Archiv der Kategorie: Aus der Sekundärliteratur

Jack/Du Pasquier: Evolutionary Concepts in Immunology, Teil 2

Fortsetzung meiner Notizen zum Buch, Kapitel 3: angeborene Abwehr

Modularität: Abwehrsysteme bestehen aus 3 Teilen: 1. Information über gefährliche Lage (lösliche extrazell. Rezeptormoleküle und zellassoziierte Sensoren), 2. Befehls- und Steuerungskomplex (Signalketten), 3. Effektoren (Enzyme, ROS etc.), die gut dosiert und verwahrt werden müssen, da sie auch eigenes Gewebe zerstören. Ausnahme: „smart weapons“ wie konstitutiv exprimierte kationische antimikrobielle Peptide, die an anionische Mikroben-Oberfläche binden und dann mit hydrophober Domäne in die Membran eindringen.

Evolution der Rezeptoren: in angeb. Abwehr alle möglichen Proteine, während sie in der erw. Abwehr alle zur Immunglobulin-Superfamilie gehören. Vielfalt über Jahrmillionen selektiert, für Pathogene schwerer auszuschalten als eine einzelne Proteinfamilie. Keimbahn-codiertes „phylogenetisches Pathogen-Gedächtnis“. Gene für erfolgreiche Rezeptorstrukturen oftmals dupliziert -> neue Bindungseigenschaften -> Familien. Viele Rezeptoren bestehen aus 2 oder mehr funktionalen Modulen.

Weiterlesen

Lupus: Behandlungserfolge mit CAR-T-Zellen

Therapien interessieren mich ja nun überhaupt nicht, zumindest nicht für Band 2 des Autoimmunbuchs. Dennoch möchte ich kurz auf diese gute Nachricht vom 16. September hinweisen:

Den Reset-Knopf drücken: Wie sich eine Autoimmunerkrankung auflöst (PM der Uni Erlangen)

A. Mackensen et al.: Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus (das Paper in nature medicine, nur Abstract frei lesbar)

Erfolg bei CAR-T-Zelltherapie gegen Lupus (Expertenstimmen, eingesammelt vom Science Media Center)

Das Ende des Horrors (Bericht in der SZ aus dem Jahr 2021)

Die CAR-T-Zell-Therapie kommt nur bei wirklich schweren Autoimmunerkrankungen infrage, die man auf anderem Wege nicht in den Griff bekommt. Zum einen ist sie unglaublich aufwändig und kostspielig. Zum anderen werden hier mal eben alle CD19-exprimierenden B-Zellen im Körper platt gemacht. Die fünf SLE-Patient*innen haben das offenbar gut vertragen und sind dem Tod vorerst von der Schippe gesprungen – aber ohne Not tut man so etwas nicht.

Dennoch: ein Durchbruch. Womöglich erleben wir gerade das Ende der Ära, in der Autoimmunerkrankungen per se als unheilbar galten.

Jack/Du Pasquier: Evolutionary Concepts in Immunology, Teil 1

Etwa A5 großes Buch mit einer Festung auf dem Cover; gehalten von meiner linken Hand; im Hintergrund eine mit Plattencovern dekorierte Arbeitszimmer-WandKeine Besprechung des 2019 erschienenen, 145 Seiten schmalen, aber gehaltvollen und klugen Büchleins von Robert Jack und Louis Du Pasquier – sondern simple Notizen zu Stellen, die für Band 2 des Autoimmunbuchs relevant sind – hier erst mal bis Ende Kapitel 2; Fortsetzung folgt.

Und zugleich der Anfang einer Reihe von Blogartikeln ähnlicher Art, wie ich sie schon in den Jahren 2011ff. zuhauf verfasst habe: eilige, holperige Notizen zu neuer (oder neu entdeckter) immunologischer Fachliteratur, einfach um „Friendly Fire“ wiederzubeleben und nicht alles nur unsichtbar in Scrivener zu verarbeiten, dem Programm, in und mit dem ich meine Bücher schreibe.

Vorwort: Versuch zu zeigen, wie Kräfte der Evolution Immunsysteme im Laufe der Stammesentwicklung geformt haben. Dobzhansky-Zitat (natürlich!).

Kapitel 1: Wie arbeitet Evolution?

  • Ernst Mayrs Wie- und Warum-Fragen (s. auch Anfang Arvay oder Autoimmunbuch, Bd. 1, S.16: Tinbergens 4 Fragen). Warum -> Anpassungswert, Evolution von Abwehrsystemen.
  • „Lebende Fossilien“: Quastenflosser ähnelt 400 Mio. J. alten Fossilien, hat zwar die ganze Zeit Mutationen angesammelt, aber in den Tiefen des Meeres hat sich die Umwelt und damit der Selektionsdruck kaum gewandelt -> erst Selektion macht Mutationen evolutionär bedeutsam.
  • Varianten = Sequenzelemente, die in mindestens 1% einer Population vertreten sind; Mutanten = in weniger als 1%, entweder gerade erst entstanden und noch nicht positiv selektiert – oder schädlich, aber noch nicht komplett eliminiert.
  • Menschen: Problem -> Lösung; Evolution: potenzielle Lösungen (Mutationen in den Genomen einiger Individuen einer Population) warten auf das passende Problem. Wie Lymphozyten.
  • Eukaryoten können schwach nachteilige Mutationen bewahren, da sie diploid sind; daher größere Toleranz genetischer Drift als haploide Organismen. Ansammlung solcher Mutationen in Keimbahn bietet großes Lösungspotenzial.
  • Mikroorganismen nicht nur wg, kurzer Generationszeit, sondern auch wg. riesiger Populationen im Vorteil; Selektion effektiver.
  • In codierenden Regionen bei Menschen 1 Variante alle 8 Basenpaare. Jeder Mensch hat statistisch mindestens 85 Gene, bei denen 1 Kopie durch Mutation zerstört wurde, und 35, bei denen beide Kopien zerstört wurden.
  • Ansammlung leicht nachteiliger Mutationen = Muller-Ratsche. Meiotische Rekombination bei sexueller Fortpflanzung löst das Problem. R. kombiniert auch Allele intakter Gene neu -> einzigartige Individuen. F. Jacob: „To create is to recombine.“ Gilt auch für somatische Rekombination in Lymphozyten.
  • Generationslücke: Reproduktionszeit 20 Minuten – 20 Jahre = Faktor 525.000. Wie konnten wir überleben? 1. Diploidie, Mutationsvorrat, s. o. 2. adaptives IS, Selektion von Keimbahn in Soma verlagert. Nun keimbahn-codierte Abwehr zu unflexibel.
  • Evolution IS: Flache Küstengewässer energie- und nährstoffreich; bakterienfressende Amöben wohl 1. eukar. Organismen; von Viren, Transposons und Bakterien befallen. Alles, was bei Abwehr hilft, wird getan, auch wenn die Lösungen bizarr wirken.
  • „Amöben“ (lt. Literaturangabe: Nanoflagellat Cafeteria roenbergensis!) integrieren Mavirus in ihr Genom, um Mimivirus-Attacken abzuwehren: Mavirus wird bei Infektion aktiviert, Amöbe stirbt, aber da um 2-3 Größenordnungen mehr Ma- als Mimiviren produziert wurden, können neue Mimiviren wenig neue Amöben anstecken.
  • IS ist enorm verschwenderisch. Mensch: jeden Tag Milliarden Immunzellen wie Granulo- oder Lymphozyten produziert und fast alle direkt danach wieder ungenutzt zerstört. Trotzdem evolutionär stabile Strategie, da Vorteil schwerer wiegen.

