Schlagwort-Archive: Immunzellen

Fische sind cool: Eine Just-so-Story über die Konsequenzen der Warmblütigkeit

Vor gut 120 Jahren, im Jahr 1902, veröffentlichte der britische Autor Rudyard Kipling eine Geschichtensammlung mit dem Titel „Just So Stories for Little Children“: logisch klingende, aber frei erfundene Erklärungen dafür, wie Tiere zu ihren auffälligsten Merkmalen gekommen sind, etwa das Kamel zu seinem Höcker oder der Elefant zu seinem Rüssel. Ihren Titel verdankt die Sammlung der Forderung seiner jungen Tochter, dass er die Geschichten „genau so“ erzählen oder vorlesen müsse, jeden Abend exakt gleich. In Anlehnung an Kipling bezeichnen Evolutionsbiologen schwer überprüfbare (oder zumindest noch nicht überprüfte), aber verführerisch einleuchtend klingende Erklärungen für die evolutionäre Herausbildung von tierischen Merkmalen oder menschlichen Eigenschaften als Just-so-Stories.

Die roten Blutkörperchen oder Erythrozyten der Säugetiere sind scheibenförmig und in der Mitte dünner als am Rand, denn sie enthalten keinen Zellkern und keine Organellen, dafür aber viel Hämoglobin, um Sauerstoff aus den Lungen über die Blutbahn in die Organe zu transportieren:

In Fischen, Amphibien und Reptilien haben die Erythrozyten dagegen einen Kern, und sie übernehmen wichtige Aufgaben im Immunsystem. So helfen sie bei der Bekämpfung von Viren-, Bakterien- und Pilz-Infektionen, etwa durch die Ausschüttung von Botenstoffen und reaktiven Sauerstoffspezies oder durch die Bindung, Aufnahme, Verarbeitung und Präsentation von Antigenen. Zwar enthalten sie auch Hämoglobin und dienen dem Sauerstofftransport, aber daneben sind sie vollwertige, wehrhafte Immunzellen:

Dass die roten Blutkörperchen der Säugetiere ihre Kerne kurz nach der Entstehung im Knochenmark abstoßen, klingt zunächst nach einem Rückschritt. Denn da sie ohne Kerne und Organelle keine Proteine mehr produzieren können, spielen sie im Immunsystem der Säuger eine so untergeordnete Rolle, dass sie in Listen der Zelltypen des Immunsystems meist gar nicht aufgeführt werden. Stattdessen konzentrieren sich die abgeflachten Zellen ganz auf den Sauerstofftransport; das Hämoglobin macht 90 Prozent ihres Trockengewichts aus.

Über den Grund für den Verlust des Zellkerns der Säugetier-Erythrozyten kursiert eine Just-so-Story: Fische, Amphibien und Reptilien sind wechselwarme (poikilotherme oder ektotherme) Tiere, deren Körpertemperatur von der Umgebungstemperatur abhängt. Säugetiere sind dagegen gleichwarme (homoiotherme oder endotherme) Tiere, umgangssprachlich auch Warmblüter genannt. In dem meisten Lebenslagen müssen sie viel Energie aufwenden, um ihren Körper aufzuheizen. Dadurch sind sie weniger abhängig vom Wetter, können beispielsweise ihre Jungen im Leib austragen und vielfach auch im Winter aktiv bleiben. Um die Wärme zu generieren, braucht ihr Gewebe viel Energie, und um Energieträgermoleküle wie ATP aufzubauen, braucht es sehr viel Sauerstoff. Den schaffen die roten Blutkörperchen herbei. Also weg mit deren Zellkernen, her mit Unmengen an Hämoglobin, um den Körper mit Sauerstoff zu versorgen!

Klingt logisch – zumal Säugetiere ja zumeist an Land leben und nicht ständig in einer Bakterien- und Virensuppe herumschwimmen, während Fische und auch Amphibienlarven das Wasser sogar durch ihre Kiemen filtern, also ständig sehr eng mit vielen Krankheitserregern in Berührung kommen.

Aber … Moment mal! Was ist denn mit den Vögeln? Auch sie sind gleichwarm, brauchen also meistens viel Energie, um sich gegenüber der Umgebung aufzuheizen. Und ihre roten Blutkörperchen?

