Schlagwort-Archive: Schlaf

Abb. 226: Nächtliche Produktion proinflammatorischer Botenstoffe

Durch den Tiefschlaf zu Beginn der Nacht ausgelöst und durch Hypophysen-Botenstoffe wie Somatropin und Prolaktin vermittelt, steigt nachts in den Zellen der angeborenen Immunabwehr die Produktion von Entzündungszytokinen wie IL-6, IL-12 und TNF-α.

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

 

Abb. 225: Nächtliche Melatoninproduktion

Die Melatoninproduktion in der Zirbeldrüse erreicht mitten in der Nacht ihr Maximum und wird vor dem Erwachen stark heruntergefahren. Die senkrechten Linien markieren Beginn und Ende des Nachtschlafs.

(Diese und folgende Abbildungen: nach Lange und Born, 2011.)

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Abb. 222: Tag- und nachtaktiv

Menschen sind tagaktiv, Mäuse und Ratten nachtaktiv. Das erschwert die Interpretation von Tierversuchen zur Steuerung des Immunsystems durch Hormone, deren Produktion entweder
durch Tageslichtreize oder durch Schlaf ausgelöst wird.

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Abb. 218: Krankheitsverhalten

Zum Krankheitsverhalten zählen Appetitlosigkeit, verringerter Durst, Schläfrigkeit und Schonhaltung, Desinteresse an Sexualiät und überhaupt ein reduziertes Sozialverhalten, auch dem Nachwuchs gegenüber. Warmblüter bekommen Fieber, wechselwarme Tiere wie Fische suchen dagegen wärmere Gefilde auf (sogenanntes Verhaltensfieber).

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Krankheitsverhalten: kurzfristig heilsam – chronisch belastend

Anhedonie (Lustlosigkeit), verringerte Libido

Anhedonie: Lustlosigkeit, z. B. verringerte Libido

Wenn wir krank sind, uns ins Bett legen, fiebern und nichts essen mögen: ist das schlecht für uns? Ist es nur ein Zeichen dafür, dass es uns schlecht geht? Oder ist es vielmehr gut für uns, ein Teil unserer Genesung? Erstaunlich lange blieb diese Frage unbeantwortet. Erst 1988 veröffentlichte Benjamin L. Hart seine wegweisende Arbeit „Biological basis of the behavior of sick animals“, in der er das Krankheitsverhalten (sickness behavior) von Tieren als evolutionäre Anpassung zur effizienten Überwindung von Infektionskrankheiten darstellte.

Zu diesem Krankheitsverhalten zählen etwa

  • Anorexie (verringerter Appetit)
Anorexie: verringerter Appetit

Anorexie: verringerter Appetit

  • Adipsie (wenig Durst)
Adipsie: verringerter Durst

Adipsie: verringerter Durst

  • Lethargie und Schläfrigkeit
Lethargie, viel Schlaf, Schonhaltung, Wärmeverlustminimierung

Schläfrigkeit, Schonhaltung, Wärmeverlust-Minimierung

  • Anhedonie (Lustlosigkeit, Unfähigkeit zur Freude, siehe oben: keinen Bock aufs Haserl!)
  • Rückzug und Asozialität (verringerte Revierverteidigung, Brutfürsorge, wechselseitige Körperpflege, sexuelle Aktivität usw.)
reduziertes Sozialverhalten, z. B. Brutpflege

reduziertes Sozialverhalten

  • Desinteresse am Erkunden der Umgebung, am Spielen und Lernen
  • Übelkeit, Unwohlsein
  • erhöhte Schmerzempfindlichkeit
  • bei Warmblütern Zittern zur Wärmeproduktion und bei wechselwarmen Tieren das Aufsuchen einer warmer Umgebung („behavioral fever“) sowie
"Verhaltensfieber" bei wechselwarmen Tieren

„Verhaltensfieber“ bei wechselwarmen Tieren

  • eine kompakte Körperhaltung, die den Wärmeverlust minimiert.

Hinzu kommen physiologische Veränderungen, etwa eine vom Hypothalamus im Gehirn angeordnete Erhöhung der Körpertemperatur (Fieber), Entzündungsreaktionen und eine träge Verdauung.

