchen heraus und steigt den sich nähernden T-Zellen gewissermaßen als Duft in die Nase: Es bindet an deren CXCL12-Rezeptor.

In Mäuse ohne Neutrophile werden die zytotoxischen T-Zellen bei einer Influenza-Infektion zwar aktiviert, aber sie finden die mit den Viren infizierten Zellen in der Luftröhre nur ganz schlecht und bekämpfen die Infektion daher sehr ineffizient.

Literatur: 

Kihong Lim et al.: Neutrophil trails guide influenza-specific CD8+ T cells in the airwaysScience, 4. September 2015, Vol. 349, no. 6252, DOI: 10.1126/science.aaa4352

 

Wie aussagekräftig sind Immunzellkonzentrationen im Blut?

Wie findet man heraus, ob bestimmte Immunzelltypen an einer organspezifischen Autoimmunerkrankungen oder chronischen Entzündungen beteiligt sind? Wenn nicht gerade eine Operation oder eine Biopsie ansteht, die einem Gewebeproben liefert, misst man die Konzentrationen der Zelltypen in einer Blutprobe und versucht daraus auf die Verhältnisse im erkrankten Organ oder Gewebe zu schließen.

P1240189_kommunizierende_Röhren_Wurm-Chemotaxis_650

Im einfachsten Fall stehen Gewebe und Blut wie kommunizierende Röhren miteinander in Verbindung: Werden mehr (oder weniger) Zellen eines Typs produziert, kommen sie sowohl im Blut als auch im Gewebe häufiger (oder seltener) vor.

Tatsächlich bewegen sich Immunzellen aber aktiv in das Gewebe hinein oder aus ihm heraus. Je stärker einerseits ihre Chemotaxis und andererseits die Signale, die das Zielgewebe aussendet, desto schneller bewegen sie sich dort hin. Schlimmstenfalls ist ein Organ so isoliert, dass die Veränderung einer Zellkonzentration im Blut überhaupt nichts über die Vorgänge vor Ort aussagt.

Oder die Konzentrationen stehen in einem reziproken Verhältnis: Im Blut lassen sich kaum noch Zellen eines bestimmten Typs nachweisen, weil bereits fast alle in ihr Zielorgan eingewandert sind und auch dort bleiben, oder umgekehrt.

Und was hat das mit dem Wurm mit der Wäscheklammer auf der Nase zu tun? Nichts. Der gehört in einen anderen Teil des Buches.

Neue Literatur bis einschließlich Dezember 2013, Teil 3

Und weiter. Erläuterungen s. Teil 1 und 2.

Castillo-Morales A et al. (2013): Increased brain size in mammals is associated with size variations in gene families with cell signalling, chemotaxis and immune-related functions (Open Access) T5

Sachs JL et al. (2013): Evolutionary origins and diversification of proteobacterial mutualists (Abstract) T5

Castro LF et al. (2013): Recurrent gene loss correlates with the evolution of stomach phenotypes in gnathostome history (Abstract) T5

Liu B et al. (2013): Maternal hematopoietic TNF, via milk chemokines, programs hippocampal development and memory (Abstract) T4
Dazu auch: Breast Milk Programs Memory Skills

Palmer C (2013): Ye Old Parasites – Evidence of early-13th-century intestinal worms found in a medieval castle latrine yields clues about the lives and deaths of crusaders. T5

Kretschmer A (2013): Wirtskörper mit Vollpension. Endoparasiten genießen sichere Unterkunft und unbegrenzte Nahrung T3, T5

Vence T (2013): Gut Flora Boost Cancer Therapies. Germ-free or antibiotic-treated mice fare worse than those with rich gut microbiomes during cancer treatment, two studies show. T4

Raghavan M et al. (2013): Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans (Abstract) T5
Dazu auch: Europäer als Urahnen der Indianer? Genanalyse eines 24.000 Jahre alten sibirischen Kindes wirft Amerikas Vorgeschichte durcheinander. T5

Kokolus KM et al. (2013): Baseline tumor growth and immune control in laboratory mice are significantly influenced by subthermoneutral housing temperature (Open Access) T3
Dazu auch: Temperature-Dependent Immunity. Scientists show that mice housed at room temperature are less able to fight tumors.

Komplementsystem und Opsonierung

Skizze fürs Buch – ein bisschen Splatter muss sein: Das Komplementsystem bohrt regelrechte Brunnenlöcher in Bakterien und bringt diese durch eindringendes Wasser zum Platzen.

Das Protein C1 bindet an Antikörper, die wiederum an Antigene auf den Pathogenen binden, und löst Reaktionskaskaden aus. In deren Verlauf werden nicht nur die „Brunnenlöcher“ (Membranangriffskomplexe aus C9) gebohrt, sondern auch die kleinen Arterien weitgestellt (schnellerer Transport von Immunzellen zum Ort der Infektion), Histamin aus Mastzellen ausgeschüttet (Botenstoff in der Entzündungsreaktion) sowie Phagozyten (Fresszellen) durch Chemotaxis angelockt und durch die Opsonierung der Pathogene zu deren Verzehr angeregt. Das Komplementsystem gehört zur angeborenen Immunabwehr und wird von vielen Bakterien und Viren durch molekulare Mimikry und Blockaden ausgehebelt.