Kapitel 2: Von Einzeller- und Vielzeller-IS

  • Übergang zu Mehrzellern wegen Arbeitsteilung zwischen Zelltypen vorteilhaft; einzelne Zelle muss weniger Kompromisse zwischen ihren u. U. widerstreitenden Funktionen eingehen. Preis dafür: Fitness einzelner Zellen = 0.
  • 4 Situationen, die Architektur der Abwehr in Metazoen beeinflussen; Übergang hat Änderungen erzwungen: 1. Trennung Keimbahn-Soma, 2. Beschränkung zellulärer Kompetenzen, 3. Aufweichung Grenze Selbst-Nichtselbst, 4. großes Tempo + Reichweite mobiler Immunzellen.
  • 1. Erst strikte Trennung Keimbahn-Soma macht proteinbasiertes, somatisch diverses IS möglich, weil die erforderlichen riskanten Rekombinations- und Mutations-Runden so die DNA in der Keimbahn nicht gefährden.
  • 2. Phagozytose: Nur noch bestimmte Zelltypen dürfen das. Phagozytose in jeder Phase, von der Suche bis zur Fusion Phagosom-Lysosom, vom Zytoskelett abhängig. Zellen dürfen ihre Nachbarn nicht auffressen. Dictyostelium discoideum: etwa 1% patrouillierende Wächterzellen, da Slug attraktive Quelle für Energie und Metaboliten ist. Phagozytose von Ernährungsweise zu Verteidigungsmethode diszipliniert.  Weiterer Vorteil: Pathogene können Phagozytose nicht mehr flächendeckend ausnutzen. Legionella pneumophila befällt Süßwasseramöben, verbirgt sich in Phagozytose-Vakuolen und injiziert mit dort aufgebauter Spritze etwa 300 bakterielle Mediatoren ins Zytosol -> Zytoskelett verändert -> Bakterien vermehren sich in Vakuolen. Legionärskrankheit ist „Unglück“, das erst durch Klimaanlagen mit großen Wassertanks passieren konnte, weil die Legionellen nun in Aerosolen in unsere Lungen gelangen können, wo sie via Phagozytose alveolare Makrophagen befallen. Zeigt, dass grundlegende Phagozytose-Mechanismen seit über 600 Mio. J. unverändert sind! Andere Pathogene wie Salmonellen, Shigella, Listerien, Chlamydien können auch andere Zelltypen zur Phagozytose bewegen, indem sie von außen durch ihre „Spritzen“ Mediatoren injizieren, die zu Membranausstülpung usw. führen. Die Bestandteile des Phagozytose-Apparats sind also in vielen Zelltypen noch komplett da. Autophagie = „interne Phagozytose“, Selbstabbau als „Vetter“ der Phagozytose: Proteasomen haben relativ kleine Einlassöffnungen, daher sammelt sich in langlebigen Zellen Müll an -> in Vakuolen gepackt, die mit Lysosomen fusionieren. Abbaumethode auch bei Nährstoffmangel und zur Vernichtung zytosolischer Pathogene eingesetzt. Problem der Selbst-Nichtselbst-Erkennung; auch Mitochondrien könnten wegen Bakterien-Herkunft vernichtet werden. Aber nur Pathogene, die aus Phagosom entswischen, tragen Glycane, mit denen Innenseite der Phagosom-Membran gespickt ist; zytosolische Galectine binden daran -> Glycan-Galectin-Komplexe als Friss-mich-Signale für Autophagie-Maschinerie.
  • 3. Selbst = Gesellschaft der Zellen in Metazoen. Zur Erkennung Vielzahl an Oberflächenmarkern und passenden Rezeptoren entwickelt, auch für lösliche Mediatoren wie Hormone oder Zytokine, die Infos aus weiter entfernten Körperteilen übermitteln. Mobile Abwehr aber nicht nur gegen Pathogene = Nichtselbst, sondern auch gegen verändertes Selbst wie Krebszellen, apoptotische und nekrotische  Zellen. – Apoptotische Zellen werden bei Nematoden, die kein echtes IS haben, von Nachbarzellen vertilgt, die dafür kurz ihr Phagozytose-Programm aktivieren, Bei Säugern können ggf. Epithel-, Endothelzellen und Fibroblasten als Amateur-Phagozyten dienen, aber das meiste erledigen Makrophagen. Sterbende Zellen senden Finde-mich-Signale, bei Kontakt Friss-mich-Signale aus. Koevolution des Apoptose- und des Fressprogramms bei den Partnern. So schnell, dass sogar in Knochenmark oder Thymus, wo sehr viele Zellen sterben, kaum tote Zellen sichtbar werden. – Nekrose: Zellmembran nicht mehr dicht; diverse Ursachen: zu viel Apoptose, steriles Trauma, Vireninfektion, … Phagozyten deuten ausgetretene Zytosolbestandteile als Gefahrensignal. Anders als bei Apoptose wird u. U. Entzündung -> Immunreaktion ausgelöst. – Krebs: Zellen fangen an zu mogeln, um sich rascher zu teilen – schon bei Algenmatten zu beobachten. Es braucht also neben altruistischer Kooperation auch altruistische Bestrafung der Betrüger -> IS. Krebszellen sind so was wie endogene Pathogene, halten sich nicht an Regeln, müssen um jeden Preis zerstört werden.
  • 4. Mobilität der Immunzellen: Bei einfachsten Vielzellern wie Schwämmen keine komplexen Organe. Nächste Stufe: Nesseltiere (Cnidaria) mit 2 Zellschichten, Ectoderm und Endoderm. Dann 3 Keimblätter, neu: Mesoderm. Bei Diploblasten wie Nesseltieren ist Epidermis für Abwehr zuständig, enthält Rezeptoren (strukturell ähnlich denen von Wirbeltieren wie TLR), produziert antimikrobielle Peptide, betreibt Phagozytose. Hydra enthält bakterielles Mikrobiom und symbiotische grüne Algen, die nicht bekämpft werden dürfen; „Selbst + Freunde“ vs. Feinde. Auch manche Triploblasen wie Nematode Caenorhabditis elegans haben nur epitheliale Abwehr. Komplexe Metazoen brauchen aber mobiles IS, da Apoptose, Nekrose, Tumorbildung und Infektionen überall im Körper stattfinden können. Siehe Buchcover: Verteidigung einer mittelalterlichen Stadt/Burg: Arbeitsteilung in Entdeckung und Hilferufen; zuständige Zellen müssen kommunizieren und sich gerichtet weit und schnell fortbewegen können; koordinierte Zytoskelett-Aktivität erforderlich. Dafür geänderte Konstruktion nötig: Bei Invertebraten bestehen Gefäße aus extrazellulärer Matrix, bei Vertebraten aus Endothelzellen; intelligente Oberflächen zur Rekrutierung von Immunzellen usw.

