Schlagwort-Archiv: regulatorische T-Zellen

Große Unterschiede im Immunsystem eineiiger Zwillinge

Nur wenige Forscher beschäftigen sich mit der Entwicklung des gesamten Immunsystems, also all der Komponenten sowohl der angeborenen als auch der erworbenen Abwehr, über das ganze Leben hinweg: von der Geburt bis ins hohe Alter. Hier stelle ich eine dieser wenigen Arbeiten vor:

Petter Brodin et al. (2015): Variation in the Human Immune System Is Largely Driven by Non-Heritable Influences (Open Access)

Die Autoren haben an 105 gesunden Zwillingspaaren, also 210 Personen, 204 Immunsystem-Parameter untersucht, darunter die Häufigkeit von 95 verschiedenen Immunzelltypen, die Konzentration von 51 Zytokinen, Chemokinen und Wachstumsfaktoren im Serum und die Veränderungen dieser Werte nach Anregung der Immunzellen durch Botenstoffe. 78 Zwillingspaare waren eineiig, 27 zweieiig. Bei der großen Mehrheit, nämlich 77 Prozent der Parameter waren die Unterschiede zwischen den Zwillings-Messwerten überwiegend (nämlich zu mehr als der Hälfte) nicht erblich, sondern durch unterschiedliche Umwelteinflüsse bedingt. Die Unterschiede bei 58 Prozent der Immunsystem-Parameter waren sogar ganz überwiegend (zu mehr als 80 Prozent) nicht erblich bedingt. Außerdem unterschieden sich die Immunsysteme älterer Zwillingspaare deutlich stärker als die jüngerer: Der Umwelteinfluss nimmt mit den Jahren zu.

Mit den Jahren entwickeln sich Zwillinge immunologisch immer weiter auseinander, weil unterschiedliche Umwelteinflüsse auf sie einwirken, etwa Impfungen, Infektionen, Allergene oder Nahrung

Mit den Jahren entwickeln sich Zwillinge immunologisch immer weiter auseinander, weil unterschiedliche Umwelteinflüsse auf sie einwirken, etwa Impfungen, Infektionen, Zellgifte oder ihre Kost.

Die Erblichkeit der Parameter wurde anhand von Messungen an eineiigen und zweieiigen Zwillingspaaren ermittelt. Zwischen eineiigen Zwillingen sollten erbliche Faktoren (also Gene und dauerhafte epigenetische Markierungen des Erbguts) zu 100 Prozent übereinstimmen, zwischen zweieiigen Zwillingen dagegen – wie bei anderen Geschwisterpaaren – nur zu 50 Prozent. Umweltfaktoren (darunter auch stochastische epigenetische Veränderungen) sollten dagegen ein- und zweieiige Zwillinge gleichermaßen beeinflussen.

Unter den Immunzelltypen gab es einige wenige, deren Häufigkeit im Blut der Probanden stark erblich bedingt war, also zwischen eineiigen Zwillingen sehr gut übereinstimmte – vor allem naive CD27+-T-Zellen und CD4+-Gedächtnis-T-Zellen. Die Häufigkeit der meisten Zellen der erworbenen (T- und B-Zellen) sowie der angeborenen Abwehr (Granulozyten, Monozyten und NK-Zellen) unterschied sich dagegen zwischen eineiigen Zwillingen praktisch ebenso stark wie zwischen zweieiigen Zwillingen, sodass man annehmen muss, dass Zufälle und Umweltreize wie Infektionen die Werte prägen.

Unter den Zytokinen erwies sich IL-12p40 als besonders stark erblich. Varianten im Gen dieses Proteins werden mit Krankheiten wie Psoriasis oder Asthma in Verbindung gebracht, an denen das Immunsystem beteiligt ist. Bei vielen anderen Zytokinen war der erbliche Einfluss gering.

Schon im Ruhezustand (oben) unterscheiden sich viele Immunparameter zwischen Zwillingen. Eine Anregung des Immunsystems löst bei den wenigen erblich dominierten Parametern gleich starke Veränderungen aus (Zeile 2), bei vielen nicht erblich dominierten Parametern aber ungleich starke Veränderungen, die die Unterschiede zwischen den Basiswerten ausgleichen oder verstärken können.

Schon im Ruhezustand (oben) unterscheiden sich viele Immunparameter zwischen Zwillingen. Eine Anregung des Immunsystems löst bei den wenigen erblich dominierten Parametern (etwa den homöostatischen Zytokinen IL-2 und IL-7, die die Vermehrung von T-Zellen steuern) gleich starke Veränderungen aus (Zeile 2). Bei den vielen nicht erblich dominierten Parametern (etwa IL-6, IL-20 oder IL-21) können die unterschiedlichen Reaktionsstärken die Unterschiede zwischen den Basiswerten ausgleichen oder verstärken.

Das galt sowohl für die Basiswerte, die ohne Stimulation des Immunsystems erhoben wurden, als auch für viele Werte, die nach Anregung einer Immunreaktion ermittelt wurden. Eine stark erbliche Komponente fand sich bei den sogenannten homöostatischen Zytokinen IL-2 und IL-7, die bei einer Aktivierung des Immunsystems für die Vermehrung und die richtige Spezialisierung von T-Zellen sorgen. Die meisten Messwerte variierten jedoch nach der Immunsystem-Stimulation zwischen eineiigen Zwillingen fast ebenso unterschiedlich wie zwischen zweieiigen Zwillingen. Dabei waren schwache und starke Immunsystem-Reaktionen gleichermaßen nicht erblich, also durch Umweltfaktoren geprägt.

Stellt man alle gemessenen Immunsystem-Parameter als Netzwerk dar, in dem voneinander abhängige Größen durch Linien verbunden sind, zeigt sich: Die relativ wenigen Parameter mit starker Erblichkeit sind von Parametern umgeben, deren Variabilität durch die Umwelt bedingt ist. Das könnte erklären, warum bekannte Risiko-Genvarianten für bestimmte Krankheiten des Immunsystems oft nur für einen kleinen Teil des Erkrankungsrisikos verantwortlich zeichnen: Ihr Einfluss wird durch andere, nicht erbliche Faktoren abgepuffert, die zum Beispiel in denselben Signalketten oder Regelkreisen angesiedelt sind.

