Schlagwort-Archive: Leber

Abb. 103: Die sieben Lebensstationen der Immunzellen

Von oben nach unten:

Knochenmark als Kinderstube

Thymus als T-Zell-Schule

Wanderjahre in den Gefäßen

Speed-Dating in Lymphknoten

Arbeit im ganzen Körper

Tod in der Leber oder Milz

Überlebensnischen im Knochenmark oder der Milz

 

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Das ambivalente Verhältnis des Embryos zum Immunsystem

Dass der Dotter in einem Vogelei der Ernährung des werdenden Kükens dient, ist allgemein bekannt. Dass auch junge menschliche Embryonen von einem Dottersack zehren, bevor die Plazenta ihre Versorgung übernimmt, ist vielen Menschen dagegen nicht bewusst. Hier ein junger Embryo eines Säugetiers – ob Mensch, Katz oder Maus, ist in diesem Stadium noch kaum zu erkennen. Links der Dottersack:

P1260500_Dottersack_Embryo_500

Aus diesem Dottersack wandern Zellen in den jungen Embryo ein, die später zu Gewebsmakrophagen werden – siehe vorletzter Beitrag. Der schwarze Fleck ist die embryonale Leber, die bereits Immunzellen produziert, bevor das Knochenmark diese Aufgabe übernimmt. Über die Nabelschnur – hier nur angedeutet – gelangen Nährstoffe aus der Plazenta in den Embryo hinein und Abfallstoffe aus ihm heraus.

Der Embryo muss das mütterliche Immunsystem einerseits fürchten, denn er enthält zur Hälfte väterliches Erbgut und stellt daher einen Fremdkörper dar, der Gefahr läuft, vom Organismus abgestoßen zu werden. Doch mit verschiedenen löslichen Substanzen und Oberflächenmarkern auf seiner Kontaktfläche zum mütterlichen Plazentagewebe (Trophoblast) spannt der Embryo einen Schutzschirm auf:

P1260503_Embryo_im_Immunsystem-Sturm_650

Andererseits ist der Embryo gerade zu Beginn der Schwangerschaft auf die zahlreichen Immunzellen angewiesen, die sich in der Gebärmutterschleimhaut aufhalten. Es sind nämlich massive Baumaßnahmen nötig:

P1260506_Embryo_als_Bauarbeiter_650

Der Embryo spannt die örtlichen Immunzellen – vor allem natürliche Killerzellen – ein, um das Adersystem der Gebärmutter so um- und auszubauen, dass das mütterliche Blut genug Nährstoffe für den Nachwuchs heranschaffen kann. Als Bauanweisungen dienen ihm zum Teil dieselben Signalstoffe wie bei der Beschwichtigung der Immunzellen, insbesondere das Protein HLA-G.

Das Immunsystem in der Embryonalentwicklung: zwei Überraschungen

Nach langer Pause zwei schnörkel- und skizzenlose Anmerkungen zur Entwicklung des Immunsystems während der Embryogenese, die ich in Teil 4 des Buches behandle:

1. Aliens aus dem Dottersack

Bis vor wenigen Jahren dachte man, all unsere Immunzellen seien Nachfahren der Stammzellen im Knochenmark – und somit „Blätter“ am hämatopoetischen Stammbaum, den ich hier vor einer Weile in zwei Artikeln vorgestellt habe. Dann entdeckte man, dass das auf die Mikrogliazellen (makrophagenähnliche Zellen in unserem Gehirn) nicht zutrifft: Diese gehen vielmehr auf Vorläuferzellen zurück, die während der frühen Embryonalentwicklung noch vor der Schließung der Blut-Hirn-Schranke aus dem Dottersack (!) ins spätere Gehirn einwandern. Diese Ur-Mikrogliazellen sind also extraembryonale Aliens; sie gehören zu keinem der drei Keimblätter, aus denen ansonsten all unsere Gewebe und Organe entstehen: Endoderm, Mesoderm und Exoderm. Dass wir bis an unser Lebensende auf Zellen angewiesen sind, die nicht aus einem Keimblatt hervorgegangen sind, hätte man vor wenigen Jahren noch für völlig unmöglich erklärt.