Teil 2: angeborene Abwehr

Philipp Dettmers „Immun“: Kriegsbericht im Plauderton

Philipp Dettmer, der Gründer des erfolgreichen YouTube-Kanals Kurzgesagt – In a Nutshell, hat ein Sachbuch über das Immunsystem geschrieben. Wer das Autoimmunbuch zu fachlich und detailverliebt fand, sollte mal in „Immun. Alles über das faszinierende System, das uns am Leben hält“ hineinschauen. Das 2021 bei Ullstein erschienene, gut 400 Seiten starke und in bewährter Kurzgesagt-Manier schön illustrierte Buch ist in meinen Augen spannend und gut verständlich geschrieben, und es macht es der Leserschaft weder zu schwer noch zu leicht.

Cover des besprochenen Buchs "Immun"

Das Themenspektrum ist weit; natürlich kommen auch Autoimmunerkrankungen in einem Kapitel vor. Aus einigen Kapiteln im hinteren Teil, etwa dem über HIV oder Krebs, habe ich – um nicht zu sagen: selbst ich! 🙂 – noch etwas Neues erfahren, auch wenn ich es in erster Linie gelesen habe, um zu sehen, wie Dettmer die Sachverhalte darstellt. Seine direkte Ansprache der Leserin oder des Lesers wirkt auf mich etwas kumpelig; auch der Humor ist nicht so ganz mein Ding. Aber inhaltlich und didaktisch gibt es (fast – s. u.) nichts zu meckern. Und das ist sowohl bei Fach- als auch bei Sachbüchern über das Immunsystem die ganz große Ausnahme!

Wachsendes Unbehagen an Gewaltmetaphern

Was mir allerdings zunehmend auf den Wecker ging und immer noch nachhängt, ist die gewalttriefende Metaphorik. Gefühlt alle paar Seiten wird im Plauderton davon berichtet, wie irgendwer (etwa eine Immunzelle) irgendwem (etwa einer anderen Zelle) aus nächster Nähe in den Kopf schießt. Die gesamte Immunologie ist ja von einer blutrünstigen Metaphorik durchsetzt, auch wenn das hier im Bestreben um Anschaulichkeit auf die Spitze getrieben wurde.

Damit kein Missverständnis aufkommt: Ich bin nicht empfindlich, kann Blut sehen, habe einen nüchternen Biologinnen-Blick auf den menschlichen Körper und halte nichts vom Beschönigen. Und natürlich finden sich auch im Autoimmunbuch sowie hier im Blog massenhaft Gewalt-, Kampf- und Kriegsmetaphern, angefangen beim Namen „Friendly Fire“. Wer Nichtfachmenschen das Wissen der Immunolog*innen anschaulich vermitteln will, kommt kaum um solche Bilder herum. Das entbindet uns aber nicht von der Verantwortung für unsere Sprache.

Mein wachsendes Unbehagen an dieser Metaphorik hat – soweit ich das bisher in mir ergründen konnte – zwei Gründe, einen gesellschaftlichen und einen innerwissenschaftlichen.

Zum ersten Grund: Metaphern sind keine Einbahnstraßen. Wissenschaftssoziolog*innen beobachten in den letzten Jahrzehnten immer wieder, wie die kriegerische Begrifflichkeit der Immunologie nun in die Sicherheitspolitik, in die Militärstrategie, in Schriften zur Unternehmenskultur usw. zurückschwappt. Wenn wir Immunreaktionen ausschließlich als Gewaltakte gegenüber eingedrungenen Krankheitserregern oder Krebszellen begreifen, die zur Wiederherstellung der individuellen Gesundheit erforderlich sind, liegt es nahe, Gewalt gegen Fremde oder gegen bestimmte Menschen aus unserer eigenen Gesellschaft als notwendige, gesunde Abwehrreaktion des „politischen Körpers“ oder – böse gesagt – des Volkskörpers zu interpretieren. Das sollten wir gerade in Deutschland tunlichst unterlassen.

Der zweite Grund beschäftigt mich eigentlich noch mehr, gerade bei der Arbeit am zweiten Band des Autoimmunbuchs: Metaphern sind auch Scheuklappen. Ich habe Sorge, dass uns ganz Wesentliches entgeht, weil wir die Interpretation von Immunsystem-Komponenten als Soldaten oder Polizisten und von Immunprozessen als Abwehrschlachten so dermaßen verinnerlicht haben. Die Immunologie und ihre Begrifflichkeit wurden nun einmal im Kontext zweier Weltkriege und ganz überwiegend von Männern entwickelt.

Viele nicht kriegerische Vorgänge, an denen Immunzellen beteiligt sind, waren und sind zudem methodisch kaum zu fassen, gewissermaßen unsichtbar – erst recht, wenn man durch die Brille der Standard-Metaphorik schaut. Wenn Erreger, Krebszellen oder andere Körperzellen im Zuge einer Infektion oder Verletzung und der dadurch ausgelösten Immunreaktion sterben, so können wir das sehen und messen. Die Rolle von Immunzellen und ihren Botenstoffen etwa bei der Einnistung der befruchteten Eizelle oder beim Umbau der Gebärmutter und der Plazenta, bei der Entwicklung des Embryos, beim Aufbau und Erhalt von Organen wie dem Gehirn oder bei der Kommunikation mit unserer Darmflora – vieles davon ist selbst mit modernsten Mitteln bislang nur schemenhaft zu erkennen. Das heißt aber nicht, dass diese Aufgaben des Immunsystems weniger wichtig wären als all das Herumballern und das Ausmerzen.

Auch wenn es wie eine überflüssige Volte oder wie Prokrastination erscheinen mag: Ich gehe diesem Thema jetzt durch die Lektüre einiger wissenschaftstheoretischer, -soziologischer und -historischer Bücher und Aufsätze noch weiter nach. Demnächst mehr dazu.

Buchbesprechung: Schneider/Jacobi/Thyen: Hormone – ihr Einfluss auf mein Leben

Buchcover SchneiderJacobi/Thyen: HormoneHarald J. Schneider, Nicola Jacobi, Joscha Thyen: Hormone – ihr Einfluss auf mein Leben. Wie kleine Moleküle Liebe, Gewicht, Stimmung und vieles mehr steuern

Springer 2020, ISBN 978-3-662-58978-6

Vorab: Diese Besprechung hätte längst fertig sein sollen, aber ich habe sehr mit dem digitalen Rezensionsexemplar gekämpft. In dem PDF konnte ich wegen des großen Wasserzeichens, das diagonal über jede Seite ging, nur mühsam, vielerorts auch gar keine Markierungen vornehmen. Das Wasserzeichen wurde ständig miterfasst und eingefärbt. Dafür können die Autor:innen natürlich nichts, aber ich habe mir geschworen, nie wieder ein Buch auf Basis eines solchen Rezensions-PDFs zu besprechen!