Der im Laufe des Lebens zunehmende Einfluss der Umwelt, vor allem wohl der Infektions- und Impfgeschichte auf den Zustand des Immunsystems war bei den regulatorischen T-Zellen oder Tregs am auffälligsten: Während ihre Häufigkeit bei jungen Zwillingspaaren gut übereinstimmte (Erblichkeit 0,78 von maximal 1,0), waren die Werte bei alten Zwillingspaaren so gut wie unkorreliert (Erblichkeit 0,24, also knapp über der Nachweisbarkeitsgrenze von 0,2). Besonders großen Einfluss auf das Immunsystem nimmt offenbar das Cytomegalovirus (CMV), das uns – wie andere Herpesviren – ein Leben lang erhalten bleibt. In 16 eineiigen Zwillingspaaren aus der Versuchspopulation war ein Geschwister mit CMV infiziert und das andere nicht. Viele ihrer Immunsystem-Parameter unterschieden sich stark, und zwar sowohl im Basiszustand als auch nach Stimulation.

Die Antikörperproduktion nach einer Grippeschutzimpfung war bei den Zwillingspaaren so gut wie gar nicht erblich beeinflusst, sondern fiel – wohl je nach Impf- und Infektionsgeschichte der Individuen – recht unterschiedlich aus.

Angesichts dieser Ergebnisse ist es kein Wunder, dass unter Geschwistern, die dieselben Risikogenvarianten für Autoimmunerkrankungen erben, oftmals nur eines wirklich erkrankt.

Das vorgeburtliche Immunsystem: nicht unreif, sondern aktiv tolerant

In der Immunologie entwickeln sich die Techniken und mit ihnen im Idealfall auch die Einsichten so schnell, dass fünf oder gar zehn Jahre alte Arbeiten meist zum alten Eisen gehören. Aber es gibt Ausnahmen. Manches Konzept taucht irgendwann wieder aus der Versenkung auf, in der es verschwunden war, weil es zur Zeit seiner Entstehung nicht überprüft und weiterentwickelt werden konnte. Das gilt zum Beispiel für die Hypothese vom geschichteten oder gestaffelten Immunsystem, der layered immune system hypothesis, die 1989 von Leonore und Leonard Herzenberg aufgestellt wurde.

Die Schichten oder Phasen sind dabei ursprünglich sowohl stammes- als auch individualgeschichtlich zu verstehen. Auch wenn der Name Ernst Haeckel nirgends fällt, schwingt dessen biogenetisches Grundgesetz mit, also die Rekapitulationsregel: „Die Ontogenese rekapituliert die Phylogenese.“ In seiner dogmatischen Form war dieses „Gesetz“ nicht zu halten, und Haeckel hat der Sache mit seinen didaktisch geschönten grafischen Darstellungen keinen Gefallen getan.

Aber nach wie vor gilt: Je jünger ein Embryo, desto weniger spezifische Züge seiner Art trägt er, und desto mehr Züge hat er noch mit ähnlich frühen Entwicklungsstadien entfernt verwandter Arten gemeinsam – Züge, die evolutionär älter sind als die gattungs- und artspezifischen Ausdifferenzierungen der späteren Entwicklungsstadien. Auf das Immunsystem bezogen hieße das zum Beispiel: Die Elemente der evolutionär älteren angeborenen Abwehr bilden sich im werdenden Individuum früher heraus als die Bestandteile der evolutionär jüngeren erworbenen Abwehr.

Schon bei den Herzenbergs und erst recht in den neueren Arbeiten, die sich auf die Hypothese beziehen, steht aber die Ontogenese, die Embryonalentwicklung, im Vordergrund. Die Entwicklung des individuellen Immunsystems wird traditionell als Reifung verstanden: Vor der Geburt ist das System unreif – im Sinne von unterentwickelt oder nicht funktionstüchtig; nach der Geburt reift es durch den Kontakt mit Antigenen aus der Umwelt heran; im Alter erschöpft es sich.

In den letzten Jahren mehren sich aber die Anzeichen, dass das menschliche Immunsystem bereits weit vor der Geburt Funktionen erfüllt – nur eben andere als nach der Geburt. Die Geburt markiert also nicht den Beginn der Aktivität, sondern eine Änderung des Aufgabenprofils, die mit einer Änderung der zellulären Zusammensetzung und der „Gestimmtheit“ des Immunsystems einhergeht: mit dem Rückbau einer Ebene und dem Ausbau einer anderen.

Die Entwicklungsphasen der tolerogenen Immunität durch fetale T-Zellen und der aggressiven Immunität durch adulte T-Zellen überlappen sich. Nach Burt 2013, Abb. 1

Die Entwicklungsphasen der tolerogenen Immunreaktionen durch fetale T-Zellen und der aggressiven Immunreaktionen durch adulte T-Zellen überlappen sich. Nach Burt 2013, Abb. 1

Die für eine Ebene oder Phase des Immunsystems typischen Lymphozyten besiedeln die Lymphorgane und die Peripherie nicht kontinuierlich, sondern in Wellen. Ein Beispiel sind die beiden B-Zell-Populationen, die bei Mäusen zu unterschiedlichen Zeiten auftauchen, von unterschiedlichen hämatopoetischen Stammzellen im Knochenmark abstammen und unterschiedliche Eigenschaften haben: In neugeborenen Mäusen dominieren die B-1-Zellen, die vor allem in der Bauchhöhle vorkommen; bei erwachsenen Mäusen herrschen B-2-Zellen vor, die schlagkräftigere Antikörper produzieren.

Auch das T-Zell-Repertoire entwickelt sich in Wellen. Wie bereits besprochen, entstehen beim Menschen während der 9. Schwangerschaftswoche zunächst γδ-T-Zellen, die bei Erwachsenen nur noch etwa fünf Prozent der T-Zellen ausmachen. Ab der 10. Woche werden αβ-T-Zellen produziert, und zwar sowohl zyto­to­xi­sche T-Zellen (CD8+) als auch CD4+-T-Zellen, die entweder zu Helferzellen oder zu regu­la­to­ri­schen T-Zellen (Tregs) werden. Die frühen CD4+-T-Zellen haben eine starke Neigung, sich – manchmal schon im Thymus, zu einem großen Teil aber erst in der Peripherie – zu Tregs zu entwickeln und fortan besänftigend auf das restliche Immunsystem einzuwirken.