Noch immer glauben viele Menschen, Fieber sollte gesenkt werden und Brandwunden müsse man kühlen, weil die Wärme schädlich sei. Dabei dient beides „nur“ der Schmerzbekämpfung, nicht aber der Heilung – von Ausnahmen abgesehen. Zwar ist bei weitem nicht bei jeder Erkrankung klar, auf welchen Wegen Fieber uns nützt (Beschleunigung enzymatischer Reaktionen, Hemmung der Vermehrung hitzeempfindlicher Viren oder Bakterien, Entfernung des für Pathogene wichtigen Spurenelements Eisen aus unserem Blut …). Aber dass es eine Anpassungsleistung darstellt und in vielen Situationen das Überleben fördert, ist mittlerweile klar. So hatten in Tierexperimenten gezielt infizierte Wüstenleguane oder Zebrafische, die eine wärmere Umgebung aufsuchen konnten, eine deutlich höhere Überlebenswahrscheinlichkeit als Leidensgenossen, die man daran hinderte.

Viele der oben genannten Aspekte des Krankheitsverhaltens hängen miteinander zusammen. So rufen die Entzündungsreaktionen, mit denen unser Immunsystem Infektionen bekämpft, im Wachzustand Übelkeit, Abgeschlagenheit, Schmerz usw. hervor, die unsere Aktivitäten stören und riskanter machen können. Daher der Rückzug und der viele Schlaf. Der Rückzug von sozialen Aktivitäten könnte auch die Gefahr verringern, verwandte Artgenossen anzustecken. Andererseits kennen wir von vielen Tierarten Fürsorge für erkrankte Gruppenmitglieder, was darauf hindeutet, dass das verringerte Sozialverhalten und die Lethargie nicht dem Schutz der anderen, sondern der eigenen Genesung dienen, etwa der Konzentration der Energiereserven auf die kostspieligen Aktivitäten des Immunsystems.

Ob die verfügbare Energie eher in die Heilung oder doch in die kurzfristige Maximierung des Fortpflanzungserfolgs investiert wird, hängt wesentlich von der „life history“ und der Reproduktionsstrategie der Art ab: Kurzlebige kranke Säugetiermännchen paaren sich im Zweifel lieber noch einmal und kippen dann tot um. Langlebige Organismen schonen sich lieber; zur Not vernachlässigen sie ihre Jungen und setzen darauf, dass sie nach ihrer Genesung neuen Nachwuchs großziehen können.

Bei einer akuten Erkrankung fördert ein solches Krankheitsverhalten die Gesundung und damit die Chance, das Erbgut, in das dieses Verhalten eingeschrieben ist, in die nächsten Generationen weiterzutragen. So funktioniert natürliche Auslese. Bei chronischen Erkrankungen ist dasselbe Verhalten oftmals kontraproduktiv, denn ich kann nicht jahrelang hungern, die Tage verdämmern, enthaltsam leben und die sozialen Bedürfnisse meiner Mitgeschöpfe ignorieren, ohne mir selbst und meinen Verwandten zu schaden. Außerdem werden viele chronische Erkrankungen, etwa Autoimmunerkrankungen, wohl gar nicht durch Bakterien oder Viren verursacht, die sich durch ein solches Verhalten besiegen ließen.

Da aber etliche chronische Erkrankungen erst gegen Ende oder gar nach der Reproduktionsphase auftreten, hat die natürliche Auslese keinen Ansatzpunkt, um einem solchen „chronifizierten Krankheitsverhalten“ entgegenzuwirken. Das einmal entgleiste Immunsystem, das fälschlich meint, eine Infektion bekämpfen zu müssen, schüttet permanent entzündungsfördernde Botenstoffe wie Interleukin 1β (IL-1β), Interleukin 6 (IL-6) und Tumornekrosefaktor (TNF) aus, die dem Hypothalamus und anderen Schaltzentralen suggerieren, der Organismus müsse noch ein Weilchen kürzer treten und sich zurückziehen. Das könnte der Grund für ein Phänomen sein, das vielen chronisch Kranken nur allzu bekannt ist: Fatigue.