Da man mit dem Verlag Springer Nature eher Fachliteratur assoziiert, sei betont: „Hormone“ ist kein Fach-, sondern ein Sachbuch. Es ist auch für Nichtmediziner:innen gut lesbar – wohl auch deshalb, weil der Endokrinologe Harald J. Schneider es gemeinsam mit der Journalistin Nicola Jacobi verfasst hat. Hineinknien muss man sich in das Thema dennoch, denn unser Hormonsystem ist unglaublich komplex und steht zudem in ständiger Wechselwirkung mit weiteren komplexen Bereichen wie dem Immunsystem. Ohne Fachvokabular lassen sich solche Strukturen und Vorgänge nicht beschreiben, aber die Begrifflichkeit wird hier schrittweise eingeführt und gut erklärt.

Weiterlesen

Literatur-Links bis Oktober 2020

Um endlich einige Browser-Tabs schließen und Lesezeichen löschen zu können, notiere ich hier Hinweise auf neuere Arbeiten zum Immunsystem, zu seiner Evolution, zu Autoimmunstörungen und (unvermeidlich!) zu COVID-19. Das meiste habe ich selbst noch nicht  komplett gelesen; daher verzichte ich vorerst auf allgemeinverständliche Zusammenfassungen und überwiegend auch auf Bewertungen. Die Links gehen teils zu Sekundärliteratur, teils zu den Forschungsarbeiten selbst.

 

Mikrobiom, Humanpathogene:

Ruth Williams (2020): Fecal Transfer from Moms to Babies After C-Section: Trial Results – „Tiny doses of maternal poo mixed with breast milk and given to Cesarean-born infants makes their gut microbiota resemble those of babies born vaginally.“ – Zu K. Korpela et al., “Maternal fecal microbiota transplantation in cesarean-born infants rapidly restores normal gut microbial development: a proof-of-concept study” – Man fragt sich, warum das nicht schon vor Jahren geklärt wurde. Um Kommissar Wallander zu zitieren: „Dann wissen wir das.“

L. H. Morais et al. (2020): The gut microbiota–brain axis in behaviour and brain disorders – Review aus der Mazmanian-Gruppe

C. L. Vernier et al. (2020): The gut microbiome defines social group membership in honey bee colonies

S. Duchêne et al. (2020): The Recovery, Interpretation and Use of Ancient Pathogen Genomes

Ann Gibbons (2020): Newly discovered viruses suggest ‘German measles’ jumped from animals to humans

Weiterlesen

Der Stempel, den ich gerne hätte: „in mice, not humans!“

Mitte August habe ich den reichweitestärksten Tweet meiner bisherigen Social-Media-„Karriere“ und zugleich den erfolgreichsten deutschsprachigen Wissenschaftskommunikations-Tweet der Woche geschrieben. Verrückterweise wurde er wohl auch wegen des süßen Babyfotos so oft geliket und retweetet, dessen Verwendung ich gerade kritisierte:

Längst nicht jeder wird den ernsten Hintergrund dieses Tweets verstanden haben oder nachvollziehen können – aber es waren auch viele WissenschaftlerInnen und WissenschaftskommunikatorInnen dabei, und einige Rückmeldungen haben mir gezeigt, dass ich mit meinem Frust nicht alleine bin: Seit Jahren werden uns sowohl in der Fachpresse als auch in der Laienpresse Ergebnisse von Mikrobiom-Sudien an Tiermodellen so verkauft, als gälten sie eins zu eins auch für Menschen. Mal sind es die Studienpublikationen selbst, die das in der Überschrift suggerieren und erst irgendwo in der Einleitung oder gar im Methodenteil klarstellen, dass man an einem bestimmten Mäusestamm gearbeitet hat. Mal sind es die Pressemitteilungen der Forschungseinrichtung, die diesen Umstand erst gegen Ende beiläufig erwähnen und zugleich durch das mitgelieferte Bildmaterial falsche Erwartungen wecken, wie in diesem Fall. Und mal fallen die Mäuse und Ratten erst beim Transfer der Nachricht in die Tagespresse unter den Tisch.

Es sind nicht nur Provinzblätter und Werbeseiten, die falsche Erwartungen wecken: Ich habe mich hier schon einmal über eine krasse Text-Bild-Schere im News-Teil des renommierten Wissenschaftsjournals Science mokiert, in dem eine Studie zu Unterschieden zwischen der Darmflora männlicher und weiblicher Mäuse und damit einhergehenden Neigungen zu Autoimmunerkrankungen mit einer Illustration aufgehübscht wurde, in der eine Frau und ein Mann zu sehen sind.

Bei Twitter hat mich dann prompt jemand belehrt: Mäuse und Menschen seien als Säugetiere so eng verwandt und einander physiologisch so ähnlich, dass man an Mäusen gewonnene Erkenntnisse über irgendwelche Mechanismen und Signalwege an der Darmwand durchaus auf Menschen übertragen könne. I beg to differ, und das möchte ich hier anhand zweier aktueller Übersichtsarbeiten näher ausführen – in Ergänzung dessen, was ich bereits vor drei Jahren über Mäuse schrieb (Live fast, Love hard, Die young):

Nguyen, T. L. A., Vieira-Silva, S., Liston, A., & Raes, J. (2015). How informative is the mouse for human gut microbiota research? Disease Models & Mechanisms8(1), 1–16. http://doi.org/10.1242/dmm.017400

Hugenholtz, F., & de Vos, W. M. (2018). Mouse models for human intestinal microbiota research: a critical evaluation. Cellular and Molecular Life Sciences75(1), 149–160. http://doi.org/10.1007/s00018-017-2693-8

Ja, anatomisch und physiologisch haben Mäuse und wir vieles gemeinsam. Aber es gibt auch biologische Unterschiede: im Genom, in der Ernährung, in der Anatomie und Physiologie des Verdauungstrakts und seiner Teile (einschließlich des örtlichen Immunsystems), in der Zusammensetzung der Magen- und Darmflora und in den krankhaften Veränderungen dieses Mikrobioms.

Genom

Mit Mäusen meine ich im Folgenden Stämme der Art Mus musculus, die zum Teil seit über 100 Jahren als Versuchstiere gezüchtet werden. (Als Haustiere werden sogenannte Farbmäuse schon seit 1200 v. Chr. kultiviert, anfangs in China.) Es gibt über 400 Zuchtstämme.

Der letzte gemeinsame Vorfahr von Maus und Mensch lebte vor über 90 Millionen Jahren. Dennoch stimmen wegen einer starken Konservierung (also Selektionsvorteilen der alten Sequenzen gegenüber neuen Varianten, die durch Mutation entstehen) über 85 Prozent ihres Genoms noch überein. Die größten Unterschiede finden sich nicht in DNA-Abschnitten, die Proteine codieren, sondern in Steuerungssequenzen wie den Bindungsstellen von Transkriptionsfaktoren.