Vor allem im zweiten Schwangerschaftsdrittel wimmelt es im Körper des werdenden Kindes von Tregs. In der 24. Schwangerschaftswoche machen sie 15 bis 20 Prozent aller CD4+-T-Zellen aus, während es bei der Geburt nur noch 5 bis 10 Prozent und bei Erwachsenen unter 5 Prozent sind. Fehlen sie, etwa aufgrund eines genetischen Defekts im Treg-typischen Gen FoxP3, so kommt es bereits kurz nach der Geburt zu einer massiven, viele Organe umfassenden Autoimmunreaktion (IPEX). Erst im dritten Trimester werden die tolerogenen fetalen T-Zellen allmählich von aggressiveren adulten T-Zellen abgelöst.

Das kam für viele Forscher überraschend, denn man hatte die Entwicklung der erworbenen Abwehr jahrzehntelang fast nur an Labormäusen erforscht, bei denen die T-Zell-Produktion knapp vor der Geburt anläuft und nicht bereits im ersten Trimester. Die ersten Tregs verlassen den Mäuse-Thymus sogar erst am dritten Tag nach der Geburt. Dieser grundlegende Unterschied zwischen Mensch und Maus ist – wie so vieles – mit der ebenso grundverschiedenen life history der beiden Arten zu erklären.

So, wie das mütterliche Immunsystem während der langen Schwangerschaft beim Menschen vor der Herausforderung steht, den (halb)fremden Fetus nicht abzustoßen, muss auch der Fetus mit (halb)fremden Eindringlingen zurechtkommen, nämlich mütterlichen Zellen und Antikörpern. Mikrochimärismus – der Einbau von Zellen aus der Mutter in den Organismus ihres Kindes ebenso wie der Einbau von Zellen des Kindes in den Organismus seiner Mutter – ist bei Menschen und anderen großen, langlebigen Säugetieren weit verbreitet und in den allermeisten Fällen völlig harmlos: Das Immunsystem lernt rechtzeitig, dass diese Zellen von nun an dazugehören, und die Einwanderer integrieren sich anstandslos. Zu ihnen zählen auch mütterliche Immunzellen aller Art, etwa Monozyten, natürliche Killerzellen, T- und B-Zellen. In den fetalen Lymphknoten präsentieren einige von ihnen den Immunzellen des Kindes mütterliche Antigene.

In der Mythologie ist die Chimäre ein Wesen, das vorne Löwe, in der Mitte Ziege und hinten Drachen ist. Wir alle sind Chimären: Unser Körper enthält Zellklone, die aus unseren Müttern stammen.

Die Chimäre der Mythologie ist vorne Löwe, in der Mitte Ziege und hinten Drache. Wir alle sind Chimären: Unsere Körper enthalten Zellklone, die aus unseren Müttern stammen.

Neben mütterlichen Zellen dringen auch mütterliche Antikörper in den Fetus ein, und zwar massenhaft: Gegen Ende der Schwangerschaft ist die Konzentration von mütterlichem Immunglobulin G (IgG) im Fetus höher als im mütterlichen Blut. Über die Muttermilch nimmt das Neugeborene weiter IgG auf. Diese Antikörper schützen das Kind in den ersten Lebensmonaten vor Infektionen. Antikörper sind bekanntlich Proteine und als solche nicht nur Waffen, sondern zugleich Ziele der Abwehr – sofern das Immunsystem nicht lernt, sie zu tolerieren.

Außer mütterlichen Antigenen tauchen währen der Entwicklung des Fetus auch immer wieder neue Gewebstypen und Organe auf und mit ihnen Autoantigene, auf die das Immunsystem nicht aggressiv reagieren darf. Und die bakterielle Flora, die unsere Haut und unsere Schleimhäute unmittelbar nach der Geburt besiedelt, muss zwar in ihre Grenzen verwiesen, aber ansonsten toleriert werden. Ähnliches gilt vermutlich für einige Pathogene, etwa Viren, die die Schutzwälle rings um den Fetus überwinden und ihn bereits vor der Geburt chronisch infizieren können: Auch sie müssen zwar eingedämmt, dürfen aber nicht aggressiv bekämpft werden, weil das für das werdende Kind das Ende bedeuten würde.

Die zentrale Toleranz durch die negative T-Zell-Selektion im Thymus reicht für diese Herunterregulierung der Abwehr offenbar nicht aus: Auch in der Peripherie muss Frieden gestiftet werden. Naive fetale CD4+--T-Zellen müssen sich bei Bedarf schnell zu antigenspezifischen Tregs weiterentwickeln können. Dazu brauchen sie Signale aus der TGF-β-Familie, die tatsächlich in fetalen Lymphknoten in viel höherer Konzentration vorliegen als in adulten Lymphknoten. Auch können sich fetale Tregs, wenn sie in den Lymphknoten mit Interleukin 2 angeregt werden, stark vermehren, selbst wenn ihre T-Zell-Rezeptoren gerade nicht durch das passende präsentierte Antigen stimuliert werden – was bei adulten Tregs eine strikte Voraussetzung für die Zellteilung ist.

Auch wenn sich fetale und adulte Tregs äußerlich zum Verwechseln ähneln: Sie stammen – wie Experimente an „humanisierten“ Mäusestämmen zeigen – von unterschiedlichen hämatopoetischen Stammzellen ab, haben unterschiedliche Genexpressionsprofile und Aktivierungsschwellen und gelangen in der Peripherie in unterschiedliche Signal-Landschaften, die ihr Verhalten und ihre weitere Entwicklung in entsprechende Bahnen lenken.

Einige Vertreter der Hypothese vom mehrschichtigen oder gestaffelten Immunsystem meinen, die individuell unterschiedliche Neigung zu Autoimmunerkrankungen, Allergien und Nahrungsmittelunverträglichkeiten könne mit dem Mischungsverhältnis zwischen fetalen und adulten T-Zell-Populationen zum Zeitpunkt der Geburt zusammenhängen: Neugeborene, die nur noch wenige fetale, tolerogene T-Zellen aufweisen und dafür bereits sehr viele aggressive T-Zellen vom adulten Typ, könnten im kritischen Zeitfenster nach der Geburt eine bleibende Neigung zu Überreaktionen auf Autoantigene und harmlose fremde Antigene ausbilden.

Die Hypothese vom layered immune system ist nach wie vor umstritten, wie die Diskussion zwischen Mold und Anderson (s. u.) zeigt. Aber sie passt zu den Arbeiten über die Hemmung des bereits voll einsatzfähigen neonatalen Immunsystems durch CD71+-Zellen (junge rote Blutkörperchen), die ich hier vor einigen Monaten in zwei Beiträgen besprochen habe: Offenbar kommen wir – zumindest immunologisch – keineswegs so unreif auf die Welt, wie man früher annahm. Wieder einmal zeigt sich, dass Menschen keine groß geratenen Mäuse sind.

