Der Einfluss der Darmflora auf Krebs

Neulich beschrieb ich das Autoimmunbuchprojekt als „Türme von Hanoi“ mit 500.000 Scheibchen und 200 pulsierenden Stapeln. Das Bild ist natürlich schief, denn „Türme von Hanoi“ ist ein deterministisches Spiel, ein einfacher rekursiver Algorithmus. Mein Projekt verhält sich weniger vorhersagbar: Ständig sortiere ich die Literatur um, spalte ein Unterthema auf, fusioniere welche, werfe andere über Bord, nehme neue hinein … Zu Beginn hatte ich mir etwa vorgenommen, Krebs komplett auszuklammern, um nicht noch ein großes Fass aufzumachen. Aber manchmal werfen neue Erkenntnisse unsere Pläne über den Haufen: Tumoren haben so viel mit dem Immunsystem und wohl auch mit Autoimmunreaktionen zu tun, dass ich sie nicht ignorieren kann.

Zu allem Unglück werden nicht nur Autoimmunerkrankungen, sondern auch Krebserkrankungen und Krebstherapien vom Mikrobiom beeinflusst – und wirken umgekehrt auf dieses ein. Die boomende Mikrobiomforschung treibt mich ohnehin in den Wahnsinn, weil all die Einflüsse, Abhängigkeiten, Synergien und Hemmnisse zwischen unseren zahlreichen mikrobiellen Mitbewohnern, unserem Immunsystem, unserem Erbgut, dem Rest unseres Körpers und unserer Umwelt unglaublich schlecht in der linearen Erzählstruktur eines Sachbuchs abzubilden sind.

Bevor aber die drei Arbeiten, die ich gerade gelesen habe, vor lauter Zögern und Hadern Staub ansetzen, zerschlage ich den gordischen Knoten und versuche die wichtigsten Erkenntnisse aus der aktuellen Forschung festzuhalten – ganz gleich, wo im Buch sie letzten Endes landen.

Mit Magenkrebs fing es an

Seit J. Robin Warren und Barry J. Marshall Ende der 1970er entdeckten, dass Gastritis, Magengeschwüre und im worst case auch Magenkrebs oft auf das Magenbakterium Helicobacter pylori zurückgehen, ist klar, dass Pathogene in ihrer Umgebung Krebs auslösen oder fördern können. Das gilt auch für andere Teile des Verdauungstrakts: Mäuse entwickeln eher Darmkrebs, wenn man in ihrer Darmflora die Bakterien Citrobacter rodentium oder Helicobacter hepaticus ansiedelt. Und Menschen mit Darmkrebs haben eine anderes zusammengesetzte Darmflora als Gesunde, etwa einen Überschuss der normalerweise in der Mundhöhle anzutreffenden Gattungen Fusobacterium und Porphyromonas. Ein Forscherteam konnte 2014 aus der relativen Häufigkeit von 22 Bakterienarten im Stuhl von Versuchsteilnehmern sogar ablesen, ob sie Darmkrebs hatten oder nicht.

Henne oder Ei?

Aber was kommt zuerst, der Krebs oder die Veränderung der Darmflora? Im Tierversuch ließ sich das klären: Man behandelte Mäuse zunächst mit Antibiotika, um die Mikrobiom-Zusammensetzung zu verändern, und verabreichte ihnen dann ein Karzinogen sowie eine entzündungsfördernde Substanz. Im Vergleich zu Mäusen, die keine Antibiotika erhalten hatten, entwickelten sie weniger und zudem kleinere Tumoren. Die meisten Tumoren bildeten keimfrei aufgezogene Mäuse aus, denen man die Darmflora bereits krebskranker Mäuse verabreichte.

Eine solche lokal krebsfördernde Wirkung bestimmter Komponenten der Darmflora kann beispielsweise durch eine von den Bakterien ausgelöste Entzündung der Darmschleimhaut vermittelt werden, die zu einer Freisetzung von reaktiven Sauerstoffspezies (ROS) und Wachstumsfaktoren aus den angeschlagenen Schleimhautzellen führt. Die ROS können das Erbgut anderer Zellen in der Nähe mutieren lassen, sodass sie zu „Tumorkeimen“ werden, und die Wachstumsfaktoren können eine übermäßige Zellteilung und die Bildung neuer Blutgefäße fördern, die die entstehenden Tumoren mit Nährstoffen versorgen.

Fernwirkungen

Dass Veränderungen im Darm (etwa eine Dysbiose) weitere Veränderungen im Darm (etwa die Bildung von Tumoren) nach sich ziehen können, ist nicht unbedingt überraschend. Seit einigen Jahren zeichnet sich aber ab, dass es auch Fernwirkungen gibt: Die Darmflora beeinflusst das Krebsrisiko in weit entfernten Organen. Teils verringert, teils erhöht sie die Gefahr, dass sich dort Tumoren bilden.

So entwickelten Mäuse nach der Infektion mit Helicobacter hepaticus nicht nur Darmkrebs, sondern auch Brustkrebs oder Prostatakrebs. Und die Melanome, die man Mäusen des Zuchtstamms „Black 6″ in die Haut implantierte, entwickelten sich je nach dem Zuchtlabor, aus dem die Tiere stammten, ganz unterschiedlich – weil sich ihre Mikrobiome unterschieden. Sobald man sie eine Weile im selben Käfig hielt, verschwanden die Unterschiede in der Fähigkeit des Immunsystems, die Melanome in Schach zu halten.

Die krebshemmende Wirkung ging von Bakterien der Gattung Bifidobacterium aus, die offenbar dendritische Zellen aktivieren. Diese wiederum präsentierten T-Zellen Antigene aus den Bakterien oder aus den Krebszellen und befähigten sie so, die Krebszellen aufzusuchen und zu töten. Diese Aktivierung ist nötig, weil viele Krebszellen an ihrer Oberfläche molekulare „Self“-Signale präsentieren, um das Immunsystem von Attacken abzuhalten.

Bakterien beeinflussen den Therapieerfolg 

Doch nicht nur die natürliche Fähigkeit des Immunsystems, Krebsvorstufen und Tumoren zu bekämpfen, wird durch die Darmflora gefördert oder behindert: Chemotherapien und andere Krebstherapien verlaufen je nach Zusammensetzung des Mikrobioms mehr oder weniger erfolgreich. Auch dies wurde zunächst an Mäusen entdeckt, und zwar etwa zeitgleich von den Arbeitsgruppen um Romina Goldszmid und Giorgio Trinchieri am amerikanischen National Cancer Institute und um Laurence Zitvogel am französischen INSERM: Keimfrei aufgezogene oder mit Antibiotika behandelte Tiere, die entweder eine angeborene Neigung zu Lungenkrebs hatten oder verschiedenartige Tumoren implantiert bekamen, sprachen auf Chemotherapien schlechter an als Artgenossen mit intakter Darmflora.