Insbesondere das Immunsystem und seine Regulierung haben sich zwischen Maus und Mensch stark auseinander entwickelt. Die Unterschiede im lokalen Immunsystem des Verdauungstrakts dürften einer der Gründe dafür sein, dass die Ergebnisse vieler an Mäusen durchgeführten Studien zu Entzündungen und Erkrankungen mit Beteiligung des Immunsystems bei Menschen nicht reproduziert werden konnten.

Das Gen für TLR5, jenen Rezeptor der angeborenen Abwehr, um den es in der Nature-Veröffentlichung von Fulde et al. geht, die mit dem süßen Baby „beworben“ wurde, gibt es sowohl bei Menschen als auch bei Mäusen. Überhaupt ähneln sich die TLR-Repertoires beider Arten – identisch aber sind sie nicht. Es ist auch nicht sicher, dass die einander genetisch entsprechenden Rezeptoren in Maus und Mensch exakt dieselben Funktionen ausüben, in denselben Zelltypen zu denselben Zeiten exprimiert werden, dieselben Signalketten auslösen und so weiter.

Ernährung, Energie- und Vitamin-Gewinnung

Mäuse sind Allesfresser, wobei der Großteil ihrer Kost pflanzlich ist. Ihre Nahrung enthält wesentlich mehr schwer aufzuschließende Kohlenhydrate als unsere. Menschen sind im Prinzip ebenfalls Omnivoren, die aber weniger schwer verdauliche Pflanzenbestandteile zu sich nehmen. Auch der Aufbau des Verdauungstrakts strikter Veganer ist evolutionär an die gemischte, fleischhaltige Kost ihrer Urahnen angepasst. Unsere Darmflora reagiert dagegen zügig (wenn auch mit recht subtilen Anpassungen) auf eine Ernährungsumstellung.

Ein Problem bei Mäuse-Studien: Die Zusammensetzung des Trockenfutters wird von den Herstellern nicht offengelegt und schwankt offenbar je nach Agrarmarktlage. Manchmal enthält es beispielsweise Luzerne, die wiederum Phytoestrogene enthalten kann. Diese Substanzen können im Körper wie Estrogen wirken und damit etwa Immunreaktionen oder auch die Zusammensetzung des Mikrobioms beeinflussen.

Die Transitzeit einer Mahlzeit beträgt beim Menschen 14-76 Stunden – je schwerer verdaulich, desto länger. Resistente Stärke ist zum Beispiel fast 20 Stunden länger in uns unterwegs als leicht verdauliche Stärke. Bei Mäusen ist die Transitzeit mit 6-7 Stunden deutlich kürzer: Wie alle kleinen Warmblüter haben sie eine viel höhere Stoffwechselrate und daher einen (relativ zum Körpergewicht) viel größeren Stoffumsatz als wir. Sie müssen fast rund um die Uhr fressen, um ihren Energiebedarf zu stillen – und haben daher nur wenige Stunden Zeit, ihre schwer verdauliche Nahrung aufzuschließen. Sie lösen dieses Problem mit einem Trick, den wir Menschen (zum Glück!) nicht beherrschen.

Im vorderen Bereich des Mäuse-Dickdarms gibt es eine „Schleimfalle“: Falten und Furchen, in denen mit Darmbakterien durchmischter Nahrungsbrei hängen bleibt. Von dort wird er ein Stück „stromaufwärts“ in den Blinddarm geschoben. In dieser Fermentierkammer gewinnen die Bakterien Fettsäuren, Vitamin K und einige B-Vitamine aus der Kost. Die Nährstoffe und Vitamine können im Dickdarm nicht resorbiert werden und werden mit dem Kot ausgeschieden. Aber Mäuse fressen ihren Kot (sogenannte Koprophagie) und nehmen die wertvollen Stoffe beim zweiten Durchlauf im Dünndarm ins Blut auf. Auch ein Teil der wertvollen Darmflora wird so recycelt.

Aufbau des Verdauungstrakts

Mäuse haben – anders als wir – einen großen drüsenfreien Vormagen, der als reiner Nahrungsspeicher dient und mit einem pH-Wert von 3 bis 4 weniger sauer ist als der menschliche Magen mit seinem pH-Wert von etwa 1. In diesem weniger aggressiven Milieu gedeihen Bakterien: Die Wand des Vormagens ist mit einem Biofilm aus Lactobacillus-Arten ausgekleidet. Auch der Drüsenmagen, der sich an diese Kammer anschließt, ist weniger sauer als der menschliche Magen, da sich in ihm ständig frische Kost mit den Magensäften und der älteren Kost vermischt. Im menschlichen Magen überleben nur wenige Bakterien, die sich an die starke Säure angepasst haben: Streptokokken, Prevotella und Helicobacter pylori.

Der Dünndarm ist bei beiden Arten der längste Teil des Verdauungstrakts. Mit 33 cm ist er bei der Maus 2,5-mal so lang wie der Dickdarm, beim Menschen mit 700 cm 7-mal so lang. Noch deutlicher werden die Verhältnisse bei der Betrachtung der Flächen: In der Maus hat der Dünndarm eine 18-mal größere Oberfläche als der Dickdarm, beim Menschen beträgt der Faktor sogar 400. Durch diese riesige Grenzschicht wird ein Großteil der Nährstoffe in den Körper aufgenommen.

Die Schleimhaut des Dünndarms ist bei der Maus glatt, beim Menschen wirft sie ringförmige Falten, die die Oberfläche vergrößern und den im Schleim lebenden Bakterien Nischen bieten. Die Zotten oder Villi, die ebenfalls die Oberfläche vergrößern, sind dafür bei der Maus länger als beim Menschen.

Der Dickdarm einer Maus ist bis zu 14 cm lang, der eines Menschen etwa 105 cm – relativ zur Körpermasse also viel kürzer als bei dem kleinen, leichten Nager. Man unterscheidet Blinddarm (Caecum – nicht zu verwechseln mit dem Wurmfortsatz, der von Laien oft als Blinddarm bezeichnet wird) und Grimmdarm (Colon). Der Mäuse-Blinddarm dient, wie im vorigen Abschnitt erwähnt, als Fermentationskammer und ist mit 3 bis 4 cm ziemlich lang. Beim Menschen findet die Fermentation dagegen nur im Colon statt; der etwa 6 cm kurze Blinddarm hat keine wichtige Funktion. Der Wurmfortsatz ist bei Mäusen nicht so klar vom Blinddarm abgegrenzt wie wie bei uns. Der Grimmdarm ist bei der Maus glattwandig, beim Menschen hat er Ausbuchtungen (Hausten genannt).

Die Becherzellen, die den Darmschleim produzieren, konzentrieren sich bei der Maus auf den Dünndarm und den Anfang des Dickdarms, während sie sich beim Menschen bis hinunter zum Rektum über die ganze Länge verteilen. Die Paneth-Zellen, die antibakterielle Produkte wie die Defensine ausschütten, fehlen bei der Maus im Colon; es gibt sie nur im Blinddarm. Beim Menschen finden sich dagegen auch einige im Anfang des Colons. Auch die Menge, die Speicherung und die Ausschüttung von Defensinen unterscheiden sich zwischen den Arten; das wiederum kann über die Regulierung der örtlichen Immunreaktionen die Zusammensetzung des Mikrobioms beeinflussen.