Literatur (chronologisch)

Herzenberg, L. A., & Herzenberg, L. A. (1989). Toward a Layered Immune System. Cell, 59, 953-954. (PDF)

Mold, J. E., & McCune, J. M. (2011). At the crossroads between tolerance and aggression: Revisiting the “layered immune system” hypothesis. Chimerism,2(2), 35–41. http://doi.org/10.4161/chim.2.2.16329

Mold, J. E., & Anderson, C. C. (2013). A discussion of immune tolerance and the layered immune system hypothesis. Chimerism, 4(3), 62–70. http://doi.org/10.4161/chim.24914

Burt, T. D. (2013). Fetal Regulatory T Cells and Peripheral Immune Tolerance in utero: Implications for Development and Disease. American Journal of Reproductive Immunology (New York, N.Y. : 1989), 69(4), 346–358. http://doi.org/10.1111/aji.12083

Loewendorf, A. I., Csete, M., & Flake, A. (2014). Immunological considerations in in utero hematopoetic stem cell transplantation (IUHCT). Frontiers in Pharmacology, 5, 282. http://doi.org/10.3389/fphar.2014.00282

Yang, S., Fujikado, N., Kolodin, D., Benoist, C., Mathis, D. (2015). Immune tolerance. Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. Science, 2015 May 1;348(6234):589-94. http://doi.org/10.1126/science.aaa7017

 

Etablierung der Hautflora nach der Geburt: Ohne Tregs keine Toleranz

Eine aktuelle Arbeit, die genau zu dem Teil des Buches passt, den ich gerade schreibe, nämlich zur Entwicklung des Immunsystems rund um die Geburt:

T. C. Scharschmidt et al.: A Wave of Regulatory T Cells into Neonatal Skin
Mediates Tolerance to Commensal Microbes. Immunity 43, 1011–1021, November 17, 2015, doi: 10.1016/j.immuni.2015.10.016

Dazu auch Anna Azvolinsky: Birth of the Skin Microbiome

Unsere Haut ist eine der wichtigsten Barrieren zwischen der Außenwelt und unserem Körper und zugleich ein wichtiges Immunorgan. Ein Quadratzentimeter enthält über eine Million Lymphozyten und ist mit etwa einer Million Bakterien besiedelt. Das Mikrobiom der Haut unterscheidet sich grundlegend von der Flora etwa in unserem Darm oder in den Atemwegen, und die Ausbildung der Hautflora ist viel schlechter untersucht als die Etablierung der Darmflora. Unsere Haut ist vielschichtig und enthält zahlreiche Strukturen wie Haarfollikel oder schweiß- und Talgdrüsen, und sie wird im täglichen Leben häufig verletzt, wobei auch Bakterien in die tieferen Schichten eindringen – ohne dort normalerweise Entzündungen auszulösen.

Das kalifornische Forscherteam hat nun an Mäusen untersucht, wann und wie sich die Toleranz des Immunsystems gegenüber dem Bakterium Staphylococcus epidermis ausbildet, einem Kommensalen, der bei Mensch und Maus vorkommt. Bringt man die Bakterien auf die intakte Haut junger, aber ausgewachsener Mäuse auf, so kommt es zu einer gewissen T-Zell-Reaktion, aber nicht zu einer merklichen Entzündung. Kratzt man die Mäuse einige Wochen später und trägt erneut Bakterien auf die nunmehr verletzte Haut auf, so entzündet sie sich, es wandern viele Neutrophile (Zellen der angeborenen Abwehr) in die Haut ein, und die T-Zellen (Zellen der erworbenen Abwehr) reagieren stark auf die Eindringlinge. Das Immunsystem hat also durch den Erstkontakt keine Toleranz ausgebildet.

Anders, wenn man das Experiment mit eine Woche alten Mäusen beginnt, die vier Wochen später gekratzt und erneut mit den Bakterien konfrontiert werden: Bei ihnen werden dann nur wenige T-Zellen aktiv, und die Entzündung fällt sehr schwach aus. Der Organismus ist offenbar gegen Staphylococcus epidermis tolerant geworden. Dafür sind offenbar spezifische regulatorische T-Zellen oder Tregs vonnöten, die vor allem während der zweiten Lebenswoche der Mäuse recht abrupt in die Haut einwandern. Tregs aus dem Thymus sind auch in der Darmschleimhaut notwendig, um das Immunsystem gegen die Darmflora milde zu stimmen. Anders als im Darm beeinflusst die Zahl der Keime auf der Haut aber nicht die Zahl der Tregs.

Über 80 Prozent der CD4+-T-Zellen in der Haut von 1-2 Wochen alten Mäusen sind Tregs, während es bei erwachsenen Mäusen etwa 50 Prozent sind. Ihre Dichte in der Haut ist bei den Baby-Mäusen doppelt so hoch wie bei den ausgewachsenen Tieren, und sie sind hochgradig aktiviert – wiederum im Unterschied zu den Haut-Tregs erwachsener Mäuse. In tiefer liegenden Gewebeschichten kommt es nach der Geburt nicht zu einer Treg-Akkumulation; diese ist also hautspezifisch.

Behandelt man die neugeborenen Mäuse kurz vor dem ersten Auftragen von Staphylococcus epidermis mit einem Rezeptorantagonisten, der spezifisch die Auswanderung von Tregs aus dem Thymus unterbindet, so werden die Mäuse nicht tolerant gegen den Keim: nach dem Aufkratzen der Haut und dem zweiten Kontakt mit den Bakterien reagieren sie mit einer starken Entzündungsreaktion – anders als die Kontrollgruppe, in der die Wanderung der Tregs aus dem Thymus in die Haut nicht unterbunden wurde.

Außerdem enthält die Haut der Tiere mehr für Staphylococcus-Antigene spezifische Effektor-T-Zellen und weiterhin nur wenige für Staphylococcus-Antigene spezifische Tregs, obwohl die migrationshemmende Wirkung des vier Wochen zuvor verabreichten Rezeptorantagoisten längst abgeklungen ist und andere Tregs durchaus in der Haut vorkommen. Die Antigen-spezifischen Tregs müssen also im richtigen Zeitfenster – ein bis zwei Wochen nach der Geburt der Mäuse – aus dem Thymus in die Haut gelangen, um eine Toleranz gegen Kommensalen aus der Hautflora aufzubauen.