Die Mechanismen setzen offenbar teils an der angeborenen, unspezifischen und teils an der erworbenen, antigenspezifischen Abwehr an:

  • Platin-Chemotherapien und Immuntherapien mit CpG-Oligonukleotiden bekämpfen Krebs, indem sie Entzündungen fördern. Ein Übermaß entzündungshemmender Bakterien kann dem in die Quere kommen.
  • In anderen Fällen will man eine Entzündung gerade vermeiden. Ein Probiotikum (also eine Bakterienmischung) namens Prohep brachte etwa Lebertumoren in Mäusen zum Schrumpfen, wohl weil es Entzündungen im Darm hemmt.
  • Monoklonale Antikörper binden als sogenannte Checkpoint-Inhibitoren an bestimmte Proteine auf der Oberfläche von Krebszellen, etwa PD-L1 oder CTLA-4, die sonst an passende Rezeptoren auf aktivierten T-Zellen andocken und die T-Zellen durch Vortäuschung eines gutartigen Charakters friedlich stimmen. Bestimmte Bakterien (bei Mäusen etwa Bifidobacteria oder Bacteroides) verstärken diese Form der Krebsbekämpfung – zum Teil indirekt durch ihre Wirkung auf die angeborene Abwehr und zum Teil direkt, indem sie dieselben T-Zell-Rezeptoren stimulieren.
  • Eine Chemotherapie mit Cyclophosphamid macht die Darmschleimhaut durchlässig, sodass Bakterien die Barriere überwinden und sich im Lymphgewebe des Darms ansammeln. Dies gelingt nur Arten, die nicht im Darmlumen, sondern in der zähen Schleimschicht direkt über der Schleimhaut angesiedelt sind, etwa Lactobacillus johnsonii, nicht aber Escherichia coli. In den Lymphknoten und der Milz fördern sie die Bildung von T-Helferzellen des Typs 1 (Th1) und des Typs 17 (Th17), die dann zum Tumor wandern und dort Krebszellen abtöten.

Nützliche Autoimmunität – gefährliche Hygiene?

Nach Ansicht von Laurence Zitvogel und anderen Forschern kann man solche vom Mikrobiom beeinflussten Anti-Tumor-Aktivitäten unseres Immunsystems als nützliche Form der Autoimmunität auffassen. Unsere Abwehrzellen greifen schließlich die gefährlichen, aber körpereigenen Wucherungen an, weil sie ihre Toleranz gegen die sich harmlos gebenden Krebszellen abgelegt haben – und zwar aufgrund der teils antigenspezifischen, teils unspezifischen Stimulation durch Bestandteile von Bakterien. Was bei Autoimmunerkrankungen zu ernsten, teils lebensbedrohlichen Angriffen auf normales Gewebe führt, wäre bei der Bekämpfung von Krebs und Krebsvorstufen demnach lebensnotwendig: die Kreuzreaktivität von Immunzellen, die sowohl auf Bakterienbestandteile als auch auf ähnlich aufgebaute Marker an der Oberfläche körpereigener Zellen anspringen.

Und so, wie man sich die Zunahme von Autoimmunerkrankungen und Allergien zum Teil durch eine Verarmung unseres Mikrobioms und die daraus folgende Unterstimulation unseres Immunsystems erklären kann, so lässt sich auch eine „Krebs-Hygiene-Hypothese“ formulieren: Zumindest einige Krebsarten wie chronische lymphatische Leukämie (CLL) oder das Hodgkin-Lymphom treten häufiger bei Menschen auf, die als Kinder selten Infektionen hatten oder in sogenannten guten Verhältnissen aufwuchsen, die im Allgemeinen mit einer besseren Hygiene korrelieren.

Und dann noch die Gene …

Wie eingangs erwähnt, wird die Sache durch weitere Wechselwirkungen unübersichtlich. So wird der Einfluss des Mikrobioms auf Krebs und Krebstherapien seinerseits durch unser Erbgut beeinflusst. Bestimmte Mutationen im Gen für einen Rezeptor der angeborenen Abwehr, TLR5, verhindern eine starke Reaktion der Immunzellen auf das weit verbreitete Bakterienprotein Flagellin. Brustkrebs-Patientinnen, die außer einer Mutation im Estrogenrezeptor auch diese TLR5-Genvariante aufweisen, haben besonders schlechte Prognosen. Bei Eierstock-Krebs hingegen haben Trägerinnen derselben Mutation eine höhere Überlebenswahrscheinlichkeit als Frauen ohne die Mutation.

An Mäusen fand man heraus, dass diese Mutation Zytokinkonzentrationen verändert: Mit ihr produzieren unsere Zellen weniger Interleukin 6, aber mehr Interleukin 17 als mit der Standard-Genvariante – allerdings nur, wenn sie mit einem Mikrobiom konfrontiert werden: In keimfrei aufgezogenen Mäuse mit oder ohne die Mutation schreitet der Krebs gleich schnell voran.

Zurück auf Los: Was ist überhaupt Krebs?

Auch die nächsten Blogbeiträge werden sich um Krebs drehen. Im nächsten Artikel stelle ich die vermeintlich banale Frage, was Krebs überhaupt ist, und beantworte sie anhand des unverwüstlichen Leitspruchs von Theodosius Dobzhansky: „Nichts in der Biologie hat einen Sinn außer im Lichte der Evolution.“ Und im übernächsten Artikel dringe ich zur eigentlichen Schnittmenge mit dem Thema meines Buches vor: Lassen sich Autoimmunerkrankungen als aus dem Ruder gelaufene Krebsabwehr verstehen – und was wäre damit gewonnen?