Die Colon-Schleimhaut des Menschen produziert den Schleim schneller (etwa 240 µm/h) als die der Maus (etwa 100 µm/h). Die Colon-Schleimschicht wird beim Menschen etwa 480 µm dick und bei der Maus etwa 190 µm. Der Schleim hat eine ähnliche Zähigkeit und Porosität und besteht aus ähnlichen Schleimproteinen, die allerdings in beiden Arten anders glykosyliert werden. Die unterschiedlichen Glykane, die dabei seitlich an das Protein-Grundgerüst angehängt werden, sodass das Makromolekül schließlich wie eine Flaschenbürste aussieht, beeinflussen wiederum die Selektion der Darmflora.

Zusammensetzung des Mikrobioms

Die Darmflora von Maus und Mensch wird von zwei Bakterienstämmen (Stämmen im Sinne von phyla, nicht strains) dominiert, den Bacteroidetes und den Firmicutes. Das gilt auch für viele andere Säugetiere, egal ob Pflanzen- oder Fleischfresser. Dennoch gibt es beträchtliche Unterschiede.

Um diese Unterschiede zu entdecken, muss man sich auf Bakterien konzentrieren, die bei der Mehrheit der untersuchten Mäuse bzw. Menschen vorkommen, und die „Ferner-liefen-Bakterien“ ausklammern, die zwar zur Diversität des Mikrobioms einer der Art beitragen, aber nur in einem Bruchteil der untersuchten Individuen nachzuweisen sind. Sogenannte metagenomische Analysen haben gezeigt: Von den 60 Gattungen der Kern-Darmflora von Mäusen gehören 25 auch zum Kernbestand im menschlichen Darm. Allerdings haben nur 4 Prozent der Mäuse-Bakteriengene mehr oder weniger identische Entsprechungen im Pool der Menschen-Bakteriengene. Ein Beispiel: Lactobacillus reuteri kommt sowohl in Mäusen als auch in Menschen vor, aber die Stämme in den Mäusen (jetzt im Sinne von strains – verdammte terminologische Ambivalenz!) haben andere Urease-Gene, die diese Enzyme befähigen, in einem sauren Milieu zu leben. Auf der funktionellen Ebene sind die Unterschiede kleiner: 80 Prozent der in den Metagenomik-Datenbanken verzeichneten Gen- bzw. Protein-Funktionen sind sowohl bei der Maus als auch beim Menschen vertreten.

Auch wenn eine Bakterien-Gattung bei Mensch und Maus vertreten ist, kann sie in einer der Arten dominieren und in der anderen eine Randerscheinung bleiben. Im Mäuse-Dünndarm sind FaecalibacteriumPrevotella und Ruminococcus viel seltener als im menschlichen Dünndarm. Dafür sind TuricibacterAlistipes und Lactobacillus bei Mäusen viel dominanter als bei uns. Die Gattungen Clostridium, Bacteroides und Blautia sind in beiden Arten etwa gleich stark vertreten.

Wie hier im Blog schon mehrfach besprochen, prägen die sogenannten segmentierten filamentösen Bakterien (SFB) im Darm von Mäusen die Reifung des Immunsystems – vor allem, indem sie in der Schleimhaut junger Mäuse die Bildung von entzündungsfördernden Th17-Helferzellen auslösen. Das prägt nicht nur die „Stimmung“ des örtlichen Immunsystems, sondern sogar die Entwicklung des Gehirns. Bis vor wenigen Jahren dachte man, im menschlichen Darm gebe es gar keine SFB. Inzwischen wurden diese Bakterien, die zu den Firmicutes zählen und auch als Candidatus arthromitus bezeichnet werden, im Mikrobiom einiger (aber längst nicht aller) Kleinkinder unter drei Jahren entdeckt. Ob sie dort eine ähnlich prägende Rolle spielen wie in jungen Mäusen und so womöglich die Neigung bestimmter Erwachsener zu chronischen Entzündungen fördern, ist noch unklar.

Erschwert werden Vergleiche zwischen Mensch und Maus durch die enormen Mikrobiom-Unterschiede zwischen den untersuchten Mäusen. Nicht nur der Zuchtstamm, sondern auch ihr Futter, die Einrichtung, in der sie gehalten werden, und der Käfig, in dem sie mit anderen Mäusen zusammenleben, prägen die Zusammensetzung. (Man denke an die Koprophagie!)

Enterotypen

Auch beim Menschen unterscheidet sich die Mikrobiom-Zusammensetzung zwischen den Individuen. Seit einigen Jahren kennt man drei Enterotypen: Gruppen, deren Darmflora von jeweils anderen Bakterien dominiert wird. Wie klar und stabil diese Gruppen voneinander abgegrenzt sind, ist allerdings umstritten, und wie sie zustande kommen, ist unbekannt.

Bei Labormäusen wurden bislang zwei Enterotypen identifiziert: Wenn Lachnospiraceae und Ruminococcaceae dominieren, entspricht dies dem menschlichen Enterotyp 3; wenn Bacteroidaceae und Enterobacteriaceae vorherrschen, ähnelt dies dem menschlichen Enterotyp 1. Auch bei Wildmäusen lassen sich zwei Enterotypen unterscheiden, die von Bacteroides oder Robinsoniella dominiert werden.

Bei den Labormäusen korreliert die Einteilung mit dem Artenreichtum des Mikrobioms und mit der Neigung zu Entzündungen. Der Bacteroidaceae/Enterobacteriaceae-Enterotyp ist artenärmer und weist mehr Calciprotectin auf, das als Entzündungsmarker fungiert. Das entspricht den Verhältnissen bei Menschen mit starkem Übergewicht, deren Darmflora ebenfalls verarmt und durch ähnliche Bakteriengruppen (Bacteroidetes und Proteobacteria) dominiert ist und die ebenfalls stärker zu Entzündungen neigen.

Krankhafte Veränderungen

Während sich das Mikrobiom in Maus-Modellen für Fettleibigkeit auf ähnliche Weise verschiebt wie beim Menschen, sind die Parallelen bei anderen Erkrankungen längst nicht so stark. So kann zum Beispiel nach wie vor kein Modell für Colitis ulcerosa alle wichtigen Eigenschaften des Erkrankungsprozesses und der Darmflora-Veränderung rekapitulieren.

Das führt auch zum Scheitern von Therapie-Ansätzen. So hatte man nach Studien an IL-10-Knockout-Mäusen große Hoffnungen, dass das Zytokin IL-10 chronisch-entzündliche Darmerkrankungen eindämmen könne. In klinischen Studien an Menschen ließ sich der Effekt aber nicht reproduzieren – vermutlich, weil Menschen einen großen Pool recht unterschiedlicher IL-10-Rezeptoren haben.