Inzwischen hat sich herausgestellt, dass das auch auf viele andere Gewebsmakrophagen zutrifft – zum Beispiel die Makrophagen, die im Herzmuskelgewebe Patrouille laufen und die Homöostase aufrecht erhalten. Diese Zellen, die teils direkt auf Vorläufer im Dottersack, teils auf Dottersackzellen-Nachfahren aus der fetalen Leber zurückgehen, sind offenbar ebenfalls imstande, sich ein Leben lang durch Teilung selbst zu erhalten. Erst bei einer Entzündung wandern zusätzlich aus Knochenmark-Stammzellen entstandene Monozyten in das Gewebe ein, die dort zu Makrophagen heranreifen.

Diese „Notfall-Makrophagen“ siedeln sich aber in vielen Geweben nicht dauerhaft an, sondern werden nach erfolgreicher Bekämpfung der Entzündung von den örtlichen Gewebsmakrophagen abgetötet und beseitigt. In einjährigen Mäusen etwa stammen die meisten Makrophagen in der Leber, im Gehirn und in der Haut (also Kupffer-, Mikroglia- und Langerhans-Zellen) größtenteils noch von den Dottersack- und Leber-Vorfahren ab, während sich das Verhältnis in den Lungen mit zunehmendem Alter zugunsten der Monozyten-Makrophagen verschiebt.

Lit.: A. Dey, J. Allen, P. A. Hankey-Giblin (2015): Ontogeny and polarization of macrophages in inflammation: blood monocytes versus tissue macrophagesE. Gomez Perdiguero et al. (2015): Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors

2. Neonatales Immunsystem voll entwickelt und aktiv unterdrückt

Lange glaubte man, Neugeborene seien so anfällig für Infektionen, weil ihr Immunsystem noch sehr unreif sei. Wie sich Ende 2013 herausstellte, ist es tatsächlich bereits voll entwickelt: Das Knochenmark, aus dem die Zellen der angeborenen Abwehr und die B-Zellen hervorgehen, ist schon lange vor der Geburt aktiv, und auch der Thymus, in dem die positive und negative Selektion der T-Zellen stattfindet, hat seine Arbeit schon aufgenommen.

Das Immunsystem wird aber in den ersten Lebenswochen aktiv unterdrückt, um eine Besiedlung des Darms mit lebensnotwendigen Bakterien und anderen Mikroorganismen zu ermöglichen. Dafür sind spezielle rote Blutkörperchen oder Erythrozyten zuständig, die den Oberflächenmarker CD71 tragen und vor allem in wenigen Wochen vor und nach der Geburt hergestellt werden. Sie produzieren das Enzym Arginase-2, das zu einem Mangel an der Aminosäure Arginin führt. Dieser Mangel wiederum hemmt die Herstellung von Zytokinen in den Zellen der angeborenen Abwehr.

Zwar können sich Neugeborene wegen dieses Mangels an Abwehrstoffen leicht mit Erregern wie Escherichia coli oder Listeria monocytogenes anstecken. Aber dafür reagieren sie auf die Besiedlung mit unserem Mikrobiom-Starterkit nicht mit einer heftigen Immunreaktion, die noch weitaus gefährlicher wäre.

Lit.: S. Elahi et al. (2013): Immunosuppressive CD71+ erythroid cells compromise neonatal host defence against infection

Fettgewebe-Mikrobiom-Dysbiose als Ursache von Adipositas und kardiovaskulären Ereignissen?

