Schlagwort-Archive: Immunoseneszenz

Antigen-präsentierende Zellen spenden T-Zellen ihre Telomere

Telomere und ihre Rolle bei der Alterung (Seneszenz) von Immunzellen habe ich im Blog schon öfter thematisiert, denn ihre Verkürzung bei jeder Zellteilung könnte einer der Faktoren sein, die bei älteren Menschen zum Ausbruch von Autoimmunerkrankungen beitragen. Jetzt gibt es sensationelle Neuigkeiten:

Lanna, A., Vaz, B., D’Ambra, C. et al. An intercellular transfer of telomeres rescues T cells from senescence and promotes long-term immunological memory. Nat Cell Biol (2022). https://doi.org/10.1038/s41556-022-00991-z

Bei Nature in der Artikel nur in einer Leseansicht ohne Markierungs- und Download-Funktion verfügbar, aber das Manuskript ist bei biorxiv zu finden. Frei zugänglich ist auch die Meldung bei The Scientist: T Cells Ward Off Aging with Help from Their Friends

Abstract: T-Zellen sollen nach bisheriger Vorstellung ihre Alterung aufhalten durch Telomerase, die ihre Telomere wieder verlängert (s. Nothing in Oncology Makes Sense Except in the Light of Evolution). Die Autor*innen zeigen hier: Vor allem naive T-Zellen und zentrale Gedächtnis-T-Zellen nehmen Telomer-Vesikel von APCs auf und verlängern ihre Telomere so ohne Telomerase-Aktivität. Bei Kontakt bauen APCs Shelterin ab; ihre Telomere werden vom Trimming-Faktor TZAP abgeschnitten und an der Immun-Synapse in extrazelluläre Vesikel verpackt. Diese enthalten auch den Rekombinationsfaktor Rad51, der die Fusion mit Enden der T-Zell-Telomere bewirkt. Die antigenspezifischen T-Zellen empfangen die Telomerverlängerungen (im Mittel ca. 3000 Basenpaare) vor ihrer klonalen Expansion, was zu langfristiger Immunität führt.

Intro: Telomere = TTAGGG-Wiederholungen. Bei kurzen Telomere von < 4kb lässt die Teilungsfähigkeit nach (replikative Seneszenz). Bei vielen Alterskrankheiten und Krebs werden kurze Telomere beobachtet. Zellen können die Verkürzung mit oder ohne Telomerase aufhalten. – Immunologische Synapsen dienen der Kommunikation zwischen APCs und Lymphozyten, initiieren Immunreaktionen, die zu langlebigen Gedächtnis-T-Zellen führen. Eine Synapse aktiviert die Telomerase in der T-Zelle zunächst; mehrfache synaptische Interaktion zieht aber einen Aktivitätsrückgang nach sich und damit die Seneszenz der T-Zelle, ein Nachlassen des immunologischen Gedächtnisses, u. U. also mehr Infektionen, Krebs, Tod. Telomerase allein kann also die T-Zell-Seneszenz letztlich nicht verhindern. Wenn T-Zellen aber Telomere aus APCs empfangen, werden sie zu Stammzell-ähnlichen und/oder zentralen langlebigen Gedächtniszellen, während andere T-Zellen altern und sterben. Die APCs entscheiden also bei der ersten Synapse über das Schicksal der T-Zellen.