Mäuse mit humanisierter Darmflora: keine Patentlösung

Angesichts der Unterschiede zwischen den Darmfloren von Maus und Mensch und der Unvollkommenheit, mit der viele Tiermodelle menschliche Erkrankungen imitieren, liegt es nahe, das Mikrobiom der Mäuse menschenähnlicher zu machen. Dazu kann man keimfreie, also ohne eigenes Mikrobiom geborene und gehaltene junge Mäuse mit menschlicher Darmflora animpfen. Man spricht dann von humanisierten gnotobiotischen Mäusen – „gnotobiotisch“, weil man dann weiß, welche Bakterien in ihnen leben (griechisch gnosis = Wissen).

Dabei können sich alle der in der menschlichen Darmflora vorkommenden Stämme (Phyla), 11 von 12 der Klassen und etwa 88 Prozent der Gattungen aus dem humanen Mikrobiom im Mäusedarm ansiedeln: gar keine schlechte Annäherung. Aber dieses aus dem Menschen stammende Mikrobiom und die Maus haben keine gemeinsame Evolution durchlaufen, sie haben sich nicht über Jahrmillionen aneinander anpassen können. Und wie sich zeigt, reifen humanisierte gnotobiotische Mäuse nicht normal; sie reagieren zum Beispiel nicht normal auf Infektionen. Vielleicht liegt es daran, dass Bakterien und Mäusezellen nicht genau dieselbe Sprache sprechen, ihre Botenstoffe und Signalketten also wegen der 90 Millionen Jahre getrennter Evolution von Maus und Mensch nicht mehr zueinander passen. Oder bei der Ansiedlung gehen einige seltene, aber für die Entwicklung essentielle Bakterien verloren.

An Mäusen führt kein Weg vorbei

All das heißt nicht, dass man keine Mikrobiom-Forschung oder keine immunologischen Studien an Mäusen betreiben sollte. Mäuse sind klein, haben eine kurze Generationsdauer und sind günstig in der Anschaffung und im Unterhalt. Man kann sie auch genetisch verändern, um z. B. bestimmte Gene „auf Knopfdruck“ auszuschalten (sog. Knockout-Mäuse). Für viele Versuche müssen sie getötet werden, etwa um ihnen Gewebeproben zu entnehmen – und zwar in großer Zahl, um statistisch belastbare Ergebnisse zu erhalten. Dieselben Untersuchungen etwa an Schweinen oder Affen durchzuführen, wäre ethisch und praktisch problematisch. Grundlegende Mechanismen oder Signalwege lassen sich an Mäusen durchaus ermitteln – aber sie müssen gründlich am Menschen überprüft werden.

Forscherinnen und Wissenschaftskommunikatoren sollten der Versuchung eigener vorschneller Extrapolationen und erst recht mutwillig evozierter Missverständnisse widerstehen: Wer an Mäusen geforscht hat, sollte das bereits in der Überschrift und im Abstract deutlich machen. Und die Menschen in den PR-Abteilungen der Forschungseinrichtungen sollten wirklich die Finger von süßen Babyfotos und Formulierungen wie „Kindheit“ lassen, wenn es um junge Mäuse geht. Auch der inflationäre Gebrauch von Superlativen, mit denen die jeweilige Studie aus dem medialen Grundrauschen herausgehoben werden soll, geht letzten Endes nach hinten los: Wenn ich innerhalb einer Woche lese, dank der bahnbrechenden Studie A sei nun endlich bewiesen, dass die Darmflora in einem kleinen Zeitfenster nach der Geburt fürs ganze Leben geprägt werde, und die bahnbrechende Studie B habe endlich gezeigt, dass anhaltender Durchfall bei Erwachsenen die Darmflora nachhaltig verändern könne, dann werde ich nächste Woche die bahnbrechenden Studien C, D und E mit einem Achselzucken an mir vorüberziehen lassen.

Epigenetik: ein Erklär-Comic aus Berlin

P1070502_Epigenetik_Cover

Vom 9. Forum Wissenschaftskommunikation, das im November in Bielefeld stattgefunden hat, habe ich diesen Wissenschaftscomic mitgebracht: herausgegeben vom Leibniz-Institut für Zoo- und Wildtierforschung in Berlin, gezeichnet von Annette Köhn, konzipiert und getextet von Dr. Alexandra Weyrich und Olaf Nowacki, basierend auf der Fachpublikation „Paternal intergenerational epigenetic response to heat exposure in male Wild Guinea“ von Weyrich et al. (2015), 24 Seiten einschließlich Glossar und Impressum für 10 Euro.

Wie so oft kann ich als Fachidiotin schlecht beurteilen, wie lehrreich und verständlich der Comic für Nichtbiologen oder gar Nichtwissenschaftler ist. Mir haben Aufbau, Stil und Umfang gut gefallen. Bei der Veranstaltung habe ich allerdings den Eindruck gewonnen, dass die Produktion solcher Comics doch sehr aufwändig ist. Ohne starke Subventionierung kann ein solches Format m. E. nicht überleben; dafür ist die Konkurrenz zu stark. Und bei allem Bemühen bleiben Wissenschaftscomics nun einmal etwas dröge; dessen bin ich mir auch beim Autoimmunbuch bewusst.

P1070503_Epigenetik_innen

Ansätze zu zielgerichteten Therapien von Autoimmunerkrankungen

Im Magazin „The Scientist“ hat Lawrence Steinman vor einigen Tagen neue, im Tierversuch vielversprechende Therapieansätze vorgestellt, mit denen das Immunsystem dazu gebracht werden soll, auf bestimmte Autoantigene nicht mehr zu reagieren. Das wäre ein großer Fortschritt gegenüber den heutigen Immunsuppressionstherapien, die Entzündungen und Immunreaktionen unspezifisch dämpfen, was zu einem erhöhten Infektionsrisiko und zahlreichen Nebenwirkungen führt.

Steinman ist nicht nur Pädiater und Neurologe an der Stanford University, sondern auch Gründer eines Unternehmens mit dem treffenden Namen Tolerion, das sich auf die Entwicklung von Plasmiden und anderen biologischen Wirkstoffen spezialisiert hat, die nach ihrer Injektion oder Inhalation eine solche Toleranz des Immunsystems für ein Autoantigen induzieren sollen.

Leider ist bei vielen Autoimmunerkrankungen das maßgebliche Autoantigen noch gar nicht bekannt – oder es gibt mehrere Autoantigene, die gleichzeitig oder nacheinander die Krankheit vorantreiben. So verlief eine klinische Phase-2-Studie an MS-Patienten, in der ein Plasmid Toleranz gegen Myelin-Basische Protein (MBP) induzieren sollte, enttäuschend – vermutlich weil etliche andere Autoantigene ebenfalls zu Multipler Sklerose beitragen.

Bisher nur im Tierversuch erprobt wurde ein Plasmid, das ein Myasthenia-gravis-Autoantigen codiert: den Acetylcholin-Rezeptor (AChR). Antigepräsentierende Zellen, die diese Plasmide aufnehmen, exprimieren AChR anschließend ohne die sonst üblichen Kostimulatoren auf ihrer Oberfläche, sodass die passenden T-Zellen durch diese Präsentation nicht zu einer Autoimmunreaktion ermuntert, sondern tolerant gestimmt werden.