Zusammenfassung nur des Abstracts und des Fazits:

Burcelin R et al. Metagenome and metabolism: the tissue microbiota hypothesis. Diabetes, Obesity and Metabolism 15 (Suppl. 3), 61-70, 2013

Das Mikrobiom des Verdauungstrakts mit seinen über 5 Mio. unterschiedlichen Genen gilt aus Symbiont, der unser Immunsystem, das Gefäßsystem des Verdauungstrakts und wahrscheinlich auch das Nervensystem prägt/mitentwickelt. Versuche an keimfreien und gezielt besiedelten Mäusen haben gezeigt, dass das Mikrobiom an Stoffwechselerkrankungen wie Fettleibigkeit beteiligt ist. Kürzlich entdeckt: Bakterielle DNA im Gewebe (Leber, Fettgewebe, Blut) -> Es gibt wohl auch ein Gewebe-Mikrobiom, das das Immunsystem beeinflusst.

Abb. 4: Pyrosequenzierung von 16S-rDNA aus der stromal vascular fraction von Fettgewebe -> Vergleich der Zusammensetzung des Fettgewebe-Mikrobioms bei BMI < 23 (gesund), 23 < BMI < 30 (übergewichtig) und BMI > 30 (fettleibig): Anteil Proteobacteria steigt, Anteil Firmicutes sinkt mit BMI. Innerhalb der Firmicutes keine systematischen Verschiebungen. Bei den Proteobacteria steigt Anteil der Gattung Ralstonia mit dem BMI deutlich an -> vermutlich kausaler Zusammenhang.

Hypothese: Eine Gewebe-Mikrobiom-Dysbiose, bei der sich bestimmte gramnegative Bakterien stark vermehren, könnte kardiovaskuläre Ereignisse verursachen. Diese Bakterien und ihre Zielstrukturen in unseren Zellen zu identifizieren könnte helfen, ursächliche Therapien anstelle von Symptombekämpfung (Hyperglykämie usw.) zu entwickeln.

Immunzellen-Lebensstationen

Skizze fürs Buch:

P1150930_Lebenslauf_Immunzellen_650

(1) Fast alle Immunzellen kommen im Knochenmark zur Welt.

(2) T-Zellen gehen im Thymus zur Schule.

(3) Sobald sie reif sind, wandern Immunzellen über die Blutbahn an ihren Einsatzort.

(4) Lymphknoten sind so etwas wie Speed-Dating-Lokale, in denen dendritische Zellen die gerade benötigten T- und B-Zellen finden.

(5) Im ganzen Körper verrichten Immunzellen ihre Arbeit – manche direkt nach der Entstehung im Knochenmark, andere nach ihrer Aktivierung in den Lymphknoten.

(6) In derMilz und zum Teil auch in der Leber werden alte Immunzellen abgebaut.

(7) Nur einige wenige Immunzellen – die Gedächtniszellen – verbringen ihren langen Lebensabend in Überlebensnischen, z. B. im Knochenmark.

PCB-belastete Große Tümmler leiden häufig unter Hypothyreose, Immunsuppression und Anämie

Polychlorierte Biphenyle bestehen aus zwei Benzolringen, an denen mehrere Wasserstoffatome durch Chlor ersetzt sind.

Notizen zu Lori H. Schwacke et al., „Anaemia, hypothyroidism and immune suppression associated with polychlorinated biphenyl exposure in bottlenose dolphins (Tursiops truncatus)“, Proceedings of the Royal Society B: Biological Sciences, 25. Mai 2011, doi:10.1098/rspb.2011.0665

[Die Arbeit hat nichts mit Autoimmunerkrankungen zu tun – wohl aber mit einer umweltgiftbedingten Schilddrüsenunterfunktion und weiteren damit einhergehenden Schädigungen. Daher nehme ich sie in meine Materialsammlung auf.]

Polychlorierte Biphenyle (PCBs) wurden in den USA in den späten 1970er-Jahren verboten. Sowohl Versuche als auch epidemiologische Untersuchungen deuten darauf hin, dass sie das Immun-, das Hormon- und das Fortpflanzungssystem massiv schädigen können. Zudem weiß man, dass PCBs sehr stabil sind und sich in der Nahrungskette anreichern. Im Fettgewebe von Großen Tümmlern an der Südküste von Georgia (USA) wurden in den letzten Jahren extreme PCB-Konzentrationen von bis zu 2900 Milligramm pro Kilogramm gemessen.   Weiterlesen