Ergebnisse: Das Team hat eine Verlängerung von T-Zell-Telomeren und gleichzeitige Verkürzung von APC-Telomeren beobachtet, in Gegenwart von Antigenen aus Epstein-Barr-Virus-, Influenza-Virus- und Cytomegalovirus-Lysaten. Das klappt auch in T-Zellen ohne Telomerase (Knock-out), kann auch nicht auf alternativem Telomer-Verlängerungs-Mechanismus per Rekombination und DNA-Synthese beruhen, weil sich die T-Zellen noch gar nicht teilten. Gelabelte Telomer-DNA aus den APCs tauchte später in den T-Zellen auf; damit war die Herkunft belegt. TCR-besetzte planare Lipiddoppelschichten lösen die Telomer-Freisetzung aus den APCs ebenso gut aus wie komplette T-Zellen. Außer TCR sind auch Anti-CD3 und Antigene auf den APC-MHC-Komplexen nötig. Die APCs sterben nicht nach Telomer-Angabe, zeigen auch kein Blebbing. Myeloide APCs (dendritische Zellen und Monozyten) geben am meisten Telomere ab, B-Zellen weniger. Die Vesikel enthalten außer Telomeren auch Histokompatibilitäts-Antigen-Proteine sowie TZAP (telomeric zinc-finger associated protein), ein telomerbindendes Protein, das die terminalen Enden von Chromosomen beschneidet (Telomer-Trimming) und fürs Abschneiden und Verpacken der Telomere nötig ist. Damit TZAP an die Telomere binden kann, muss das Shelterin herunterreguliert und abgebaut werden, das die Telomere normalerweise stabilisiert und vor DNA-Reparaturmechanismen beschützt. Die Vesikel enthalten auch Rad51, einen homologen Rekombinationsfaktor, der an der Telomer-Verlängerung beteiligt ist und für den Anbau der gestifteten Telomere in den T-Zellen nötig ist. In Mäusen wandern die T-Zellen mit den APC-verlängerten Telomeren rasch in Langzeit-Überlebensnischen wie Milz und Lymphknoten; im Blut sind sie kaum zu finden.
Influenza-Impf-Experiment: Mäusen wurden antigenspezifische, geprimete T-Zellen mit APC-verlängerten oder mit nicht verlängerten Telomeren injiziert; die Kontrollgruppe erhielt keine solchen T-Zellen. Entweder 18 Stunden oder 15 Tage nach der Injektion wurden die Tiere mit Influenza infiziert. Ungeimpfte Mäuse starben alle rasch; mit unveränderten Telomer-T-Zellen wurde die frühe Infektion gut abgewehrt (alle Tiere überlebten), die späte Infektion aber nicht (alle Tiere starben im Lauf einige Tage), weil kein Gedächtnis ausgebildet wurde. Mäuse mit T-Zellen mit APC-verlängerten Telomeren überlebten sowohl eine frühe als auch eine späte Infektion; das immunologische Gedächtnis reichte aus.

Diskussion: Es gibt auch andere Pfade zu Gedächtnis-T-Zellen, teils von naiven T-Zellen ausgehend, teils nach Effektor-Tätigkeit durch Umschalten von Glykolyse auf oxidative Phosphorylierung. Vermutung: Die Antigenstärke könnte die Menge der übertragenen Telomere und damit die Zahl der möglichen nachfolgenden Zellteilungen beeinflussen. Aber auch bei identischen Antigenen hat ein Großteil der T-Zellen keine Telomere aufgenommen; sie blieben kurzlebige Effektorzellen. T-Zellen sollen nach wiederholter Antigenstimulation seneszent werden; stark ausdifferenzierte Effektor-T-Zellen können ihre Telomerase nicht weiter aktivieren; ihre Proliferation lässt nach -> lineare Seneszenz. Alternatives Modell: Die Unfähigkeit, während der Antigenstimulation APC-Telomere zu empfangen, besiegelt schon das Schicksal der T-Zellen -> Seneszenz. Nach Auflösung der Synapse startet die massive Proliferation; jetzt kommt die Telomerase hinzu, die an alle Chromosomen pro Teilung ca. 100-200 bp anhängt. Ein Telomer-Transfer verlängert dagegen bestimmte, vermutlich sehr kurze, Telomere um ca. 3000 bp noch vor den Zellteilungen. Vermutlich ist der Telomer-Transfer das schon länger postulierte Signal, von dem die terminale Differenzierung der T-Zellen abhängt. Unklar bleibt, wonach sich entscheidet, ob eine T-Zelle die Telomere einbauen kann. – Darüber hinaus kann es weitere Wege zur Bildung von Gedächtniszellen geben, etwa eine Dedifferenzierung von Effektorzellen, sodass sie ebenso Stammzell-ähnlich werden wie die Gedächtniszellen mit den APC-Telomeren.

Abb. 8: Versuchsdesign mit Absterben der grippeinfizierten Mäuse ohne injizierte T-Zellen mit verlängerten Telomeren während der Gedächtnis-Phase; in der Effektorphase haben die Tiere eine Infektion noch überlebt. Mäuse mit injizierten T-Zellen mit verlängerten Telomeren überleben auch eine späte Infektion während der Gedächtnis-Phase, weil die T-Zellen so lange leben. Außerdem Illustration der Synapse mit Vesikeltransfer und Telomerfusion.