Anders als im Darm, in dem sowohl angeborene, direkt aus dem Thymus stammende Tregs (nTregs oder tTregs) als auch in der Peripherie durch Antigen-Präsentation induzierte Tregs (iTregs) an der peripheren Toleranz beteiligt sind, scheinen iTregs in der Haut nicht an der Etablierung der Toleranz gegen Kommensalen beteiligt zu sein – zumindest nicht in diesem frühen Zeitfenster. Auch die Mechanismen, über die Tregs andere Immunzellen tolerant stimmen, unterscheiden sich offenbar: Im Darm spielt das von den Tregs ausgeschüttete, entzündungshemmende Zytokin IL-10 eine große Rolle, während ein IL-10-Mangel das Gleichgewicht in der Haut nicht weiter zu stören scheint.

Auch die abrupte, massive Einwanderung hoch aktiver Tregs und während der zweiten Lebenswoche der Mäuse scheint hautspezifisch zu sein: Im Darm kommt es gar nicht zu einer solchen Welle, und in der Lunge ist sie erstens viel schwächer (Tregs stellen dort höchstens 15 Prozent der CD4+-T-Zellen statt über 80 Prozent) und zweitens offenbar nicht für die Ausbildung der Toleranz gegen Atemwegs-Kommensalen zuständig.

Auffällig ist, dass die Haarfollikel in der Haut der jungen Mäuse genau zur Zeit der Treg-Einwanderung entstehen. Tregs halten sich in der Haut von Mäusen wie Menschen bevorzugt an den Haarfollikeln auf. Vielleicht sondern die entstehenden Follikel ein Chemokin ab, das die Tregs anzieht. Da sich an den Haarwurzeln besonders viele Kommensalen ansiedeln, wäre es evolutionär von Vorteil, wenn auch die periphere Toleranzausbildung vor allem dort stattfände.

Da die Barrierefunktion der Haut nicht nur lokale, sondern (etwa bei der Entstehung von Asthma) auch systemische Auswirkungen hat, sollte man mit allem, was die Ausbildung einer normalen Hautflora und einer Toleranz des Immunsystems gegen diese Kommensalen beeinträchtigen könnte, sehr aufpassen – etwa mit Antibiotika-Behandlungen bei Neugeborenen.

Hassall-Körperchen: Friedhöfe oder Missionshelfer?

Im letzten Beitrag habe ich die späteren Phasen der Thymozytenreifung, die teils an der Grenze zwischen Rinde und Mark, teils im Mark selbst ablaufen, weitgehend ausgespart. Dabei gibt es auch im Mark rätselhafte Strukturen, deren Funktion noch nicht geklärt ist: die sogenannten Hassall-Körperchen (Hassall’s corpuscles), die aus zahlreichen konzentrisch aneinandergelagerten Zellen oder Zellüberresten bestehen und in Mikroskopaufnahmen oft an Rosenblüten erinnern, weil sie den roten Farbstoff Eosin sehr gut annehmen.

Die Körperchen wurden erstmals 1846 von dem Arzt Arthur Hill Hassall beschrieben. Sie bestehen, wie man heute weiß, aus alten medullären Thymus-Epithelzellen (mTECs) und sind bereits in Embryonen nachweisbar. Ihre Zahl steigt bis zur Pubertät an und sinkt anschließend mit dem altersbedingten Abbau des funktionsfähigen Thymusgewebes wieder. Mäuse und Ratten haben relativ wenige und kleine Hassall-Körperchen, was die Erforschung dieser Gebilde erschwert.

P1310468_Hassall-Körperchen_650

Wie die Bezeichnung „Thymus-Epithelzellen“ schon andeutet, haben mTECs viel mit den Epithelzellen in unserer Oberhaut, den Keratinozyten, gemeinsam: Beide können Keratin produzieren. Beide bilden Schichten aus, indem sie sich über sogenannte Desmosomen – scheibenförmige Kontaktflächen – mit benachbarten Zellen zusammenschweißen. Die Keratinozyten in unserer Oberhaut bilden flache Schichten, verhornen mit zunehmendem Alter und werden von jüngeren Zellen nach oben weggeschoben, bis sie abschilfern. Die alten mTECs in einem Hassall-Körperchen lagern sich dagegen in konzentrischen Schichten ab. Die Augen in der Zeichnung sollen andeuten, dass die Zellen in den äußeren Schichten noch Kerne haben und auch sonst intakt und lebendig sind. In den älteren, weiter innen abgelagerten Zellresten ist dagegen keine Struktur mehr zu erkennen.

Früher hielt man die Hassall-Körperchen für Müllhalden oder Friedhöfe für alte mTECs oder aussortierte Thymozyten. Schließlich gehen im Rahmen der sogenannten negativen Selektion sehr viele der scheinbar ziellos im Mark herumirrenden Thymozyten zugrunde, wenn ihre Rezeptoren zu stark auf irgendein Autoantigen ansprechen, das ihnen die medullären Thymus-Epithelzellen, die Makrophagen oder die dendritischen Zellen präsentieren:

P1310777_Thymozytenreifung_sw_650_Klein2014_Paul2013_Parham189

Unter den dendritischen Zellen sind sowohl solche, die im Thymus entstanden sind und ihn nie verlassen haben, als auch eine Teilpopulation, die über die Blutgefäße aus anderen Teilen des Körpers in den Thymus eingewandert ist und von dort Autoantigene zur Präsentation mitgebracht hat. Medulläre Thymus-Epithelzellen dagegen stellen mithilfe ihres besonderen Transkriptionsfaktors Aire für kurze Zeit alle möglichen Autoantigene her, die sonst nur in bestimmten Organen oder Gewebetypen produziert werden. Hier noch einmal eine ältere Zeichnung, die zwei Thymozyten zeigt, die eines dieser aus dem Hut gezauberten Autoantigene erkennen – und sich damit disqualifiziert haben:

P1110584_Thymus_AIRE_zentrale_Toleranz_Zauberer_650

Aber wieso sollten die Hassall-Körperchen etwas mit der Entsorgung der autoreaktiven und damit disqualifizierten Thymozyten zu tun haben? Die Beseitigung schädlicher Zellen und Zellreste übernehmen normalerweise Fresszellen wie Makrophagen.

Doch auch wenn die Hassall-Körperchen nicht an der Beseitigung autoreaktiver T-Zellen beteiligt sind, dürften sie ihren Beitrag zur Etablierung der sogenannten zentralen Toleranz im Immunsystem leisten. Wie oben in der zweiten Zeichnung zu sehen, wandern nicht nur die einfach positiven, nunmehr reifen CD4+- oder CD8+-T-Zellen aus dem Thymusmark in die Blutgefäße aus, sondern noch ein dritter Zelltyp: die natürlichen regulatorischen T-Zellen oder nTregs.