Wohl wegen einiger Fehlschläge bei prinzipiell ähnlichen Therapieansätzen gegen Krebs und wegen der vergleichsweise wenigen Betroffenen hält sich pharmazeutische Industrie bei der Weiterentwicklung und klinischen Erprobung solcher spezifischer Therapien gegen Autoimmunerkrankungen bisher ziemlich zurück. Immerhin: Für Typ-1-Diabetes laufen bereits einige frühe klinische Studien.

Steinmans Team hat ein Plasmid entwickelt, auf dem das Gen für Proinsulin – das normalerweise von den Betazellen der Bauchspeicheldrüse hergestellte Vorprodukt für Insulin – mit einer Sechs-Basen-Sequenz namens GpC kombiniert ist, die Immunreaktionen dämpft. Im Tierversuch wiesen besonders diabetesanfällige Mäuse (sogenannte NOD-Mäuse) nach der Injektion dieses Plasmids einen normaleren Zuckerstoffwechsel, weniger entzündetes Bauchspeicheldrüsengewebe und weniger gegen Proinsulin gerichtete Antikörper auf. Das Wirkprinzip ist dasselbe wie beim Myasthenia-gravis-Therapieansatz: Antigenpräsentierende Zellen wie Makrophagen oder auch Muskelzellen präsentieren den T-Zellen das Proinsulin ohne die sonst üblichen Kostimulatoren wie CD80 der CD86; daraufhin werden die T-Zellen, deren Rezeptoren Proinsulin erkennen, tolerant.

In einer kleinen placebokontrollierten Studie an 80 Typ-1-Diabetikern, die 2012 endete, wurde als primärer Endpunkt die Konzentration von C-Peptid erfasst, einem 31 Aminosäuren langen Fragment von Proinsulin. Seine Konzentration soll anzeigen, wie gut die Bauchspeicheldrüse noch arbeitet. In Patienten, denen das Plasmid injiziert wurde, stieg die Konzentration, während sie in der Kontrollgruppe sank. Vermutlich hatten sich bereits geschädigte, aber noch lebensfähige Betazellen in den Bauchspeicheldrüsen erholt, sodass sie wieder mehr Proinsulin herstellen konnten. T-Zellen, die auf andere Antigene reagieren, wurden durch die Therapie nicht inaktiv; sie war also – wie erhofft – autoantigenspezifisch.

Ein anderer vielversprechender Ansatz ist die Entnahme und Kultivierung von regulatorischen T-Zellen oder Tregs aus den Bauchspeicheldrüsen von Typ-1-Diabetikern: In einer (allerdings sehr kleinen) Studie von Jeffrey Bluestone und seinem Team war die C-Peptid-Konzentration noch zwei Jahre nach der Behandlung besser als in der Kontrollgruppe – wohl weil das Interleukin-10, das die vermehrten Tregs ausschütteten, die Entzündung der Bauchspeicheldrüse dämpfte.

Die Gruppe von Pere Santamaria an der University of Calgary schließlich hat in Tierversuchen Erfolge mit Nanopartikeln erzielt, die mit Peptiden aus Autoantigenen und Bruchstücken des MHC-Komplexes beschichtet sind und im Körper die Rolle von antigenpräsentierenden Zellen einnehmen. Da wiederum die Kostimulatoren fehlen, stimmen sie autoreaktive T-Zellen zu Tregs um. Bei Mäusen funktioniert das mit verschiedenen Autoimmunerkrankungsmodellen, darunter Diabetes. Am Menschen wurde das Verfahren noch nicht erprobt.

E. Hilf/M. Schwarz-Eywill: Leben über Untiefen. Erfahrungen mit einer seltenen Erkrankung

P1000361_Hilf_Leben_über_UntiefenSeltene Erkrankungen heißen auf Englisch ganz treffend orphan diseases. Ihre Randständigkeit beschränkt sich nicht auf ihre Erforschung und die Entwicklung von Therapien, sondern erstreckt sich auch auf die mediale Aufmerksamkeit und damit auf das Wissen der Bevölkerung über diese vielen, gemeinsam dann doch nicht so seltenen Krankheiten.

Eberhard Hilf, der am Churg-Strauss-Syndrom erkrankt ist, hat gemeinsam mit seinem Arzt ein kleines Buch über seine Erfahrungen mit dieser seltenen Autoimmunerkrankung geschrieben, bei der sich die kleinen Blutgefäße entzünden und bestimmte Immunzellen – die eosinophilen Granulozyten, kurz Eosinophilen oder Eos – in das entzündete Gewebe eindringen.

Der leidenschaftliche Segler arbeitet dabei mit Metaphern aus seinem Hobby und hat zahlreiche Fotos einer Mitseglerin in das Buch aufgenommen. Schilderungen seines Leidenswegs bis zur und seit der Diagnose wechseln sich ab mit Erläuterungen der medizinischen Hintergründe und Einschüben aus der Perspektive des behandelnden Arztes. Zu diesen intensiven Austausch zwischen Arzt und Patient kann man beiden nur gratulieren; viele Menschen mit chronischen Autoimmunerkrankungen haben keinen Arzt ihres Vertrauens und sehen sich immer wieder mit Unverständnis, Gleichgültigkeit oder gar einer spürbaren Ablehnung ihres „Expertentums in eigener Sache“ konfrontiert.

Beim Churg-Strauss-Syndrom sammeln sich wegen falsch interpretierter Autoantigen-Signale Eosinophile in den Aderwänden an, die normalerweise Parasiten bekämpfen sollen. Sie schädigen die Zellen der Aderwände und setzen dadurch einen Teufelskreis der Entzündung in Gang. Der Auslöser ist unbekannt. Die Erkrankung kann jahre- oder jahrzehntelang unerkannt bleiben, weil sie sich ganz unterschiedlich äußert, beispielsweise als wiederholte Wucherung von Nasenpolypen oder als Asthma-Symptomatik. Eberhard Hilf war im Jahr vor seiner Diagnose bei elf Fachärzten: eine zermürbende Odyssee.

Die Lektüre hat mir verdeutlicht, welches Glück ich mit meiner artigen kleinen Hashimoto-Thyreoiditis habe: Sätze wie „Gut, dass Sie gekommen sind; Sie haben einen frischen Herzinfarkt“ oder „Gut, dass Sie gekommen sind; sie haben eine ganz frische Lungenembolie“ sind mir bisher erspart geblieben. Das Buch ermutigt Betroffene, sich möglichst viel Wissen über ihre Erkrankung anzueignen, zu lernen, mit dem schubförmigen Verlauf zurechtzukommen, beim Erproben und Einstellen von Therapien einen langen Atem zu haben und aus den bleibenden Jahren das Maximum an Lebensqualität herauszuholen – sei es nun der nächste Segeltörn oder gelebte Normalität wie das Ausräumen der Spülmaschine, mit dem Hilf seinen Bericht beendet.