 

Das Immunsystem von der Wiege bis zur Bahre

Scan_Abwehrstärke_Grippetote_Altersverlauf_650

Reaktionsstärke der Hauptkomponenten des Immunsystems (oben) und Grippetote pro 1000 Personen (unten) im Lebensverlauf, nach Simon 2015

Übersichtsarbeiten, die die Entwicklung des Immunsystems von der Wiege bis zur Bahre vorstellen, sind erstaunlich selten; vermutlich ist das Thema „zu groß“. (Was soll ich da erst sagen: In meinem Manuskript ist das einer von fünf Teilen …) Im Folgenden werte ich eine 2015 erschienene Arbeit von A. Katharina Simon et al. aus: Evolution of the immune system in humans from infancy to old age.

1. Schwangerschaft und Geburt

1.1 Angeborene Abwehr

Reife neutrophile Granulozyten (kurz: Neutrophile) treten ab dem Ende des ersten Trimesters auf. Kurz vor der Geburt steigt ihre Zahl stark an, angeregt durch den Granulozyten-Kolonie-stimulierenden Faktor. Sie zeigen allerdings nur schwache Reaktionen auf Bakterien und Entzündungssignale, eine geringe Adhäsion an Endothelzellen und eine schwache Chemotaxis – insbesondere bei Frühchen.

Bei Frühchen und normalen Geburten gibt es anfangs nur wenige pulmonale Makrophagen, ihre Zahl steigt aber innerhalb weniger Tage auf Adult-Niveau an.

Neugeborene haben auch nur wenige dendritischen Zellen vom myeloiden Typ (mDCs), und diese weisen weniger HLA-Klasse-II-, CD80- und CD86-Oberflächenmarker auf als bei Erwachsenen. Daher fällt das Priming von Th1- und CD8+-T-Zellen schwächer aus, sodass Neugeborene empfindlicher für Vireninfektionen, Mycobacterium tuberculosis und Salmonellen sind als größere Kinder und Erwachsene.

Bei den plasmacytoiden dendritische Zellen (pDCs) von Neugeborenen ist die Ausschüttung von IFN-α/β nach viraler Stimulation gehemmt, was zu einer schwachen angeborenen Abwehr von respiratorischen Synzytial-Viren, Herpes simplex und Cytomegalovirus führt.

Natürliche Killerzellen (NK-Zellen) werden normalerweise durch inhibitorische Rezeptoren für HLA-A, -B, -C und -E reguliert. In der frühen Schwangerschaft reagieren sie aber kaum, wenn eine Zelle – etwa im Trophoblast – kein klassischen HLA-Klasse-I-Merkmale aufweist; außerdem lassen sie sich sehr leicht durch TGF-β supprimieren. Neonatale NK-Zellen sind weniger leicht durch IL-2 und IL-15 aktivierbar als adulte und stellen weniger IFN-γ her.

Im Serum von Neugeborenen sind fast alle Komponenten des Komplementsystems zu 10-80 % schwächer vertreten als bei Erwachsenen. Da es in Neugeborenen noch wenig Immunglobulin gibt, wird das Komplementsystem eher auf dem alternativem Weg oder auf dem Lektin-Weg aktiviert, getriggert durch Polysaccharide und Endotoxine.

Alles in allem reagiert die angeborene Abwehr bei der Geburt gedämpft. Sie muss wohl schwach ausfallen, um während der Schwangerschaft maternale Antigene und Umbaumaßnahmen zu tolerieren.

1.2 Erworbene Abwehr

Einfach positive CD4+- und CD8+-T-Zellen treten im menschlichen Thymus bereits ab Woche 15 auf und sind auch in der Peripherie schon lange vor Geburt zahlreich vertreten. Die T-Zellen funktionieren allerdings anders als später: Zur Geburt sind etwa 3% der peripheren T-Zellen Tregs (viel mehr als bei Erwachsenen); das Immunsystem hat insgesamt ein entzündungshemmendes Profil. Wird das fetale oder neonatale Immunsysteme durch fremde Antigene aktiviert, kommt es vor allem zu einer Th2-Antwort, verstärkt durch die neonatalen DCs.