Diese nTregs gehen aus autoreaktiven CD4+-T-Zellen hervor, die der negativen Selektion irgendwie entgehen – offenbar mit Hilfe bestimmter dendritischer Zellen, die wiederum von den Hassall-Körperchen unterstützt werden. Aber wie läuft diese Konversion potenziell gefährlicher, weil autoreaktiver CD4+-T-Zellen zu Friedensstiftern ab?

Die äußeren, lebendigen Epithelzellen in den Hassall-Körperchen produzieren kein Aire mehr und damit auch kaum noch präsentationsfähige Autoantigene. Stattdessen stellen sie den Botenstoff TSLP (thymic stromal lymphopoietin) her. Dieser hindert unreife dendritische Zellen in der Umgebung einerseits an der Produktion entzündungsfördernder Zytokine wie Interleukin 12 oder TNF-α, die für die meisten anderen dendritischen Zellen typisch sind, und regt dafür die Produktion anderer Zytokine wie TARC oder MDC an. Zum anderen steigert er die Herstellung von MHC-Klasse-II-Molekülen (den Antigen-Präsentiertellern, die für den Kontakt mit T-Zellen nötig sind) und startet in den dendritischen Zellen die Produktion der Kostimulatoren CD80 und CD86, die den mit ihnen in Kontakt tretenden T-Zellen Überlebenssignale senden.

Diese besondere Population dendritischer Zellen regt einfach positive CD4+-Thymozyten nicht nur zum Überleben, sondern auch zur Vermehrung und zur Expression des Treg-typischen Markers CD25 an. Die so entstandenen CD4+-CD25+-Thymozyten sind ausschließlich im Umfeld von Hassall-Körperchen tief im Inneren des Thymus anzutreffen und produzieren den Transkriptionsfaktor FoxP3, womit sie sich als regulatorische T-Zellen zu erkennen geben. Sie wandern dann in die Blutbahn aus und üben später im Körper einen besänftigenden Einfluss auf alle anderen T-Zellen in ihrer Nachbarschaft aus, sobald sie durch eine beginnende Autoimmunreaktion auf das Autoantigen aktiviert werden, das ihre T-Zell-Rezeptoren erkennen.

Die nTregs rekrutieren sich aus autoreaktiven Thymozyten, die von ihrer Autoantigen-Bindungsstärke her eigentlich zu normalen CD4+-T-Zellen (also Helferzellen) werden oder aber der negativen Selektion anheimfallen und im Thymus sterben müssten. Im folgenden Diagramm sind sie zwischen den beiden gestrichelten Linien angesiedelt:

Thymus_Kurve_positive_negative_Selektion_Tregs_TGF-beta_Paul_650

Lange hat man sich gefragt, wie identische Autoantigen-Bindungsstärken zu so unterschiedlichen Schicksalen führen können. Wie so oft in der Biologie dürfte die Lösung in der komplexen räumlichen Struktur des Organs liegen: Künftige nTregs mögen zwar ebenso stark reagierende T-Zell-Rezeptoren haben wie viele der Thymozyten, die zu normalen T-Helferzellen werden oder aber abgetötet werden – aber sie bewohnen eine andere ökologische Nische im Thymus: Sie haben andere Nachbarn, die ihre weitere Entwicklung mit ihren Zytokinen beeinflussen. Nur da, wo Hassall-Körperchen sind, können sie zu regulatorischen T-Zellen heranreifen.

Vermutlich sorgt eine fein austarierte Rückkopplung dafür, dass die nTregs – normalerweise etwa 10 Prozent aller CD4+-T-Zellen im Körper – nicht auf Kosten der T-Helferzellen überhand nehmen oder umgekehrt: Tregs produzieren den Botenstoff TGF-β, der im Immunsystem viele Aufgaben erfüllt, zum Beispiel Entzündungsreaktionen unterdrückt. Im Thymus scheint er die Weiterentwicklung alter mTECs zu Hassall-Körperchen zu hemmen. Solange der Thymus genug nTregs hervorbringt, sorgt deren TGF-β dafür, dass keine weiteren Hassall-Körperchen und damit keine neuen „Treg-Missionsschulen“ entstehen. Gibt es dagegen zu wenige Tregs, so sinkt die TGF-β-Konzentration im Thymusmark, sodass sich neue Hassall-Körperchen bilden, und so weiter.

Die mutmaßliche Funktion der Hassall-Körperchen als Treg-Missionsschulen schließt übrigens weitere Aufgaben, etwa in der negativen Selektion, nicht aus. So könnten die Proteine, aus denen die alten mTECs in den Hassall-Körperchen ihre scheibenförmigen Zellkontaktstellen (Desmosomen) herstellen, von benachbarten antigenpräsentierenden Zellen aufgenommen, zu Autoantigenen weiterverarbeitet und den im Mark umherwandernden Thymozyten präsentiert werden, um T-Zellen auszusortieren, die auf diese typischen Epithelzellen-Produkte ansprechen.

Wie schon das Ammenmärchen endet also auch dieser Beitrag offen: Die Fachwelt ist sich noch uneins, wozu Hassall-Körperchen wirklich gut sind. Dass sie reine Abfallprodukte sind, wage ich angesichts ihres Aufbaus, ihrer Lage im Thymus und ihrer regen Kommunikation mit den Zellen in ihrer Nachbarschaft aber auszuschließen.

Polygenie der Autoimmunerkrankungen

Zwei neue Skizzen fürs Buch, inspiriert durch An Goris und Adrian Liston, „The immunogenetic architecture of autoimmune disease„, 2012 (Open Access):

P1180505_Genetik_AIE_Voodoopuppe_NOD-Maus_650

Nur wenige Autoimmunerkrankungen folgen einem einfachen Mendel’schen Erbgang. Meist sind zahlreiche Genvarianten beteiligt, die das Erkrankungsrisiko für sich genommen – wenn überhaupt – nur minimal steigern und erst gemeinsam zum Ausbruch führen. Dabei tragen einige Genvarianten zur allgemeinen Neigung des Immunsystems zu Überreaktionen bei (Voodoo-Nadeln), und andere legen fest, welches Organ betroffen sein wird (Zielscheiben).