Literatur

Kate Yandell: Microbes Meet Cancer. The Scientist Magazine, 1. April 2016 – wissenschaftsjournalistische Zusammenfassung mit guter Grafik

Laurence Zitvogel et al.: Microbiome and Anticancer Immunosurveillance. Cell 165, 7. April 2016 – gute Übersichtsarbeit, ebenfalls gut illustriert

S. Viaud et al.: Gut microbiome and anticancer immune response: really hot Sh*t! Cell Death and Differentiation 22, 2015 – mit Details überfrachtete, nicht sehr sorgfältig durchgearbeitete und anstrengend zu lesende Übersichtsarbeit mit wirrer Grafik

 

Phase-2-Studie zur Stammzelltransplantation bei MS-Patienten: Der Lourdes-Effekt

Viel kann ich gar nicht schreiben zu der Studie, über die seit einigen Tagen allerorten berichtet wird, etwa bei der BBC oder im Guardian. Denn das Lancet-Paper von Harold L. Atkins et al. steckt hinter einer Bezahlschranke. Die Ergebnisse sind in der Tat vielversprechend, die Zustandsverbesserungen zum Teil atemberaubend – und sehr medienwirksam: Vom Rollstuhl auf die Skipiste, das hat was von Lourdes.

Aber man bedenke, dass die Studie sehr klein ist und die Therapieform hochriskant: Einer der 24 Teilnehmer ist an der Kombination aus aggressiver Chemotherapie und Antikörperbehandlung, mit der das Immunsystem komplett ausgeschaltet wurde, und der anschließenden Wiederbesiedlung durch die eigenen blutbildenden Zellen gestorben. Solche Therapien führt man aus guten Gründen bisher nur an praktisch austherapierten Patienten durch, sei es bei Krebserkrankungen oder nun eben bei weit fortgeschrittener schubförmig-remittierender Multipler Sklerose: Bis sich das Immunsystem erholt hat, ist die Gefahr groß, an Infektionen zu sterben.

Die Studienautoren vermeiden es, von einer echten Heilung der überlebenden Patienten zu sprechen. Aber die dramatischen Verbesserungen der Lebensqualität, das Ausbleiben von Rückfällen bis zu 13 Jahre nach der Behandlung und die Abwesenheit neuer Läsionen in den Gehirnen der Teilnehmer stimmen optimistisch, dass ein solcher Reset des Immunsystems zumindest ein Fortschreiten der Erkrankung dauerhaft stoppen kann – vielleicht weil die Behandlung die autoreaktiven Gedächtnis-T-Zellen in ihren Überlebensnischen im Knochenmark abtötet und so den fatalen Dauerbefehl an das Immunsystem auslöscht, die eigenen Nerven anzugreifen.

Nachtrag: Diese Form der Therapie ist übrigens so ziemlich das Gegenteil der zielgerichteten Ansätze, die ich hier kürzlich skizziert habe. Es wäre gute, wenn man die langlebigen autoreaktiven Gedächtnis-T-Zellen irgendwann treffsicher erledigen könnte, statt das ganze Immunsystem zu vernichten.

Magenkeim Helicobacter pylori scheint zu Hashimoto-Thyreoiditis beizutragen

Auf ihrem im Mai 2016 vorgestellten Konferenz-Poster beleuchten Iryna Voloshyna et al. einen der mittlerweile zahlreichen Zusammenhänge zwischen unserem Mikrobiom und Autoimmunerkrankungen: Während in einer Vergleichsgruppe von Gesunden 53 Prozent Anzeichen für eine Infektion* mit dem Magenbakterium Helicobacter pylori aufwiesen, waren es unter 146 Menschen mit Hashimoto-Thyreoiditis 70 Prozent: ein statistisch signifikanter, aber an sich noch nicht sensationeller Unterschied. Zudem steht er im Widerspruch zu älteren Studien, darunter der hier bereits besprochenen Arbeit von V. Bassi et al., der zufolge Morbus-Basedow-Patienten wohl, Hashimoto-Patienten aber nicht überdurchschnittlich mit H. pylori infiziert sind.

Aber jetzt kommt’s: Die Forscher haben die Helicobacter-Infektion bei den Versuchsteilnehmern mit Hashimoto-Thyreoiditis mit der Gabe von drei Antibiotika über 14 Tage bekämpft. Bei 86 Prozent der Betroffenen war das erfolgreich. In dieser Gruppe ging die Konzentration der für die Autoimmunerkrankung typischen und mutmaßlich auch an ihrem Fortschreiten beteiligten Anti-TPO-Autoantikörper signifikant zurück, und zwar nach 30 Tagen auf etwa 38 Prozent der Ausgangskonzentration. Ihr Schilddrüsengewebe war im Ultraschall zudem deutlich weniger entzündet als das derjenigen Teilnehmer, bei denen die antibiotische Eliminierung der Keime misslungen war. Bei diesen „Non-respondern“ blieb auch die Autoantikörper-Konzentration unverändert hoch.

Auf die TSH-, T3- und T4-Werte hatte die Eliminierung des Magenkeims keinen Einfluss – was auch kein Wunder ist, da alle Hashimoto-Patientinnen und -Patienten mit L-Thyroxin auf normale Hormonwerte eingestellt waren.

Dies ist, wie gesagt, nur eine von vielen Arbeiten aus den letzten Jahren, die enge und zum Teil komplexe Zusammenhänge zwischen Autoimmunerkrankungen und einzelnen Angehörigen, der Zusammensetzung oder dem Artenreichtum unseres Mikrobioms aufzeigen. Ähnliche Erkenntnisse gibt es auch bei Krebserkrankungen. Darauf gehe ich in einigen der folgenden Blogbeiträge näher ein.


* Die pauschale Einstufung von H. pylori als Pathogen ist allerdings umstritten: Vielen Menschen bereitet dieses Bakterium keine Gesundheitsprobleme, und einige Stämme des Bakteriums scheinen sogar vor bestimmten Erkrankungen zu schützen, während andere Stämme wirklich aggressiv sind.

Ansätze zu zielgerichteten Therapien von Autoimmunerkrankungen

Im Magazin „The Scientist“ hat Lawrence Steinman vor einigen Tagen neue, im Tierversuch vielversprechende Therapieansätze vorgestellt, mit denen das Immunsystem dazu gebracht werden soll, auf bestimmte Autoantigene nicht mehr zu reagieren. Das wäre ein großer Fortschritt gegenüber den heutigen Immunsuppressionstherapien, die Entzündungen und Immunreaktionen unspezifisch dämpfen, was zu einem erhöhten Infektionsrisiko und zahlreichen Nebenwirkungen führt.

Steinman ist nicht nur Pädiater und Neurologe an der Stanford University, sondern auch Gründer eines Unternehmens mit dem treffenden Namen Tolerion, das sich auf die Entwicklung von Plasmiden und anderen biologischen Wirkstoffen spezialisiert hat, die nach ihrer Injektion oder Inhalation eine solche Toleranz des Immunsystems für ein Autoantigen induzieren sollen.