Bei der Geburt sind fast alle T-Zellen naiv (d. h. noch ohne Antigen-Kontakt). In Neugeborenen treten viele T-Zellen mit γδ-T-Zell-Rezeptoren (TCRs) sowie „innate-like“ αβ-TCR-T-Zellen auf, die zwischen angeborener und erworbener Abwehr angesiedelt sind – darunter invariant natural killer T cells (iNKT), die schnell IFN produzieren, mucosal-associated invariant T cells (MAIT) und CXCL8-absondernde naive T-Zellen.

MAIT-Zellen entwickeln sich im Thymus; ihre Reifung können sie schon vor der Mikrobiom-Kolonisation in fetalen Schleimhäuten durchlaufen. CXCL-8-produzierende T-Zellen können in Neugeborenen antimikrobielle Neutrophile und γδ-T-Zellen aktivieren; sie sind vor allem in den Schleimhautbarrieren von Frühchen und normalen Neugeborenen aktiv. γδ-T-Zellen können nach schneller polyklonaler Expansion viel IFN-α herstellen und so die Unreife der klassischen Th1-Reaktion bei Neugeborenen ausgleichen.

B-Zellen: B1-Zellen schütten spontan schwach affines IgM aus, das eine eingeschränkte AG-Spezifität (gegen die gängigsten bakteriellen Polysaccharide) hat, außerdem IL-10 und TGF-β. So wird eine Th2-Antwort gefördert. Bei der Geburt sind etwa 40% der peripheren B-Zellen B1-Zellen; der Anteil der B2-Zellen nimmt später zu. [Achtung: B1/B2 sind beim Menschen noch immer nicht eindeutig belegt!]

Die meisten Antikörperreaktionen sind auf T-Zell-Hilfe angewiesen; diese wird aber durch den Mangel an Korezeptoren auf den neonatalen B-Zellen erschwert. Auch für das Komplement-Fragment C3d gibt es nur wenige Rezeptoren, sodass die Reaktion auf Polysaccharid-Komplement-Komplexe schwach ausfällt. Insgesamt ist die humorale Abwehr schwach, es gibt wenig Ig-Klassenwechsel, aber es entstehen schon Gedächtnis-B-Zellen. Bei bis zu zwei Monate alten Babys gibt es wenig somatische Hypermutation und wenig Affinitätsreifung der Antikörper. Das Knochenmark-Stroma ist noch nicht imstande, Plasmablasten lange zu unterstüzen und zu Plasmazellen reifen zu lassen; daher nimmt die Konzentration von IgG nach einer Immunisierung rasch ab. Entsprechend hoch ist die Neugeborenensterblichkeit in Populationen mit hoher Pathogenbelastung.

2. Kinder und Erwachsene

Ein wichtiger frühkindlicher Schutz gegen Infektionen, die die Mutter schon hatte, ist mütterliches IgG. Diese Antikörper werden durch die Plazenta und nach der Geburt mit der Milch übertragen. Auch 20-30 Jahre nach der Infektion der Mutter werden noch genug Antikörper übertragen, um das Kind zu schützen. Sobald das mütterliche IgG zurückgeht, sind die Kinder besonders empfindlich, da ihre eigene Antikörperproduktion noch nicht ausreicht. Heutzutage stimuliert man das kindliche Immunsystem durch Impfungen.

Während der Kindheit geht der Anteil der Tregs zurück; dafür kommen Gedächtnis-, Th1-, Th17- und Th2-Zellen hinzu, bis diese zusammen etwa so zahlreich sind wie die naiven T-Zellen. Viele der Gedächtnis-T-Zellen wurden durch das Mikrobiom geprimed, können aber später auf Pathogen-Antigene (auch aus Viren, z. B. HIV-1) kreuzreagieren, da die Antigen-Erkennungssequenzen für die T-Zell-Rezeptoren sehr kurz sind.

Ein Schutz durch die erworbene Abwehr hält nach einmaliger Infektion meist lebenslang. Gedächtnis-B-Zellen werden im Knochenmark am Leben gehalten. Teils bleiben auch die Antigene jahrelang in den Lymphknoten erhalten und werden von follikulären DCs präsentiert, die so für eine gelegentliche Teilung und Antikörper-Ausschüttung der passenden B-Zellen sorgen.