Tja: Die haben trotzdem Zellkerne. Damit fällt die einleuchtende Erklärung für den Kernverlust der Säugetier-Erythrozyten in sich zusammen wie ein Kartenhaus.

Nicht immer sind Just-so-Stories so leicht zu erkennen. Wir Menschen haben das Bedürfnis, Dinge zu begreifen, und verspüren oft eine tiefe Befriedigung, wenn wir auf eine nachvollziehbare Erklärung für ein Phänomen stoßen. Im Autoimmunbuch und im Friendly-Fire-Blog bin ich besonders anfällig für Just-so-Stories, denn ich schreibe dies alles ja in erster Linie, um mir selbst und anderen Interessierten unser Immunsystem und die Entstehung von Autoimmunerkrankungen begreiflich zu machen. Denn je besser ich die unheimlichen Entgleisungen meines Immunsystems verstehe, desto weniger ängstigen sie mich. Auch wenn ich skeptisch und wachsam zu bleiben versuche, wird bestimmt die eine oder andere evolutionsbiologische oder ökologische Herleitung im Buch und im Blog schlecht altern. Aber das nehme ich in Kauf.

Abb. 207: Viren-Alarm

Vireninfizierte Zellen schütten rasch Interferone aus. Mit diesen Botenstoffen warnen sie gesunde Zellen, die sich wappnen, indem sie z. B. RNA abbauen, die viralen Ursprungs sein könnte. Sie regen andere infizierte Zellen zum kontrollierten Absterben an, damit die in ihren enthaltenen Viren keine Chance bekommen, weitere Zellen zu befallen. Außerdem locken sie Immunzellen an.

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Abb. 103: Die sieben Lebensstationen der Immunzellen

Von oben nach unten:

Knochenmark als Kinderstube

Thymus als T-Zell-Schule

Wanderjahre in den Gefäßen

Speed-Dating in Lymphknoten

Arbeit im ganzen Körper

Tod in der Leber oder Milz

Überlebensnischen im Knochenmark oder der Milz

 

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Abb. 95: Immunzellen im Knochenmark

Weiter geht es nach längerer Pause mit den Abbildungen aus Teil 2 von Band 1 (Nutzungsbedingungen).

Die Knochen eines Menschen enthalten etwa 400 Gramm rotes Knochenmark. Davon sind etwa 180 Gramm mit der Produktion roter Blutkörperchen (Erythrozyten) und ebenfalls 180 Gramm mit der Produktion weißer Blutkörperchen (Leukozyten), also Immunzellen, beschäftigt. Die restlichen 40 Gramm stellen Blutplättchen her, die für die Blutgerinnung benötigt werden.

Abb. 19: Doppelte Sicherung

Doppelte Sicherung: Immunzellen, die Schaden anrichten können, lassen sich normalerweise nur aktivieren, wenn sie gleichzeitig zwei Signale empfangen – etwa ein zu ihren Rezeptoren
passendes Antigen und ein sogenanntes Kostimulationssignal, das auf eine Systemstörung hinweist.

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Vortrag: Die Abwehr steht! Immunzellen als Teamplayer

Im Lauf der nächsten Monate extrahiere ich aus Band 1 einige Vortragsthemen – das ist wegen der Zeichnungen sinnvoller als reine Lesungen. Den Anfang macht eine etwa 40 Minuten lange, allgemein verständliche und angstfreie Einführung in die Arbeit unserer unterschiedlichen Immunzellen – angstfrei, weil nicht Krankheiten, sondern die normalen Tätigkeiten der Zellen im Fokus stehen.

Der Vortrag hangelt sich an 15 Karikaturen entlang, die ich in kleinerer Runde als A2-Blätter an eine Tafel hängen und in größerer Runde auf eine Leinwand projizieren kann. Vortragsanfragen (etwa von Selbsthilfegruppen) schicken Sie bitte an kontakt@immunbuch.de.