Leider ist bei vielen Autoimmunerkrankungen das maßgebliche Autoantigen noch gar nicht bekannt – oder es gibt mehrere Autoantigene, die gleichzeitig oder nacheinander die Krankheit vorantreiben. So verlief eine klinische Phase-2-Studie an MS-Patienten, in der ein Plasmid Toleranz gegen Myelin-Basische Protein (MBP) induzieren sollte, enttäuschend – vermutlich weil etliche andere Autoantigene ebenfalls zu Multipler Sklerose beitragen.

Bisher nur im Tierversuch erprobt wurde ein Plasmid, das ein Myasthenia-gravis-Autoantigen codiert: den Acetylcholin-Rezeptor (AChR). Antigepräsentierende Zellen, die diese Plasmide aufnehmen, exprimieren AChR anschließend ohne die sonst üblichen Kostimulatoren auf ihrer Oberfläche, sodass die passenden T-Zellen durch diese Präsentation nicht zu einer Autoimmunreaktion ermuntert, sondern tolerant gestimmt werden.

Wohl wegen einiger Fehlschläge bei prinzipiell ähnlichen Therapieansätzen gegen Krebs und wegen der vergleichsweise wenigen Betroffenen hält sich pharmazeutische Industrie bei der Weiterentwicklung und klinischen Erprobung solcher spezifischer Therapien gegen Autoimmunerkrankungen bisher ziemlich zurück. Immerhin: Für Typ-1-Diabetes laufen bereits einige frühe klinische Studien.

Steinmans Team hat ein Plasmid entwickelt, auf dem das Gen für Proinsulin – das normalerweise von den Betazellen der Bauchspeicheldrüse hergestellte Vorprodukt für Insulin – mit einer Sechs-Basen-Sequenz namens GpC kombiniert ist, die Immunreaktionen dämpft. Im Tierversuch wiesen besonders diabetesanfällige Mäuse (sogenannte NOD-Mäuse) nach der Injektion dieses Plasmids einen normaleren Zuckerstoffwechsel, weniger entzündetes Bauchspeicheldrüsengewebe und weniger gegen Proinsulin gerichtete Antikörper auf. Das Wirkprinzip ist dasselbe wie beim Myasthenia-gravis-Therapieansatz: Antigenpräsentierende Zellen wie Makrophagen oder auch Muskelzellen präsentieren den T-Zellen das Proinsulin ohne die sonst üblichen Kostimulatoren wie CD80 der CD86; daraufhin werden die T-Zellen, deren Rezeptoren Proinsulin erkennen, tolerant.

In einer kleinen placebokontrollierten Studie an 80 Typ-1-Diabetikern, die 2012 endete, wurde als primärer Endpunkt die Konzentration von C-Peptid erfasst, einem 31 Aminosäuren langen Fragment von Proinsulin. Seine Konzentration soll anzeigen, wie gut die Bauchspeicheldrüse noch arbeitet. In Patienten, denen das Plasmid injiziert wurde, stieg die Konzentration, während sie in der Kontrollgruppe sank. Vermutlich hatten sich bereits geschädigte, aber noch lebensfähige Betazellen in den Bauchspeicheldrüsen erholt, sodass sie wieder mehr Proinsulin herstellen konnten. T-Zellen, die auf andere Antigene reagieren, wurden durch die Therapie nicht inaktiv; sie war also – wie erhofft – autoantigenspezifisch.

Ein anderer vielversprechender Ansatz ist die Entnahme und Kultivierung von regulatorischen T-Zellen oder Tregs aus den Bauchspeicheldrüsen von Typ-1-Diabetikern: In einer (allerdings sehr kleinen) Studie von Jeffrey Bluestone und seinem Team war die C-Peptid-Konzentration noch zwei Jahre nach der Behandlung besser als in der Kontrollgruppe – wohl weil das Interleukin-10, das die vermehrten Tregs ausschütteten, die Entzündung der Bauchspeicheldrüse dämpfte.

Die Gruppe von Pere Santamaria an der University of Calgary schließlich hat in Tierversuchen Erfolge mit Nanopartikeln erzielt, die mit Peptiden aus Autoantigenen und Bruchstücken des MHC-Komplexes beschichtet sind und im Körper die Rolle von antigenpräsentierenden Zellen einnehmen. Da wiederum die Kostimulatoren fehlen, stimmen sie autoreaktive T-Zellen zu Tregs um. Bei Mäusen funktioniert das mit verschiedenen Autoimmunerkrankungsmodellen, darunter Diabetes. Am Menschen wurde das Verfahren noch nicht erprobt.

E. Hilf/M. Schwarz-Eywill: Leben über Untiefen. Erfahrungen mit einer seltenen Erkrankung

P1000361_Hilf_Leben_über_UntiefenSeltene Erkrankungen heißen auf Englisch ganz treffend orphan diseases. Ihre Randständigkeit beschränkt sich nicht auf ihre Erforschung und die Entwicklung von Therapien, sondern erstreckt sich auch auf die mediale Aufmerksamkeit und damit auf das Wissen der Bevölkerung über diese vielen, gemeinsam dann doch nicht so seltenen Krankheiten.

Eberhard Hilf, der am Churg-Strauss-Syndrom erkrankt ist, hat gemeinsam mit seinem Arzt ein kleines Buch über seine Erfahrungen mit dieser seltenen Autoimmunerkrankung geschrieben, bei der sich die kleinen Blutgefäße entzünden und bestimmte Immunzellen – die eosinophilen Granulozyten, kurz Eosinophilen oder Eos – in das entzündete Gewebe eindringen.

Der leidenschaftliche Segler arbeitet dabei mit Metaphern aus seinem Hobby und hat zahlreiche Fotos einer Mitseglerin in das Buch aufgenommen. Schilderungen seines Leidenswegs bis zur und seit der Diagnose wechseln sich ab mit Erläuterungen der medizinischen Hintergründe und Einschüben aus der Perspektive des behandelnden Arztes. Zu diesen intensiven Austausch zwischen Arzt und Patient kann man beiden nur gratulieren; viele Menschen mit chronischen Autoimmunerkrankungen haben keinen Arzt ihres Vertrauens und sehen sich immer wieder mit Unverständnis, Gleichgültigkeit oder gar einer spürbaren Ablehnung ihres „Expertentums in eigener Sache“ konfrontiert.