3. Weibliches Immunsystem in der Schwangerschaft

Mechanismen auf der mütterlichen Seite der Plazenta verhindern die Abstoßung des Fetus, z. B. über nicht klassische, nicht polymorphe HLA-Antigene, die örtliche Suppression durch infiltrierte NK-Zellen, Monozyten und Tregs sowie die Verhinderung der T-Zell-Aktivierung durch Tryptophan-Entzug.

Das mütterliche Immunsystem verschiebt sich während der Schwangerschaft von Th1 zu Th2 (siehe Abb.). Oft geht das mit einer Remission von Autoimmunerkrankungen einher.

4. Krebs und Autoimmunerkrankungen

Das Immunsystem bekämpft nicht nur Pathogene, sondern auch mutierte Zellen, die sich zu einem Tumor auswachsen könnten. Viele Tumoren schalten Tumor-Antigen-spezifische T-Zellen ab, indem sie an Checkpoint-Rezeptoren wie PD-1 oder CTLA4 binden. Therapien, die das verhindern, können Autoimmunerkrankungen auslösen – ebenso wie ein passiver Transfer von Anti-Krebs-T-Zellen. Überreaktionen wie Autoimmunerkrankungen oder Allergien sind der Preis, den wir für die Krebsbekämpfung durch T-Zellen zahlen.

Der Balanceakt zwischen Immunreaktionen, die Tumoren bekämpfen, und Autoimmunerkrankungen misslingt vor allem im Alter: Ein Drittel aller alten Menschen in den westlichen Ländern bekommt Krebs, 5-10% entwickeln Autoimmunerkrankungen.

Mikroorganismen wie EBV, Hepatitis B und C, HPV und Helicobacter pylori verursachen etwa ein Viertel aller Krebserkrankungen. Die chronischen Infektionen werden von spezifischen T-Zellen in Schach gehalten; im Alter kann diese Abwehr versagen kann.

5. Alter

Im hohen Alter steigt das Risiko akuter viraler und bakterieller Infektionen, außerdem ist die Sterblichkeit unter Infizierten im Alter dreimal so hoch wie bei jüngeren Erwachsenen. Bei einer normalen Grippewelle sind etwa 90% der Toten über 65 Jahre alt (s. Abb.).

Das Gleichgewicht zwischen Mikrobiom und Wirt kann durch ein nachlassendes Immunsystem gestört werden. Eine reduzierte mikrobielle Vielfalt im Darm korreliert mit Clostridium-difficile-assoziierter Diarrhö, die oft bei Alten in Krankenhäusern auftritt. Proinflammatorische Pathobionten nehmen im hohen Alter zu, immunmodulierende Arten ab.

Autoimmunerkrankungen werden im Alter häufiger, evtl. durch Lymphopenie, den Rückgang von Tregs und/oder die nachlassender Aufräumtätigkeit der Makrophagen. Der Thymus-Output sinkt, es gibt weniger neue naive T-Zellen. Auch die Fähigkeit, ein Gedächtnis für neue Antigene anzulegen, lässt nach. Das CD4+/CD8+-Verhältnis wird größer: Die Notwendigkeit, latente Viren wie EBV oder CMV zu kontrollieren, lässt weniger Platz für CD8+-Zellen. Naive B-Zellen werden zunehmend durch Gedächtnis-B-Zellen ersetzt, von denen einige “erschöpft” sind. Der Rückgang der naiven Zellen hat aber meist keine dramatischen Folgen, da alte Menschen schon über große „Gedächtnis-Datenbanken“ zu vielen Pathogenen verfügen.

Auch die angeborene Abwehr lässt im Alter nach. Die Hämatopoese verschiebt sich zugunsten myeloider Zellen – evtl. eine evolutionäre Anpassung, da zur Beseitigung der vielen seneszenten Zellen mehr Phagozytose vonnöten ist. Im hohen Alter sind Neutrophile, Makrophagen und DCs weniger leistungsfähig (weniger HLA-Expression, weniger Phagozytose …), sodass die immunologisch stille Beseitigung apoptotischer und seneszenter Zellen nicht mehr gelingt. Dann kommt es zu einer dauerhaften schwachen Entzündung (mehr proinflammatorische Zytokine: IL-1β, IL-6, IL-18 und TNF-α), die zu Atherosklerose, Demenz oder Krebs beitragen könnte.