Weiterlesen

Große Unterschiede im Immunsystem eineiiger Zwillinge

Nur wenige Forscher beschäftigen sich mit der Entwicklung des gesamten Immunsystems, also all der Komponenten sowohl der angeborenen als auch der erworbenen Abwehr, über das ganze Leben hinweg: von der Geburt bis ins hohe Alter. Hier stelle ich eine dieser wenigen Arbeiten vor:

Petter Brodin et al. (2015): Variation in the Human Immune System Is Largely Driven by Non-Heritable Influences (Open Access)

Die Autoren haben an 105 gesunden Zwillingspaaren, also 210 Personen, 204 Immunsystem-Parameter untersucht, darunter die Häufigkeit von 95 verschiedenen Immunzelltypen, die Konzentration von 51 Zytokinen, Chemokinen und Wachstumsfaktoren im Serum und die Veränderungen dieser Werte nach Anregung der Immunzellen durch Botenstoffe. 78 Zwillingspaare waren eineiig, 27 zweieiig. Bei der großen Mehrheit, nämlich 77 Prozent der Parameter waren die Unterschiede zwischen den Zwillings-Messwerten überwiegend (nämlich zu mehr als der Hälfte) nicht erblich, sondern durch unterschiedliche Umwelteinflüsse bedingt. Die Unterschiede bei 58 Prozent der Immunsystem-Parameter waren sogar ganz überwiegend (zu mehr als 80 Prozent) nicht erblich bedingt. Außerdem unterschieden sich die Immunsysteme älterer Zwillingspaare deutlich stärker als die jüngerer: Der Umwelteinfluss nimmt mit den Jahren zu.

Mit den Jahren entwickeln sich Zwillinge immunologisch immer weiter auseinander, weil unterschiedliche Umwelteinflüsse auf sie einwirken, etwa Impfungen, Infektionen, Allergene oder Nahrung

Mit den Jahren entwickeln sich Zwillinge immunologisch immer weiter auseinander, weil unterschiedliche Umwelteinflüsse auf sie einwirken, etwa Impfungen, Infektionen, Zellgifte oder ihre Kost.

Die Erblichkeit der Parameter wurde anhand von Messungen an eineiigen und zweieiigen Zwillingspaaren ermittelt. Zwischen eineiigen Zwillingen sollten erbliche Faktoren (also Gene und dauerhafte epigenetische Markierungen des Erbguts) zu 100 Prozent übereinstimmen, zwischen zweieiigen Zwillingen dagegen – wie bei anderen Geschwisterpaaren – nur zu 50 Prozent. Umweltfaktoren (darunter auch stochastische epigenetische Veränderungen) sollten dagegen ein- und zweieiige Zwillinge gleichermaßen beeinflussen.

Unter den Immunzelltypen gab es einige wenige, deren Häufigkeit im Blut der Probanden stark erblich bedingt war, also zwischen eineiigen Zwillingen sehr gut übereinstimmte – vor allem naive CD27+-T-Zellen und CD4+-Gedächtnis-T-Zellen. Die Häufigkeit der meisten Zellen der erworbenen (T- und B-Zellen) sowie der angeborenen Abwehr (Granulozyten, Monozyten und NK-Zellen) unterschied sich dagegen zwischen eineiigen Zwillingen praktisch ebenso stark wie zwischen zweieiigen Zwillingen, sodass man annehmen muss, dass Zufälle und Umweltreize wie Infektionen die Werte prägen.

Unter den Zytokinen erwies sich IL-12p40 als besonders stark erblich. Varianten im Gen dieses Proteins werden mit Krankheiten wie Psoriasis oder Asthma in Verbindung gebracht, an denen das Immunsystem beteiligt ist. Bei vielen anderen Zytokinen war der erbliche Einfluss gering.

Schon im Ruhezustand (oben) unterscheiden sich viele Immunparameter zwischen Zwillingen. Eine Anregung des Immunsystems löst bei den wenigen erblich dominierten Parametern gleich starke Veränderungen aus (Zeile 2), bei vielen nicht erblich dominierten Parametern aber ungleich starke Veränderungen, die die Unterschiede zwischen den Basiswerten ausgleichen oder verstärken können.

Schon im Ruhezustand (oben) unterscheiden sich viele Immunparameter zwischen Zwillingen. Eine Anregung des Immunsystems löst bei den wenigen erblich dominierten Parametern (etwa den homöostatischen Zytokinen IL-2 und IL-7, die die Vermehrung von T-Zellen steuern) gleich starke Veränderungen aus (Zeile 2). Bei den vielen nicht erblich dominierten Parametern (etwa IL-6, IL-20 oder IL-21) können die unterschiedlichen Reaktionsstärken die Unterschiede zwischen den Basiswerten ausgleichen oder verstärken.