Beim Churg-Strauss-Syndrom sammeln sich wegen falsch interpretierter Autoantigen-Signale Eosinophile in den Aderwänden an, die normalerweise Parasiten bekämpfen sollen. Sie schädigen die Zellen der Aderwände und setzen dadurch einen Teufelskreis der Entzündung in Gang. Der Auslöser ist unbekannt. Die Erkrankung kann jahre- oder jahrzehntelang unerkannt bleiben, weil sie sich ganz unterschiedlich äußert, beispielsweise als wiederholte Wucherung von Nasenpolypen oder als Asthma-Symptomatik. Eberhard Hilf war im Jahr vor seiner Diagnose bei elf Fachärzten: eine zermürbende Odyssee.

Die Lektüre hat mir verdeutlicht, welches Glück ich mit meiner artigen kleinen Hashimoto-Thyreoiditis habe: Sätze wie „Gut, dass Sie gekommen sind; Sie haben einen frischen Herzinfarkt“ oder „Gut, dass Sie gekommen sind; sie haben eine ganz frische Lungenembolie“ sind mir bisher erspart geblieben. Das Buch ermutigt Betroffene, sich möglichst viel Wissen über ihre Erkrankung anzueignen, zu lernen, mit dem schubförmigen Verlauf zurechtzukommen, beim Erproben und Einstellen von Therapien einen langen Atem zu haben und aus den bleibenden Jahren das Maximum an Lebensqualität herauszuholen – sei es nun der nächste Segeltörn oder gelebte Normalität wie das Ausräumen der Spülmaschine, mit dem Hilf seinen Bericht beendet.

NR1H3-Mutation steigert MS-Risiko auf 70 Prozent

Einer von zahllosen Artikel über Genvarianten, die das Risiko für die eine oder andere Autoimmunerkrankung steigern: „Genetische Ursache der Multiplen Sklerose entdeckt“. Die Überschrift ist nicht falsch, aber irreführend, denn entdeckt wurde nicht die genetische Ursache, sondern nur eine von zahlreichen Genvarianten, die das Erkrankungsrisiko steigern. 70 Prozent der Träger einer von Carles Vilariño-Güell und seinem Team entdeckten Genvariante erkranken an MS, aber der Umkehrschluss gilt nicht: Nur etwa einer von 1000 Menschen mit Multipler Sklerose weist diese Mutation auf. Vermutlich ist aber bei vielen weiteren Betroffenen dasselbe Gen an anderen Stellen mutiert.

Die nun durch umfangreiche Datenbank- und Stammbaumanalysen aufgespürte Mutation im Gen NR1H3 führt dazu, dass das Regulationsprotein LXRA nicht mehr hergestellt wird, das die Aufgabe hat, entzündungshemmende und Immunsystem-regulierende Gene einzuschalten. Eingriffe in diesen Genregulationsmechanismus gelten als aussichtsreiche Kandidaten für eine MS-Therapie. Welcher Umwelteinfluss letztlich dazu führt, dass die Erkrankung bei 7 von 10 Mutationsträgern zum Ausbruch kommt und die Myelinscheiden und Nervenzellen im Gehirn durch Immunreaktionen beschädigt werden, ist nicht bekannt.

TV-Tipp: „Mein Körper – mein Feind. Autoimmunerkrankungen auf der Spur“

Dann wollen wir mal beginnen mit der Aufholjagd. Den Anfang macht ein TV-Tipp: In der 3sat-Mediathek ist zur Zeit eine knapp 45 Minuten lange Reportage über Autoimmunerkrankungen zu sehen, die Novizen einen ganz guten Überblick gibt. Hier eine Zusammenfassung.

Zu der gegen Ende vorgestellten Hypothese von Antony Rosen und seinem Team, dass viele Autoimmunerkrankungen im Grunde erfolgreiche, aber aus dem Ruder gelaufene Krebsbekämpfungsmaßnahmen unseres Körpers sind, schlummert seit Februar ein Textentwurf im Backend dieses Blogs. An dem schreibe ich morgen weiter.

Das Immunsystem indigener Gruppen und das ethische Dilemma des Erstkontakts

Vor einem Jahr erschien eine Arbeit über das Mikrobiom unkontaktierter Yanomami, die ich damals nur kurz besprechen konnte. Jetzt habe ich sie noch einmal gelesen, obwohl sie immunologisch unergiebig ist: Die Entnahme von Blutproben, die Aufschluss über den Zustand des Immunsystems dieser Menschen hätte geben können, war bei einem Erstkontakt selbstverständlich unmöglich. Man muss schon froh sein, dass sie Abstriche aus ihrer Mundschleimhaut und das Einsammeln von Stuhlproben gestattet haben – vermutlich nicht, ohne sich über dieses merkwürdige Verhalten zu amüsieren.

Die Hauptergebnisse: Die Bakteriengemeinschaften auf der Haut und im Stuhl dieser mutmaßlich seit über 11.000 Jahren isolierten Menschen sind erheblich artenreicher als unsere – und auch als die Mikrobiome anderer naturnah lebender Völker. Die sogenannte Alpha-Diversität ihrer Mikrobiome ist also sehr hoch, vermutlich, weil sie nie mit antimikrobiellen Substanzen zu tun hatten und weil sie in ständigem Kontakt mit ihrer Umwelt leben. In ihrer Darm- und Hautflora leben zum Beispiel Bakterien, die man bislang für reine Bodenbakterien gehalten hat. Zugleich sind die Unterschiede in der Mikrobiom-Zusammensetzung zwischen den 34 Yanomami, von denen die Proben stammen, viel geringer als zwischen denen zweier Menschen aus einer Gruppe aus unserem Kulturkreis. Die sogenannte Beta-Diversität ist mithin sehr klein – wohl wegen des engen Zusammenlebens, der hygienischen Verhältnisse und der gleichartigen Lebensweise und Ernährung aller Gruppenmitglieder.

Unter den Genen dieser Bakterien, und zwar überweigend den Genen von zuvor unbekannten Stämmen des Darmbakteriums Escherichia coli, finden sich 28, die Antibiotika-Resistenzen vermitteln – sogar gegen einige neue, synthetische Antibiotika. Allerdings werden diese Gene in den Bakterien nicht abgelesen, sie sind „stummgeschaltet“ (silenced), sodass die Bakterien anfangs dennoch auf die Antibiotika ansprechen würden. Aber man muss damit rechnen, dass sie sehr bald wirklich Resistenzen entwickeln würden, und zwar gleich gegen mehrere Antibiotika. In Weltgegenden und Kulturen, in denen die sogenannte Therapietreue (die regelmäßige Einnahme des Medikaments über den kompletten notwendigen Zeitraum) vermutlich gering ist, geht das umso schneller.