Die zellulären und molekularen Grundlage der Immunoseneszenz sind noch nicht aufgeklärt. Ältere Zellen zeichnen sich durch drei Eigenheiten aus: (1) Telomere verkürzt -> Die Zellteilungsfähigkeit lässt nach. (2) Mitochondrien-Dysfunktion -> mehr reaktive Sauerstoffspezies. (3) Sekretion entzündungsfördernder Zytokine, Chemokine und Proteasen. Die Auswirkungen auf das Immunsystem: Mitotische Zellen wie hämatopoetische Stammzellen, T-Zellen usw. schwinden, postmitotische Immunzellen wie Neutrophile werden dysfunktional.

Hochbetagte sowie Menschen mit Autoimmunerkrankungen oder chronischen Vireninfektionen haben vor allem CD27CD28-T-Zellen mit sehr kurzen Telomeren, die sich kaum noch teilen können, aber noch starke Effektorfunktionen ausüben.

Bei oxidativem Stress (etwa durch reaktive Sauerstoffspezies) können DNA-Stränge zerbrechen. Verursacht wird der oxidative Stress evtl. durch ein Nachlassen der Autophagie: Altes zytoplasmatisches Material wird nicht mehr zum sicheren Abbau in Lysosomen ausgelagert.

 

Thymus-Veränderungen und Autoimmunerkrankungen

Wenn schon die Struktur des Thymus, die Funktion einiger seiner Bestandteile und die Vor- und Nachteile seiner Rückbildung ab der Kindheit nicht vollständig aufgeklärt sind, wundert es nicht, dass auch das Verhältnis zwischen einer normalen oder abweichenden Entwicklung des Thymus und allen möglichen Autoimmunerkrankungen strittig ist.

Wie so oft sind zum Beispiel Ursache und Wirkung nicht leicht zu unterscheiden: Entwickelt sich der Thymus wegen einer Autoimmunerkrankung merkwürdig? Zieht eine anomale Entwicklung des Organs die Entlassung autoreaktiver T-Zellen in die Peripherie und damit eine Autoimmunstörung nach sich? Schaukeln sich beide Entwicklungen gegenseitig hoch? Oder sind sowohl die Autoimmunerkrankung als auch die Fehlentwicklung des Thymus Folgen von etwas Drittem, etwa einer genetischen Abweichung in den T-Zell-Vorläufern?

Ich versuche gar nicht erst, aus der Literatur ein stimmiges Gesamtbild abzuleiten, sondern stelle die Aussagen verschiedener Autoren einfach nebeneinander.

1. Thymome und Autoimmunerkrankungen

Eric A. Engels (2010): Epidemiology of thymoma and associated malignancies (Volltext)

Bei Thymomen (Tumoren aus Thymus-Epithelzellen) gelangen häufig abnorm konditionierte T-Zellen in den Kreislauf, die wahrscheinlich für die mit Thymomen assoziierten Autoimmunerkrankungen wie Myasthenia gravis (MG) verantwortlich sind. Was Thymome verursacht, ist unbekannt.

C. R. Thomas, C. D. Wright und P. J. Loehrer (1999): Thymoma: state of the art (PDF)

10-15 Prozent der MG-Patienten haben ein Thymom; 30 Prozent der Patienten mit einem Thymom haben MG. Mit Thymomen sind außerdem unter anderem assoziiert (bei weniger als 5-10 Prozent der Patienten): akute Perikarditis, Morbus Addison (Nebennierenrindeninsuffizienz), Agranulozytose, Alopecia areata, Colitis ulcerosa, Morbus Cushing, hämolytische Anämie, limbische Enzephalopathie, Myokarditis, nephrotisches Syndrom, Panhypopituitarismus, perniziöse Anämie, Polymyositis, rheumatoide Arthritis, Sarkoidose, Sklerodermie, sensorimotorsche Radikulopathie, Stiff-Person-Syndrom, systemischer Lupus erythematosus (SLE) und Thyroiditis. Die meisten dieser Krankheiten sind Autoimmunerkrankungen.