Das galt sowohl für die Basiswerte, die ohne Stimulation des Immunsystems erhoben wurden, als auch für viele Werte, die nach Anregung einer Immunreaktion ermittelt wurden. Eine stark erbliche Komponente fand sich bei den sogenannten homöostatischen Zytokinen IL-2 und IL-7, die bei einer Aktivierung des Immunsystems für die Vermehrung und die richtige Spezialisierung von T-Zellen sorgen. Die meisten Messwerte variierten jedoch nach der Immunsystem-Stimulation zwischen eineiigen Zwillingen fast ebenso unterschiedlich wie zwischen zweieiigen Zwillingen. Dabei waren schwache und starke Immunsystem-Reaktionen gleichermaßen nicht erblich, also durch Umweltfaktoren geprägt.

Stellt man alle gemessenen Immunsystem-Parameter als Netzwerk dar, in dem voneinander abhängige Größen durch Linien verbunden sind, zeigt sich: Die relativ wenigen Parameter mit starker Erblichkeit sind von Parametern umgeben, deren Variabilität durch die Umwelt bedingt ist. Das könnte erklären, warum bekannte Risiko-Genvarianten für bestimmte Krankheiten des Immunsystems oft nur für einen kleinen Teil des Erkrankungsrisikos verantwortlich zeichnen: Ihr Einfluss wird durch andere, nicht erbliche Faktoren abgepuffert, die zum Beispiel in denselben Signalketten oder Regelkreisen angesiedelt sind.

Der im Laufe des Lebens zunehmende Einfluss der Umwelt, vor allem wohl der Infektions- und Impfgeschichte auf den Zustand des Immunsystems war bei den regulatorischen T-Zellen oder Tregs am auffälligsten: Während ihre Häufigkeit bei jungen Zwillingspaaren gut übereinstimmte (Erblichkeit 0,78 von maximal 1,0), waren die Werte bei alten Zwillingspaaren so gut wie unkorreliert (Erblichkeit 0,24, also knapp über der Nachweisbarkeitsgrenze von 0,2). Besonders großen Einfluss auf das Immunsystem nimmt offenbar das Cytomegalovirus (CMV), das uns – wie andere Herpesviren – ein Leben lang erhalten bleibt. In 16 eineiigen Zwillingspaaren aus der Versuchspopulation war ein Geschwister mit CMV infiziert und das andere nicht. Viele ihrer Immunsystem-Parameter unterschieden sich stark, und zwar sowohl im Basiszustand als auch nach Stimulation.

Die Antikörperproduktion nach einer Grippeschutzimpfung war bei den Zwillingspaaren so gut wie gar nicht erblich beeinflusst, sondern fiel – wohl je nach Impf- und Infektionsgeschichte der Individuen – recht unterschiedlich aus.

Angesichts dieser Ergebnisse ist es kein Wunder, dass unter Geschwistern, die dieselben Risikogenvarianten für Autoimmunerkrankungen erben, oftmals nur eines wirklich erkrankt.

Die Milch macht’s – zumindest bei Mäusen

Dass Muttermilch Antikörper enthält, die das Neugeborene in den ersten Monaten vor Infektionen schützen, ist schon länger bekannt. Aber Milch leistet noch mehr für das Immunsystem des Nachwuchses, wie zwei neuere Arbeiten zeigen:

M. K. Ghosh et al. (2016): Maternal Milk T Cells Drive Development of Transgenerational Th1 Immunity in Offspring Thymus (Open Access); dazu auch die Pressemitteilung der Universität: Vaccinating Babies Without Vaccinating Babies

In der Vorläuferstudie hatten die Forscher herausgefunden, dass Mäuse ihrem Nachwuchs beim Säugen nicht nur durch Antikörper, sondern auch durch Immunzellen eine Immunität gegen Pathogene vermitteln, mit denen ihr eigenes Immunsystem kürzlich konfrontiert wurde. Seltsamerweise ist diese Immunität noch beim erwachsenen Nachwuchs nachzuweisen, obwohl dieser keinerlei mütterliche Immunzellen mehr enthält. Die Natur und die Entstehung der Zellen, die diese Immunität vermitteln, sollte hier untersucht werden. Um eine Übertragung im Mutterleib auszuschließen, ließ man die gegen das Bakterium Mycobacterium tuberculosis oder gegen den Pilz Candida albicans immunisierten Mäuseweibchen fremden Nachwuchs aufziehen.