Erstkontakt: Es gibt keinen Weg zurück

Dem Forscherteam war bewusst, dass die Probensammlung beim Erstkontakt eine einmalige Gelegenheit ist, ein Mikrobiom-Archiv anzulegen, das vermutlich große strukturelle und funktionale Ähnlichkeiten mit dem Mikrobiom unserer altsteinzeitlichen Vorfahren hat – auch wenn sich die einzelnen Bakterien-Arten und -Stämme natürlich auf dem Weg ihrer Wirte nach und durch Südamerika weiterentwickelt haben. 11.000 Jahre entsprechen ungefähr 100 Millionen Bakteriengenerationen. Zugleich begann mit dieser Begegnung zwischen der bislang isolierten Dorfgemeinschaft und den Medizinern und Wissenschaftlern unwiderruflich der Niedergang dieser Diversität – spätestens mit der ersten Antibiotika-Gabe.

Die Autoren schreiben in ihrer Danksagung: „Wir sind auch den Leuten in dem neu kontaktierten Dorf dankbar für ihr Vertrauen und für unser gemeinsamen Wunsch, dass der unvermeidliche Kontakt mit unserer Kultur ihrem Volk gesundheitliche Vorteile und Schutz bringen möge.“ Ist das nicht ein arg frommer Wunsch angesichts der bisherigen Erfahrungen mit der gesundheitlichen und sozialen Entwicklung neu kontaktierter, kleiner indigener Gruppen?  Weiterlesen

T-Zellen mit Stoffwechselproblemen

Es geht, wie so oft, um Ressourcen-Allokation. Wir können jede Kalorie nur einmal ausgeben: zum Nachdenken, für die Vermehrung, im Dienste der Abwehr – am besten dort, wo sie im Moment am dringendsten benötigt wird. Und wenn gerade alles im Lot ist, lagern wir sie ein für kommende Notlagen.

Wohin die Energie fließt, das regelt der Stoffwechsel oder Metabolismus. Er umfasst sowohl biochemische Reaktionswege, auf denen einfachen Rohstoffe unter Energieeinsatz zu komplexeren Strukturen aufgebaut werden, als auch Pfade, auf denen komplexe Biomoleküle zu einfachen Komponenten zerlegt werden, wobei Energie frei wird. Kurz: Metabolismus = Anabolismus + Katabolismus. Damit sich diese Prozesse nicht in die Quere kommen, laufen sie oftmals in getrennten innerzellulären Räumen oder zu unterschiedlichen Zeiten ab.

P1180246_Stoffwechsel_T-Zellen_Energie_oder_Baustoff_650

Action und Substanz: Teile des Zellstoffwechsels machen aus dem Zucker Glukose Energiewährung wie ATP. Andere Zweige des Stoffwechsels produzieren Protein- und Lipidbausteine wie Amino- oder Fettsäuren.

Energie ist eine knappe Ressource; jede Investition in einen Lebensbereich wird mit einem Mangel in einem anderen Bereich erkauft. Das gilt zum einen für ganze Organismen und ihre Organe, etwa für Guppies. Ein Forscherteam hat einen Stamm dieser Aquarienfische über einige Generationen hinweg auf besonders große und besonders kleine Gehirne hin selektiert und dann die Stärke der Immunreaktionen auf transplantierte Guppy-Schuppen gemessen: Die angeborene Abwehr wird schwächer, wenn mehr Energie in die Ausbildung und den Unterhalt eines großen Gehirns fließt. Die erworbene Abwehr bleibt dagegen gleich stark (A. Kotrschal et al., 2016, PDF).

Das gilt aber auch für einzelne Zelltypen wie Tumorzellen oder die Zellen des Immunsystems, die mit Krebszellen einiges gemeinsam haben – etwa die Fähigkeit zur raschen Vermehrung, für die in kurzer Zeit viel Energie benötigt wird. Die Energiequelle ist Glukose oder Traubenzucker, der aus dem Blut in die Zellen gelangt. Naive, d. h. noch nicht mit einem passenden Antigen konfrontierte T-Zellen haben zunächst einen niedrigen Energieumsatz. Sobald sie aber ein zu ihren Rezeptoren passendes Antigen präsentiert bekommen und dadurch aktiviert werden, geht es los: Sie müssen sich massiv vermehren, u. U. weit und mühsam an ihren Einsatzort wandern und eine Menge Wirkstoffe wie Zytokine herstellen. Anschließend leben einige von ihnen als sogenannte Gedächtniszellen noch Jahre bis Jahrzehnte weiter, um bei einem erneuten Auftreten desselben Antigens, also der Rückkehr derselben Gefahr, sehr schnell wieder aktiv zu werden.

P1180246_Stoffwechsel_T-Zellen_naiv_aktiviert_Gedächtnis

Wird eine naive T-Zelle durch ein Antigen aktiviert (Blitz), kurbelt sie die Glykolyse (G) an, um als Effektor-T-Zelle schnell schlagkräftig zu werden und sich zu vermehren. Als langlebige Gedächtniszelle (M für memory) setzt sie sie danach stärker auf die oxidative Phosphorylierung (O).

Ihr Stoffwechsel passt sich dem Bedarf in diesen drei Lebensphasen an, wobei jede T-Zell-Subpopulation (etwa CD4+, CD8+ oder Treg) ein etwas anderes Programm verfolgt.

Im Ruhezustand gewinnen die naiven T-Zellen Energie aus allen möglichen Quellen, nämlich Glukose, Fettsäuren und Aminosäuren, und zwar größtenteils in ihren Mitochondrien, den Kraftwerken unserer Zellen. Die darin ablaufenden Stoffwechselwege heißen Citratzyklus und oxidative Phosphorylierung, kurz OXPHOS. Sie sind sehr effizient, liefern also sehr viel von dem Energieträgermolekül ATP – das aber recht langsam: ideal für ruhende T-Zellen, die gemächlich durch die Blutgefäße und die Lymphknoten patrouillieren und auf die Präsentation eines Antigens warten, das zu ihren Rezeptoren passt.