2. Thymus-Involution und Autoimmunerkrankungen

M. Meunier et al. (2013): Incomplete thymic involution in systemic sclerosis and rheumatoid arthritis (nur Abstract gelesen)

In der Studie wurde bei Patienten mit systemischer Sklerose (SSc) und rheumatoider Arthritis (RA) nach Thymus-Anomalien gesucht, wie sie für andere Autoimmunerkrankungen bereits nachgewiesen wurden. Alle Studienteilnehmer waren mindestens 40 Jahre alt. Eine unvollständige Thymus-Involution (Thymus-Reste über 7 mm dick) trat signifikant häufiger bei Patienten mit SSc (15 Prozent) und RA (14 Prozent) auf als in der Kontrollgruppe (0 Prozent).

Brandon D. Coder et al. (2015): Thymic Involution Perturbs Negative Selection Leading to Autoreactive T Cells That Induce Chronic Inflammation (nur Abstract gelesen)

Die Thymus-Involution und die aus ihr folgende vermehrte Freisetzung autoreaktiver T-Zellen erhöht den Autoren zufolge das Risiko für Autoimmunerkrankungen im Alter. In der Studie sollte an Foxn1-Knockout-Mäusen untersucht werden, ob das auch für chronische Entzündung (Inflammaging) gilt: ja. Wird das Gen Foxn1 „ausgeknockt“, läuft die Involution beschleunigt ab, während der Rest des Körpers jung bleibt. Die Involution führt dazu, dass T-Zellen kurz nach Verlassen des Thymus aktiviert werden, was mit Anzeichen einer chronischer Entzündung einhergeht: Zell-Infiltration in Nicht-Lymphgewebe, erhöhte TNF-α-Produktion, erhöhter IL-6-Spiegel im Serum. Nicht eine verminderte Treg-Produktion, sondern ein Versagen der negativen Selektion durch einer verringerte Aire-Expression führt zur Entstehung autoreaktiver T-Zell-Klone.  Weiterlesen

Entstehung und Niedergang des Thymus: Kalbsbries ja, Rinderbries nein

Wie bin ich noch gleich auf das Thema Thymus gekommen, damals im September? Ach ja: Ich wollte im Autoimmunbuch-Manuskript „mal rasch“ erklären, wann und wie der Thymus während der Embryonalentwicklung entsteht. Ha! Haha! Nach der einen oder anderen Abschweifung komme ich nun auf diese Frage zurück – und verfolge den Werdegang des Organs gleich bis ins hohe Alter.

Entstehung des Thymus

Der Thymus wird beim Menschen recht früh angelegt, und zwar nicht dort, wo sich das Organ später befindet (zwischen Brustbein und Herz), sondern weiter oben: in der Region der dritten Kiementasche am Hals des Embryos. Dass Säugetier-Embryonen zunächst Kiementaschen ausbilden, ist einer der zahlreichen Belege für unsere stammesgeschichtliche Verwandtschaft mit den Fischen, die ja ebenfalls zu den Wirbeltieren gehören und auch (mindestens) einen Thymus haben. (Haie haben fünf Thymi, Knochenfische nur einen, wie wir Säugetiere.)

Stammzellen aus dem Endoderm – dem innersten der drei Keimblätter im jungen Embryo, aus dem unter anderem der Verdauungstrakt, die Leber und die Lunge entstehen – entwickeln sich hier zu Epithelzellen. In manchen, durchaus auch neuen Lehrbüchern ist noch von einer Beteiligung eines zweiten Keimblatts die Rede, nämlich des Ektoderms, das unter anderem die Haut und das Nervensystem hervorbringt. Tatsächlich haben Thymuszellen mit diesen Organen einiges gemeinsam, etwa die Keratinproduktion oder die Kommunikation über Neuropeptide. Nach derzeitigem Wissensstand stammen sie dennoch alle aus dem Endoderm.