Die Immunität wird offenbar von Gedächtnis-T-Zellen übertragen, die über CD4+-Marker und MHC-Klasse-II-Komplexe verfügen – eine kuriose Kombination, denn normalerweise empfangen CD4+-T-Zellen Signale von antigenpräsentierenden Zellen wie etwa dendritischen Zellen, die Antigene auf MHC-Klasse-II-Komplexen präsentieren. Dendritische Zellen sind aber viel zu kurzlebig, um die hier beobachteten Effekte zu erklären; es waren eindeutig antigenpräsentierende CD4+-T-Zellen, die die Immunität übertrugen – vielleicht, weil nur T-Zellen gezielt in den Thymus wandern können. Wie diese Zellen an die MHC-Klasse-II-Komplexe gelangt sind, ist unklar. Die Autoren vermuten Trogozytose: die Übergabe von Membranflößen einschließlich MHC-Komplex und Kostimulatoren an einer immunologischen Synapse, also einer Bindungsstelle zwischen der (primären) antigenpräsentierenden Zelle und einer T-Zelle, deren T-Zell-Rezeptor spezifisch an den Komplex bindet. Diesen Mechanismus habe ich hier bereits vorgestellt.

Nach der Aufnahme über die Muttermilch wandern diese ungewöhnlichen mütterlichen Gedächtnis-T-Zellen gezielt in den Thymus und die Milz der Mäusebabies. Um an den Grenzen – also am Brustdrüsen-, Darm- und Thymusepithel – nicht von anderen Immunzellen aufgehalten zu werden, „verschlucken“ sie vermutlich ihre MHC-Klasse-II-Komplexe samt Antigenen in Vesikeln und befördern sie erst am Ziel wieder an die Zelloberfläche. Im Thymus werden die MHC-Klasse-II-Komplexe einschließlich der Antigene womöglich durch eine weitere Trogozytose an „ordentliche“ antigenpräsentierende Zellen übergeben, oder die CD4+-T-Zellen werfen die Antigene ab, und antigenpräsentierende Zellen nehmen sie auf.

Jedenfalls werden die Antigene aus den Pathogenen, mit denen die Mütter infiziert waren, nun den unreifen Mäusebaby-Thymozyten präsentiert, die daraufhin zu CD8+-T-Zellen mit einer Spezifität für diese Antigene heranreifen. Diese Immunitätsübertragung nennen die Autoren „maternal educational immunity“, um sie von der passiven Immunität zu unterscheiden, die vor allem durch mütterliche Antikörper in der Milch übertragen wird und sich rasch verliert, da diese Antikörper im Jungtier nicht nachproduziert werden können.

In der Pressemitteilung der Universität finden sich interessante Spekulationen über eine mögliche Nutzung dieses Mechanismus zur „indirekten Impfung“ von Säuglingen (nämlich durch Impfung der Mütter während der Schwangerschaft) und über die hohe historische Überlebensrate von Kleinkindern aus Adelsfamilien, die häufig von Ammen aus der Unterschicht gestillt wurden und so vielleicht eine besonders gute „Immunsystem-Erziehung“ genossen. Dabei sollte aber nicht vergessen werden, dass die Reifung des Immunsystems bei jungen Mäusen anders verläuft als bei Menschenkindern.

M. A. Koch et al. (2016): Maternal IgG and IgA Antibodies Dampen Mucosal T Helper Cell Responses in Early Life (Bezahlschranke, nur Abstract und eine Abbildung); dazu auch Meldung „Breast Milk Primes Gut for Microbes“ in The Scientist

Mütterliche, über die Milch übertragene Antikörper der Typen IgG und IgA dienen vor allem dazu, Pathogene im Darm junger Mäuse zu bekämpfen, solange deren Immunsystem dazu noch nicht imstande ist – so glaubte man bisher. Jetzt zeigt sich, dass insbesondere IgG auch Immunreaktionen hemmt, und zwar solche gegen nützliche Bakterien, die nach der Geburt den Darm von Mäusebabies besiedeln. Fehlen die mütterlichen Antikörper, reagiert das Lymphgewebe am Darm heftig auf die neue Darmflora: Es entstehen viel mehr T-Helferzellen, die wiederum B-Zellen zur Produktion von Antikörpern gegen die gutartigen Darmbakterien anregen.