 

Immunologische Schlafforschung: Es ist zum Mäusemelken.

P1200127_Mensch_tagaktiv_Maus_nachtaktiv_650

Bei der Behandlung von Autoimmunerkrankungen, aber auch Krebs, Adipositas, Gefäßerkrankungen usw. rücken die circadiane Rhythmik und der Einfluss des Schlafs allmählich stärker in den Fokus. Um eine Behandlung wirksamer zu machen, Nebenwirkungen zu reduzieren oder die Selbstheilungskräfte des Organismus optimal zu nutzen, kommt es oft auf den Zeitpunkt der Verabreichung eines Wirkstoffs an und auf eine ausreichende Schlafdauer. In einem Versuch war beispielsweise ein Impfschutz noch nach einem Jahr signifikant stärker, wenn die Versuchspersonen in der ersten Nacht nach der Impfung ausreichend Schlaf bekommen hatten.

Die Erforschung der genauen Zusammenhänge zwischen innerer Uhr, Schlaf und Immunsystem wird durch die vielen Rückkopplungen und gegenseitigen Abhängigkeiten des Systems erschwert. So wird das Schlafzentrum, das viele Abläufe im Immunsystem regelt, seinerseits durch das Immunsystem beeinflusst. Das merkt man z. B. am erhöhten Schlafbedürfnis bei einer Infektionserkrankung oder auch an der ständigen Abgeschlagenheit (Fatigue) bei vielen Autoimmunerkrankungen.

Um die Rhythmen in der Vermehrung und Aktivierung der einzelnen Immunzelltypen und in der Produktion von Hormonen, Zytokinen und anderen Botenstoffen zu erforschen, zapft man Versuchspersonen über mindestens 24 Stunden hinweg regelmäßig etwas Blut ab, das dann analysiert wird. Dabei sollte der Schlaf der Personen nicht gestört werden, weshalb man einen Dauer- oder Verweilkatheter verwendet, der vom Nebenraum aus bedient werden kann. Aber ist die Konzentration eines Stoffes oder eines Zelltyps im Blut überhaupt repräsentativ für die Verhältnisse in dem Organ, das einen eigentlich interessiert?

Bei manchen Zelltypen definitiv nicht: Wenn man im Blut zu einem Zeitpunkt beispielsweise besonders wenige T-Helferzellen findet, heißt das nicht, dass sie plötzlich „ausgestorben“ sind: Sie sind u. U. nur ins Knochenmark gewandert. Antigenpräsentierende Zellen wie Makrophagen und dendritische Zellen halten sich fast rund um die Uhr im Gewebe auf, um Antigene aufzustöbern. Daher werden an ihrer Stelle ihre Vorläufer gezählt, zum Beispiel Monozyten anstelle von Makrophagen. Denn Monozyten müssen nach ihrer Entstehung im Knochenmark über die Blutbahn ins Gewebe wandern.

Um die Auswirkungen der circadianen Rhythmik und des Schlafs auseinanderzuhalten, muss man mit Schlafentzug arbeiten. An Menschen lässt sich das ethisch nur für eine Nacht vertreten, um Dauerschäden zu vermeiden. (Allerdings weiß man aus der Untersuchung von z. B. alkoholismus- oder depressionsbedingten Schlafstörungen, dass ein länger anhaltender Schlafmangel die Zytokinproduktion von einer Th1- zu einer Th2-Antwort verschiebt.)

Versuche an Mäusen und Ratten haben gezeigt, dass ein längerer Schlafentzug das Immunsystem schon bald so schwächt, dass der Organismus von Bakterien überrannt wird und das Tier an einer Sepsis stirbt. Die Ergebnisse solcher und ähnlicher Versuche hängen dabei vom verwendeten Versuchstierstamm ab, denn Schlafmuster haben eine starke erbliche Komponente. Das erschwert den Vergleich von Studien.