NOD-Mäuse wurden als Typ-1-Diabetes-Modell gezüchtet; normalerweise wird ihre Bauchspeicheldrüse durch Autoimmunreaktionen zerstört (Zielscheibe auf dem Rumpf). Wenn man ihr Diabetes-Risikoallel H2g7, das zum HLA-Komplex gehört, durch die Genvariante H2h4 ersetzt, bleiben die Tiere nicht etwa gesund: Sie bekommen eine Schilddrüsen-Autoimmunerkrankung (Zielscheibe am Hals). Auch beim Menschen scheinen die meisten HLA- oder MHC-Klasse-II-Varianten auf dem 6. Chromosom festzulegen, welche Autoantigene und damit welche Organe angegriffen werden, während Risikogenorte an anderen Stellen im Genom darüber entscheiden, ob das Immunsystem überhaupt zu Autoimmunstörungen neigt.

P1180507_AIE_polygen_650

Die Genetik der Autoimmunerkrankungen ist ein etwas undankbares Forschungsfeld, auf dem man nicht hoffen darf, die eine Genvariante zu entdecken, die für einen Großteil der Erkrankungen verantwortlich ist, und daraus eine simple Therapie abzuleiten. Stattdessen kann es sein, dass jemand chronisch krank wird, weil

  • eine MHC-Klasse-II-Variante auf Chromosom 6 zu einer schlechten Präsentation eines Autoantigens im Thymus führt, sodass das Immunsystem diesem Autoantigen später nicht gänzlich tolerant gegenüberstehen wird (geknicktes Tablett),
  • ein anderes MHC-Klasse-II-Molekül, das auf demselben Chromosom codiert ist, ein Autoantigen besonders stabil bindet, sodass dieses Autoantigen den T-Zellen im Lymphgewebe besonders häufig und lange präsentiert wird, womit die Gefahr einer T-Zell-Aktivierung steigt (tiefes Tablett),
  • eine seiner Genvarianten zu besonders scharfsichtigen T-Zell-Rezeptoren führt, sodass die T-Zellen bei einer Präsentation des passenden Autoantigens besonders leicht aktiviert werden (Brille),
  • eine andere Genvariante die regulatorischen T-Zellen (Tregs), die überzogene Immunreaktionen normalerweise ausbremsen, träge oder blind macht (Schlafmaske),
  • ein weiteres Risikoallel in aktivierten Immunzellen zu einer ungewöhnlich starken Produktion entzündungsfördernder Zytokine führt, die dann immer weitere Immunzellen anlocken (Megafon),
  • wieder ein anderes Risikoallel die Expression bestimmter Autoantigene im Thymus schwächt, sodass das Immunsystem ihnen gegenüber nicht tolerant gestimmt wird (geschrumpftes AAG) und
  • eine Genvariante an noch einem anderen Genort die Wundheilung in einem Organ hemmt, das durch einen Autoimmunprozess beschädigt wurde (Pflaster).

Auch diese Darstellung der Polygenie der Autoimmunerkrankungen ist noch stark vereinfacht – von den Wechselwirkungen zwischen unseren Genprodukten und dem Mikrobiom, unserer Nahrung, Krankheitserregern und weiteren Umweltfaktoren einmal ganz abgesehen.

Wenn also der nächste Wunderheiler um die Ecke kommt, der behauptet, man müsse nur ein bestimmtes Vitamin weglassen oder ein Mineralpräparat zu sich nehmen, um von einer nahezu beliebigen Autoimmunerkrankung geheilt zu werden: bitte auslachen.

Gleich und gleich gesellt sich gern: Proteobacteria bei Dickdarm-Entzündungen

Winter SE, Bäumler AJ. Why related bacterial species bloom simultaneously in the gut: principles underlying the ‚Like will to like‘ concept. Cellular Microbiology 2014, 16(2). 179-184

Im gesunden Dickdarm dominieren obligate anaerobe Bakterien aus den Stämmen Bacteroidetes (Klasse Bacteroidia) und Firmicutes (Klasse Clostridia); Arten aus den Stämmen Proteobacteria und Actinobacteria sind meist selten. Homöostase -> idealer Nährstoffaufschluss und Infektionsresistenz. Dysbiose: Clostridien gehen zurück, fakultative anaerobe Proteobacteria breiten sich aus.

Aber wie wird das Gleichgewicht aufrecht erhalten, bzw. wie kommt es zur Dysbiose? Und wieso werden dabei ganze Stämme regelrecht ausgetauscht, statt dass nur einzelne arten häufiger bzw. seltener werden? Lozupone et al. (2012) haben das mit Rasenpflege verglichen: Bei schweren Zwischenfällen wird die nackte Erde freigelegt, und statt Gras können sich Unkräuter ausbreiten. Aber diese Metapher sagt noch nichts über die Mechanismen.

Beobachtung bei Mäusen: Tiere, die viele Kommensalen der Art Escherichia coli beherbergen, sind besonders anfällig für Infektionen mit Salmonella enterica und Campylobacter jejeuni, die zum selben Stamm (Proteobacteria) gehören. -> Similis-simili-gaudet-Hypothese. Vielleicht lokale Umweltbedingung, die alle Arten eines Stammes fördert?

Normale Labormäuse gehören zu einem von zwei Enterotypen: entweder hohe Diversität der Darmflora und Dominanz von Clostridien und Bacteroidia – oder geringere Diversität, weniger Clostridien und (relativ) mehr Proteobacteria, oft verbunden mit schwacher Entzündung. Bei Menschen ist die Existenz bzw. Omnipräsenz und Bedeutung von Enterotypen allerdings noch umstritten.

Mausmodelle für Colitis: Entzündungsreaktion auf chemischen Trigger oder genetische Disposition erhöht Häufigkeit fakultativer Anaerobier, v. a. aus der Familie Enterobaceriaceae (Stamm Proteobacteria). Auch bei Infektion mit dem Einzeller Toxoplasma gondii breiten sich Enterobaceriaceae in der Darmflora unkontrolliert aus. Einige pathogene Enterobacteriae lösen mit Virulenzfaktoren ihrerseits Entzündung aus, um sich gegenüber anderen Bakterien einen Wachstumsvorteil zu verschaffen.

Menschen: Bei Morbus Crohn, Antibiotika-Behandlung, HIV-Enteropathie (chronische Diarrhö) und anderen Erkrankungen des Dickdarms ebenfalls Proteobacteria-Blüte im Verbund mit Clostridien-Rückgang. Aber sind es dieselben Selektionskräfte, die die Proteobacteria fördern und den Clostridien zu schaffen machen? Wahrscheinlich nicht.