Bei ihrer Aktivierung schalten die T-Zellen auf einen als Glykolyse bezeichneten Stoffwechselweg um, der stattdessen im Zellplasma abläuft und Glukose abbaut, um daraus möglichst rasch ATP und die einfachen Grundbausteine Pyruvat und Lactat zu gewinnen. Aus diesen Zwischenprodukten wird dann Zellsubstanz aufgebaut (im Wesentlichen Nukleinsäuren, Fette und Proteine) und die Zellteilung sowie die Wirkstoffproduktion angetrieben. Die Glykolyse hat eine schlechtere Energiebilanz als die Stoffwechselwege in den Mitochondrien, aber dafür ist sie schnell – und auf Tempo kommt es an, wenn eine T-Zelle ihr passendes Antigen erkannt hat und sich rasant vermehren muss, um die Gefahrenquelle zu bekämpfen, bevor der Körper großen Schaden nimmt.

Gedächtnis-T-Zellen sind dagegen wieder auf den Citratzyklus und OXPHOS angewiesen, denn sie müssen sehr lange überleben, um als Archiv für ehemalige Infektionen und andere überstandene Gefahren zu dienen. Sie müssen aber, solange sie nicht reaktiviert werden, kaum Immunsystem-Wirkstoffe herstellen oder einlagern, können also Aminosäuren und Fettsäuren aus nicht mehr benötigten Proteinen und Lipiden ruhig abbauen bzw. in Energieträgermoleküle umwandeln.

Ein Forscherteam um Zhen Yang ist 2015 der Frage nachgegangen, ob die autoreaktiven T-Zellen, die bei Autoimmunerkrankungen auftreten, womöglich einen charakteristisch veränderten Zellstoffwechsel aufweisen. Ihre Idee: Eine Stoffwechselstörung, etwa eine ständige Überproduktion von Energie, könnte die Immunzellen chronisch überaktiv machen – und eine chronische Entzündung unter Beteiligung autoreaktiver T-Zellen ist für Autoimmunerkrankungen typisch, etwa für rheumatoide Arthritis (RA) oder systemischen Lupus erythematodes (SLE). Dann könnte man diese Erkrankungen womöglich durch Eingriffe in den Stoffwechsel der T-Zellen bremsen oder gar heilen.

Das wäre natürlich zu schön gewesen. Leider stellt sich die Lage komplexer dar: Sowohl bei RA als auch bei SLE ist der Stoffwechsel der T-Zellen verändert – aber nicht gleichartig.

Bei RA fahren frisch stimulierte CD4+-T-Zellen die Glykolyse nicht so schnell hoch wie bei Gesunden; sie produzieren nicht so viel ATP und Lactat, teilen sich aber trotzdem lebhaft. Die Bremse ist ein Glykolyse-Enzym mit dem furchteinflößenden Namen 6-Phosphofructo-2-Kinase/Fructose-2,6-Bisphosphatase 3, das wir zum Glück PFKFB3 nennen dürfen. An diesem Enzym herrscht in den T-Zellen von Rheumatikern Mangel, da das entsprechende Gen viel zu schwach abgelesen wird. Die Zwischenprodukte, die sich vor diesem Nadelöhr in der Glykolyse anstauen, weichen auf einen anderen Stoffwechselweg aus: den Pentosephosphatweg. Das führt zu einem Mangel an sogenannten reaktiven Sauerstoffspezies (ROS). Ein ROS-Mangel wiederum geht mit starken Gelenkentzündungen einher; ROS schützt vor Arthritis.

Warum das Enzym PFKFB3 nicht richtig abgelesen wird, ist unklar. Die T-Zellen von RA-Patienten altern vorzeitig. Aber ob diese zelluläre Frühvergreisung durch Energiedefizite aufgrund des Enzymmangels zustande kommt oder umgekehrt das Enzym nicht richtig abgelesen wird, weil die Zellvergreisung das Erbgut schädigt und die Gen-Expression beeinträchtigt, weiß man nicht. Jedenfalls sterben T-Zellen, die nicht genug ATP produzieren, vorzeitig ab. Der dadurch drohende Lymphozyten-Mangel (Lymphopenie genannt) zwingt den Organismus, die Produktion neuer naiver T-Zellen zu beschleunigen. Das geschieht bei älteren Erwachsenen nicht etwa im Thymus, der sich ja bereits zurückgebildet hat, sondern durch verstärkte Teilung der schon im Körper kreisenden naiven T-Zellen: die sogenannte homöostatische T-Zell-Proliferation. Bei diesem Prozess scheinen sich autoreaktive T-Zellen bevorzugt zu vermehren, was zu einer Autoimmunerkrankung führen kann.

P1310948_Homöostatische_Proliferation_Oligonale_Expansion_n_650

Homöostatische T-Zell-Proliferation: Das Repertoire der naiven T-Zellen mit unterschiedlichen Rezeptoren (oberste Reihe: drei Zellklone) bleibt normalerweise bis ins Alter erhalten, weil Verluste durch Teilung der übrigen Zellen kompensiert werden. Bei einer Lymphopenie, also dem massenhaften vorzeitigen Sterben von T-Zellen, wird die homöostatische Proliferation verstärkt. Dabei können Klone verloren gehen (weiß) und autoreaktive T-Zellen (schwarz) sich so stark vermehren, dass eine Autoimmunerkrankung ausbricht.

Auch die T-Zellen von Lupus-Patienten haben einen auffälligen Stoffwechsel. Aber sie produzieren ihr ATP primär auf dem OXPHOS-Weg in den Mitochondrien, nicht durch Glykolyse. Sie produzieren mehr ROS als normale T-Zellen, nicht weniger. Ihre Energiegewinnung ist gestört; sie bauen weder Glukose noch Fettsäuren noch Aminosäuren so effizient ab wie normale T-Zellen. Vor allem freie Fettsäuren häufen sich wegen des gestörten Abbaus an. Der gestörte Fettstoffwechsel wirkt sich auch auf die Fähigkeit der T-Zell-Rezeptoren zur Wahrnehmung von Antigenen aus: Die Zellmembranen von SLE-Patienten enthalten übermäßig viele Glycosphingolipide, also Lipide mit außen anhängenden Zuckermolekülen. Diese speziellen Lipide lagern sich in der ansonsten nahezu flüssigen Zellmembran gerne zu festeren Regionen zusammen, sogenannten Lipid-Flößen, in die wiederum viele T-Zell-Rezeptoren eingebettet sind. Wohl daher nehmen die T-Zellen von Lupus-Patienten besonders leicht Autoantigen-Signale wahr und aktivieren dann ihrerseits B-Zellen, die Autoantikörper herstellen.