Noch schwieriger ist die Übertragung von Erkenntnissen, die an Mäusen oder Ratten gewonnen wurden, auf den Menschen. Abgesehen von vielen anderen Unterschieden sind Menschen tagaktiv und Nagetiere nachtaktiv (s. Abbildung). Bei ihnen laufen die Regelvorgänge, die ich im vorigen Artikel erläutert habe, daher ganz anders ab.

Schichtarbeit: Der Tag-Nacht-Rhythmus von Immunreaktionen

Neulich las ich, dass selbst schwaches Nachtlicht eine Brustkrebstherapie u. U. wirkungslos machen kann, weil das Licht die nächtliche Melatoninproduktion stört, was wiederum die Tumorzellen stärkt. Beim Nachrecherchieren führte eins zum anderen, und zack: Schon muss das Autoimmunbuch um ein Kapitel erweitert werden. Wie die sogenannte circadiane Rhythmik – das Schwingen aller möglicher Abläufe in unserem Körper mit einer Periode von etwa 24 Stunden – und der nächtliche Schlaf unser Immunsystem regeln, ist nämlich hochspannend und auch für Autoimmunerkrankungen relevant.

Von dem Dutzend Arbeiten, die ich zum Thema gelesen habe, empfehle ich vor allem die Übersicht „T Cell and Antigen Presenting Cell Activity During Sleep“ von Tanja Lange und Jan Born (2011), auf der die meisten der folgenden Abbildungen basieren.

Wie stellt das Immunsystem sicher, dass sich entzündungsfördernde und entzündungshemmende Signale, die angeborene und die erworbene Abwehr sowie der Th1- und der Th2-Arm der erworbenen Abwehr nicht ins Gehege kommen? Durch räumliche und zeitliche Trennung: Der Tag gehört den entzündungshemmenden Signalen, der angeborenen Abwehr und denjenigen Zellen der erworbenen Abwehr, die Pathogene unmittelbar bekämpfen: den zytotoxischen T-Zellen. Und in der Nacht – vor allem, wenn man schläft und nicht durchwacht – dominieren Entzündungsreaktionen, die uns tags bei lebensnotwendigen Aktivitäten stören würden. Außerdem wird nachts durch die Kontakte zwischen antigenpräsentierenden Zellen und T-Helferzellen das immunologische Gedächtnis angelegt.

Hormone aus der Zirbeldrüse und der Hypophyse im Gehirn sowie aus der Nebennierenrinde, deren Ausschüttung von der zentralen inneren Uhr im Hypothalamus gesteuert wird, sorgen dafür, dass die richtigen Zellpopulationen zu jeder Zeit am richtigen Ort sind – also im Blut, im Lymphsystem, im peripheren Gewebe oder im Knochenmark. Die zentrale innere Uhr basiert auf einer Handvoll Gene, deren Ableseprodukte (die Proteine PER, CRY, REV-ERB, ROR, CLOCK und BMAL) wechselseitig ihre eigene Ablesung ein- und ausschalten. Ohne äußere Impulse oszilliert diese Rückkopplung mit einer Periode von etwas mehr als 24 Stunden. Durch Tageslichtsignale – von Nervenzellen in der Netzhaut an den Hypothalamus übermittelt – wird sie auf genau 24 Stunden eingestellt.

Die zentrale Uhrzeit wird vor allem durch das Zirbeldrüsen-Hormon Melatonin an die Zellen im gesamten Körper übermittelt. Die Melatoninkonzentration ist mitten in der Nacht am höchsten, fällt noch in der Nacht steil ab und bleibt tags sehr niedrig, bis sie abends wieder anzusteigen beginnt:

TagNacht_Melatonin_beschriftet_Quelle_Netz_650In dieser und den folgenden Abbildungen ist die Konzentration im Blut während etwas mehr als 24 Stunden dargestellt, beginnend mit dem Abend eines Tages bis zum Abend des nächsten Tages.  Die beiden senkrechten Linien markieren die Nacht, in der man idealerweise zwischen 23 und 7 Uhr schläft. In der ersten Nachthälfte gerät man in den Tiefschlaf, hier wegen der englischen Bezeichnung slow-wave sleep als SWS bezeichnet. Diese Schlafphase ist für die Regelung des Immunsystems entscheidend.

Weiterlesen