Allerdings scheinen die Mäuse, denen das mütterliche IgG vorenthalten wurde, keine langfristigen Gesundheitsschäden davonzutragen. Der Begleitartikel in The Scientist stellt dennoch Spekulationen über langfristige Folgen einer gestörten Mikrobiom-Entwicklung an, etwa Morbus Crohn und Colitis ulcerosa – nur um dann abzuwiegeln und auf die Unterschiede zwischen Mensch und Maus hinzuweisen. Zum Beispiel darauf, dass menschliche Muttermilch viel weniger IgG enthält als die von Mäusen. Es ist zum Mäusemelken.

Wie erfährt Immunsystem, wie spät es ist?

Auf drei Wegen: über das Hormon Melatonin aus der Zirbeldrüse, über das Hormon Cortisol aus der Hypothalamus-Hypophysen-Nebennierenrinden-Achse und über das autonome Nervensystem, das Signale an die endokrinen Drüsen und an Lymphorgane wie Milz und Leber übermittelt:

P1200146_SCN_Nerven_Hormone_IS_schwarz_650

Alle drei Instanzen beziehen die zentrale Uhrzeit vom suprachiasmatischen Nucleus (SCN), einem Teil des Hypothalamus. Der circadiane Rhythmus im SCN wird regelmäßig durch Tageslicht nachjustiert, damit die zentrale Uhr nicht vor- oder nachgeht.

Auch das Immunsystem kann die zentrale Uhr verstellen, zum Beispiel, wenn der Körper bei einer Infektion Ruhe braucht. Dann senden die Immunzellen Zytokine aus, Botenstoffe, die im SCN die Ablesung der Uhr-Gene beeinflussen.

(Abbildungsvorlage aus Mavroudis PD et al., Systems biology of circadian-immune interactions. J Innate Immun 2013; 5:153-162)

Der kanonische NF-κB-Signalweg

So dröges Zeug muss halt auch mal sein: einer der wichtigsten entzündungsfördernden Signalwege in vielen Immunzellen; nähere Erläuterungen folgen im Buch.

P1170903_kanonischer_NF-kB-Weg_650

1  Ein TRAF (TNF-Rezeptor-assoziierter Faktor) wurde an der Innenseite eines Rezeptors in der Zellmembran aktiviert und löst den weiteren Signalweg aus.

2  Er ubiquitiniert IKKγ im IKK-Komplex, der daraufhin seine Gestalt ändert. (Bei der Ubiquitinierung wird einem Protein das Protein Ubiquitin angeheftet, wodurch es zum Abbau freigegeben wird.)

3  Die Kinase IKKβ löst sich von IKKα und IKKγ.

4  IKKβ kann nun durch eine andere Kinase phosphoryliert und damit aktiviert werden.

5  Der Transkriptionsfaktor NF-κB (ein Heterodimer) ist noch an den Inhibitor IκBα gebunden. Aber jetzt phosphoryliert die aktivierte Kinase IKKβ den Inhibitor doppelt, …

6  … woraufhin er auch noch ubiquitiniert und damit zum Abbau freigegeben wird.

7  Der Komplex zerfällt: Der Inhibitor wandert in ein Proteasom und wird zerlegt.

8  Der Transkriptionsfaktor NF-κB ist befreit und kann durch eine Kernpore in den Zellkern einwandern.

9  Im Zellkern lagern sich ein Koaktivator und das Enzym RNA-Polymerase mit dem Transkriptionsfaktor zusammen.

10  Der Komplex dockt am Promotor des abzulesenden Gens an und startet dessen Transkription, also die Erzeugung einer Messenger- oder mRNA, die die Informationen für die Synthese eines Proteins (z. B. eines entzündungsfördernden Zytokins) enthält.

Die mRNA wandert anschließend ins Zytoplasma, wo sie als Vorlage für die Proteinsynthese (Translation) dient.

Vorlagen: Wikipedia und Abbas, 7. Auflage, Abb. 7.26