Was lehren uns diese gegensätzlichen Stoffwechseldefekte von T-Zellen bei zwei wichtigen Autoimmunerkrankungen aus dem rheumatischen Formenkreis? Dass die Erkrankungsmechanismen ganz verschieden sein können, auch wenn es sich in beiden Fällen um chronische Entzündungen handelt, bei denen das Immunsystem körpereigenes Gewebe angreift. Dass es daher vermutlich nicht das eine Heilmittel geben und überhaupt noch lange dauern wird, bis wir Autoimmunerkrankungen heilen können. Aber auch, dass man vor lauter Botenstoffen, Signalkaskaden und Erbinformationsableserei den Energiehaushalt des Immunsystems nicht außer Acht lassen darf: Das ist nicht etwa reine Information, die da zwischen und in den Zellen weitergeleitet wird. Es sind vielmehr Substanzen, deren Herstellung und Beseitigung zur rechten Zeit, am rechten Ort und in der rechten Menge Kraftakte und logistische Meisterleistungen des Zellstoffwechsels sind.

Vom Immunsystem der Viren (doch, doch!) und Amöben (echt!)

Letzte Woche wurde ich auf einem Kongress, bei dem es um ganz andere Themen ging, von zwei Menschen auf dieses Blog, auf die offenbar ansprechenden Zeichnungen und auf das Werden bzw. Stagnieren des Autoimmunbuch angesprochen. Das hat mich gefreut und motiviert – und daraufhin bin ich erst mal wieder krank geworden. Auch wenn ich geistig heute zu nichts Großem imstande bin, will ich wenigstens drei Literaturfunde der letzten Woche notieren.

Kerry Grens: Giant Virus Has CRISPR-like Immune Defense (02.03.2016)

Die damals frisch entdeckte, inzwischen routinemäßig zur gezielten genetischen Veränderung von Organismen eingesetzte erworbene Immunabwehr der Bakterien, CRISPR/CAS, habe ich bereits im August 2012 skizziert. Wie sich jetzt zeigt, schützt sich ein Stamm des Riesenvirus namens Mimivirus mit einem ganz ähnlichen System vor Infektionen mit dem Virophagen (also dem Viren befallenden Virus) Zamilon: Der Stamm hat mehrere Wiederholungen eines 15 Basen langen Abschnitts aus dem Zamilon-Erbgut in sein eigenes Genom integriert, die ihn – im Unterschied zu den übrigen beiden Mimivirus-Stämmen – gegen einen Befall mit Zamilon immunisieren. Die Details des Mechanismus müssen noch aufgeklärt werden.

Interessant fände ich auch, ob dieses als MIMIVIRE bezeichnete Abwehrsystem ebenso nach hinten losgehen, also zu Autoimmunreaktionen führen kann wie CRISPR/CAS bei den Bakterien. Evolutionsbiologisch und konzeptionell verschwimmt die einst scharfe Grenze zwischen den Viren und den übrigen Domänen des Lebens jedenfalls zusehends. Es steht zu vermuten, dass sich genetische Parasiten – und Abwehrmechanismen gegen solche Schwarzfahrer, also Proto-Immunsysteme – herausgebildet haben, sobald es selbstreplizierende Einheiten gab, mithin lange vor der Entstehung vollständiger Zellen.

Jef Akst: Amoebae Have Human-Like Immunity (02.03.2016)

Sogenannte soziale Amöben wie Dictyostelium discoideum – gelegentlich irreführend als Schleimpilze bezeichnet – leben meist als Einzeller. Werden die Ressourcen knapp, schließen sie sich zu Abertausenden zu einem nacktschneckenartigen, kriechenden Gebilde zusammen, das sich schließlich aufrichtet und Sporen bildet, die vom Wind davongetragen werden – an Orte, an denen es für die Zellen hoffentlich mehr zu fressen gibt. Etwa ein Prozent des Gebildes besteht aus Wächterzellen, die die Aufgabe haben, eindringende Bakterien auszuschalten, die das Überleben der Kolonie gefährden könnten.

Die Mittel, mit denen diese sentinel cells arbeiten, erinnern stark an die angeborene Abwehr des Menschen: Phagozytose, also das Vertilgen der Eindringlinge, und Netze aus der eigenen DNA, die ruckartig ausgeworfen werden und die Bakterien festkleben lassen – ähnlich den NETs unserer neutrophilen Granuzlozyten. Bisher hatte man geglaubt, solche Netze kämen nur im Immunsystem mehrzelliger Tieren vor. Offenbar ist auch diese Entwicklung erheblich älter als gedacht.

Jyoti Madhusoodanan: Viral Remnants Help Regulate Human Immunity (03.03.2016)

Dass humane endogene Retroviren oder HERVs zu wichtigen Neuerungen in der Evolution der Säugetiere geführt haben, etwa zur Ausbildung des Synzytiotrophoblasten in der Plazenta, ist schon länger bekannt. Überreste eines humanen endogenen Retrovirus, das vor etwa 45-60 Millionen Jahren in unser Genom integriert wurde, regulieren offenbar auch die Reaktion unserer angeborenen Abwehr auf eine Interferon-Ausschüttung. Rings um die Gene, deren Ablesung durch Interferon induziert wird, gibt es mindestens 27 sogenannte Transposons, die wahrscheinlich von den langen Wiederholungen oder LTRs an den Enden retroviraler Sequenzen stammen.

Eines dieser Elemente, MER41, enthält Interferon-induzierbare Bindungsstellen. Es findet sich unter anderem 220 Basenpaare oberhalb des Interferon-gesteuerten Gens AIM2, das in den Zellen eine Entzündungsreaktion in Gang setzt. Wird MER41 und damit die Induktion von AIM2 durch Interferon ausgeschaltet, sind die Zellen anfälliger für Viren-Infektionen. Ob dieser Steuerungsmechanismus ursprünglich den Retroviren dazu diente, die Immunreaktionen des Wirts zu manipulieren, oder unmittelbar nach der Integration der viralen Sequenzen vom Wirt für seine Zwecke requiriert wurde, lässt sich allerdings nicht sagen. Bei einigen Autoimmunerkrankungen und Krebserkrankungen können stillgelegte retrovirale Sequenzen noch heute reaktiviert werden. Aber ob dies die Erkrankungen verstärkt oder gar mit verursacht, ihrer Bekämpfung dient oder eine unbedeutende Nebenwirkung ist, bleibt nach wie vor offen.