Proteobacteria profitieren von einem Mechanismus, bei dem reaktive Sauerstoff- und Stickstoff-Species entstehen. Diese antimikrobiellen Substanzen diffundieren vom Epithel weg ins Lumen und wandeln sich dabei in Elektronenakzeptoren wie Tetrathionat oder Nitrat um. Pathogene S. enterica und kommensale E. coli können diese Elektronenakzeptoren für ihre anaerobe Respiration und damit für ein starkes Wachstum im Dickdarm nutzen.

Fitnessvorteil für Proteobacteria: Die fakulativen Anaerobier können durch die anaerobe Respiration nichtfermentierbare Substrate oder Fermentationsendprodukte als Kohlenstoffquellen nutzen und vermeiden so die Konkurrenz um fermentierbare Nährstoffe, auf die die obligaten Anaeroben (Bacteroidias und Clostridia) angewiesen sind.

Rückgang der Clostridien: wahrscheinlich durch eine andere, noch unbekannte Selektionskraft, denn Clostridien haben keine terminalen Oxidoreduktasen und können daher auf die Elektronenakzeptoren, die bei der Entzündung entstehen, nichts reagieren. Es muss ein Faktor sein, der nicht auf alle Clostridien nachteilig wirkt: Clostridium difficile und einige andere Arten aus der Familie der Lachnospiraceae vermehren sich nämlich bei Darmentzündungen, statt zu verschwinden.

Clostridien produzieren bei der Fermentation kurzkettige Fettsäuren, die entzündungshemmend auf das Immunsystem einwirken, indem sie die Rezeptoren regulatorischer T-Zellen (Tregs) stimulieren. Daher kann es sein, dass ein Rückgang der Clostridien (zum Beispiel durch Antibiotika) der erste Schritt zur Dysbiose ist: Wenn sie fehlen, wird eine einmal gestartete Entzündung nicht rechtzeitig gestoppt, und die Entzündungsprodukte fördern dann die Proteobacteria.

Das Honeymoon-Tal

P1170830_AIE-Verlauf_Schübe_Honeymoon-Tal_650Viele Autoimmunerkrankungen verlaufen schubförmig. Am bekanntesten ist das bei der schubförmig remittierenden Multiplen Sklerose (RR-MS). Aber auch bei Typ-1-Diabetes kann auf den ersten Ausbruch von Symptomen, der zur Diagnose führt, eine Zeit der scheinbaren Genesung folgen – die sogenannte Honeymoon-Phase. Und bei den meisten Autoimmunerkrankungen geht der symptomatischen Phase (oberhalb der gestrichelten Linie) unbemerkt eine langjährige Entgleisung des Immunsystems voran, bei der nach und nach mehr Autoantikörper oder autoreaktive T-Zellen entstehen und es den regulatorischen T-Zellen immer schwerer fällt, diese selbstzerstörerischen Elemente in den Griff zu bekommen.

Neue Literatur bis einschließlich Dezember 2013, Teil 4

Der Rest, wieder unkommentiert und noch nicht verschlagwortet:

T cells and Transplantation: Drug-resistant immune cells protect patients from graft-versus-host disease after bone marrow transplant. T3

Bile Compound Prevents Diabetes in Mice: A chemical prevalent in the bear gallbladder abates a cellular stress response and stalls the progression of type 1 diabetes in rodents. T3

Matarese G et al. (2013): Hunger-promoting hypothalamic neurons modulate effector and regulatory T-cell responses (Open Access) T3
Dazu auch Neurons Govern Immunity: Hunger-associated molecules in the hypothalamus suppress inflammation.

Yu X et al. (2013): TH17 Cell Differentiation Is Regulated by the Circadian Clock (Abstract; PDF aber an anderer Stelle erhältlich) T3, T4
Dazu auch Time for T cells: Circadian rhythms control the development of inflammatory T cells, while jet lag sends their production into overdrive.

Scher JU et al. (29139: Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis (Open Access) T4
Dazu auch Gut Microbes May Impact Autoimmunity: Researchers show that the prevalence of one genus of bacteria correlates with the onset of rheumatoid arthritis.

Zhong W et al. (2013): Immune anticipation of mating in Drosophila: Turandot M promotes immunity against sexually transmitted fungal infections (Open Access) T4
Dazu auch Frisky Fruit Flies: Researchers show that Drosophila females upregulate an immune gene for protection against sexually transmitted infections before copulation.

Simmonds MJ et al. (2013): Skewed X chromosome inactivation and female preponderance in autoimmune thyroid disease: an association study and meta-analysis (Abstract) T4

Alexandraki KI et al. (2013): Are patients with autoimmune thyroid disease and autoimmune gastritis at risk of gastric neuroendocrine neoplasms type 1? (Abstract) T3

Leskela S et al. (2013) Plasmacytoid Dendritic Cells in Patients With Autoimmune Thyroid Disease (Abstract) T3

Ioannou M et al. (2013): In Vivo Ablation of Plasmacytoid Dendritic Cells Inhibits Autoimmunity through Expansion of Myeloid-Derived Suppressor Cells (Open Access) T3

Simmonds MJ et al. (2013): GWAS in autoimmune thyroid disease: redefining our understanding of pathogenesis (Abstract) T3

Rege S, Hodgkinson SJ (2013): Immune dysregulation and autoimmunity in bipolar disorder: Synthesis of the evidence and its clinical application (Abstract) T3?

Abwehrreihen

Neue Skizze fürs Buch:

P1150836_Abwehrreihen_Fußball_650Die Zellen des Immunsystems stellen sich in mehreren Abwehrreihen auf. Vorn stehen Zellen der angeborenen Immunität wie Mastzellen, dendritische Zellen und Makrophagen, im Mittelfeld die unterschiedlichen Granulozyten und in der letzten Verteidigungsreihe zytotoxische T-Zellen, T-Helferzellen, natürliche Killer-T-Zellen und ILCs. Der Torwart ist eine Plasmazelle (B-Zelle). Regulatorische T-Zellen (Tregs) pfeifen das Spiel rechtzeitig ab.

Reformierter Immunzellstammbaum, Teil 2

So, puh: der lymphoide Ast des hämatopoetischen Stammbaums, wie er sich nach Lektüre zahlreicher frischer Artikel darstellt. Erläuterungen folgen im Buch – obwohl das alles zum Zeitpunkt der Drucklegung wahrscheinlich schon wieder überholt ist.

P1150533_hämatopoietischer_Stammbaum_lymphoider_Zweig_650