Anfangs ist noch kein Unterschied zwischen einer Rinde und einem Mark zu erkennen, und es fehlen die Hohlräume zwischen den Zellen sowie die Blutgefäße. Besiedelt wird der junge Thymus mit T-Zell-Vorläufern aus dem blutbildenden Knochenmark, das wiederum dem mittleren Keimblatt entstammt: dem Mesoderm, das neben Knochen und Blut auch die Muskeln, die Nieren und das Herz hervorbringt. Die Besiedlung beginnt etwa ab Tag 60 der Schwangerschaft. Die durch Lockstoffe (Chemokine) angezogenen und anfangs – mangels Blutgefäßen – direkt durch das Gewebe einwandernden T-Zell-Vorläufer regen den jungen Thymus zur Ausbildung seiner charakteristischen Schwammstruktur, zur Differenzierung in Rinde und Mark sowie zur Ausbildung von Blutgefäßen an, über die dann weitere Prä-Thymozyten nachkommen.

Die T-Zell-Produktion setzt weit vor der Geburt ein

Sobald die Architektur steht, setzen die positive und die negative Selektion ein. Ab der 9. Schwangerschaftswoche produziert der junge Thymus zunächst sogenannte γδ-T-Zellen, die bei Erwachsenen nur etwa fünf Prozent aller Lymphozyten ausmachen und vor allem in der Haut und den Schleimhäuten sehr schnell auf Gewebsveränderungen (etwa durch Infektionen) reagieren können, da sie bereits voraktiviert in das Gewebe einwandern. Ihre T-Zell-Rezeptoren bestehen aus einer Gamma- und einer Delta-Kette und weisen eine viel geringere Diversität auf als die später viel häufigeren αβ-T-Zellen.

Ab der 10. Woche werden auch T-Zellen mit Rezeptoren aus α- und β-Ketten hergestellt, also Helferzellen (CD4+), zytotoxische T-Zellen (CD8+) und regulatorische T-Zellen (Tregs). Die Nachfahren der Einwanderer aus dem Knochenmark vermehren sich dabei enorm, sowohl im Thymus als auch anschließend in der Peripherie. So ist jeder individuelle T-Zell-Rezeptor mit dem ihm eigenen Antigen-Erkennungsmuster, der die Selektion im Thymus bestanden hat, im menschlichen Körper auf schätzungsweise 1000 bis 10.000 naiven (d. h. noch nie mit „ihrem“ Antigen konfrontiert gewesenen) T-Zellen vertreten, die von einem einzigen Thymozyten abstammen, also einen Klon bilden. Wenn eine T-Zelle ein Antigen erkennt, setzt eine weitere starke Vermehrung ein, damit der expandierte Klon die Gefahr schnell und gründlich eindämmen kann.

Der Thymus schrumpft – relativ ab der Geburt, absolut spätestens ab der Pubertät

Im voll entwickelten Thymus kommen auf jede Thymus-Epithelzelle etwa 1000 Thymozyten, also künftige T-Zellen. Bei der Geburt des Kindes wiegt das Organ – nunmehr an seiner endgültigen Position vor dem Herzen angelangt – etwa 15 Gramm, in der Pubertät etwa 35 Gramm, mit 25 Jahren etwa 25 Gramm, bei 60-Jährigen höchstens noch 15 Gramm und mit 70 Jahren gelegentlich sogar weniger als 5 Gramm. Das relative Gewicht sinkt bereits von der Geburt an kontinuierlich.

Thymusgewicht_Schwangerschaft_nach_FitzSimmons1988_650

Das Thymusgewicht erreicht zur Geburt seinen vorläufigen Höhepunkt. In der Kindheit wächst der Thymus zwar weiter, aber langsamer als der Rest des Körpers. Nach FitzSimmons et al. (1988): Normal length of the human fetal gastrointestinal tract.

Schon mit etwa einem Jahr setzt beim Menschen die sogenannte Involution oder Atrophie des Thymus ein, die von außen nach innen voranschreitet: Thymus-Epithelzellen werden durch Adipozyten, also Fettzellen, sowie Bindegewebszellen ersetzt. Durch diesen Umbau kann das Gewicht noch einige Jahre weiter ansteigen, obwohl die Involution bereits in vollem Gange ist. Übrig bleiben schließlich in jedem Läppchen vereinzelte Inseln mit einem Rinden- und einem Mark-Anteil, getrennt durch nichtfunktionales Gewebe. Durch den Schwund des funktionalen Thymusgewebes sinkt auch der tägliche Output an neuen naiven T-Zellen.    Weiterlesen