Archiv der Kategorie: Neues vom Buch

Junge rote Blutkörperchen regulieren Immunreaktionen

Im letzten Beitrag habe ich eine Studie vorgestellt, der zufolge unreife rote Blutkörperchen unser Immunsystem in den Wochen nach der Geburt so stark zäumen, dass die Erstbesiedlung des Darms mit gutartigen Bakterien nicht zu einer gefährlichen großflächigen Entzündung führt. Hier nun die passenden Skizzen – zunächst ein erwachsener, kernloser Erythrozyt, der bekanntlich die Aufgabe hat, Sauerstoff aus den Lungen in unser Gewebe zu transportieren, und ein junger, unreifer Erythrozyt, der wegen seines Zellkerns noch nicht die typische Scheibenform der roten Blutkörperchen angenommen hat. Seine Aufgabe ist es, Immunreaktionen aufzuhalten:

P1260500_Reifer_unreifer_Erythrozyt_650Dass die kernhaltigen rote Blutkörperchen von Nicht-Säugetieren wie Fischen und Vögeln auch Aufgaben im Immunsystem übernehmen, ist schon lange bekannt. Insofern sollte es uns nicht überraschen, dass dies auch bei Menschen der Fall ist – wenn auch nur in einem schmalen Zeitfenster: Vorläufer späterer roter Blutkörperchen, die den Marker CD71 auf der Oberfläche tragen, hemmen durch Enzyme und womöglich weitere lösliche Substanzen die Aktivität der T-Zellen, B-Zellen, dendritischen Zellen und Makrophagen von Neugeborenen. Eventuell fördern sie zudem durch Freisetzung von Zytokinen die Bildung von regulatorischen T-Zellen (Tregs) und T-Helferzellen des Typs 2 (Th2).

Shokrollah Elahi vermutet, dass die massiven Entzündungen, unter denen viele Frühgeborene leiden, auf einen Mangel an CD71+-Zellen zurückzuführen sind. Diese Schutzpolizisten entstehen nämlich vor allem in den letzten Schwangerschaftswochen vor dem normalen Geburtstermin. Bei einer Frühgeburt ist ihre Zahl noch viel zu gering, um das Immunsystem während der Erstbesiedlung des Darms mit unseren Darmbakterien vom Amoklauf abzuhalten.

Wie aber werden unreife Erythrozyten „erwachsen“? Sie versammeln sich im roten Knochenmark um Makrophagen, scheiden ihre Zellkerne ab und nehmen ihre Arbeit als Sauerstofftransporteure auf. Die Kerne, die dabei nur stören würden, werden von den Makrophagen vertilgt:

P1260501_Unreife_Erythrozyten_und_Makrophage_650

Wie so oft übernehmen die Makrophagen also die Müllentsorgung – besonders wichtig, wenn es um die Beseitigung von Kernen geht, da diese jede Menge Nukleinsäuren (DNA) enthalten, die andernfalls starke Immunreaktionen auslösen würden. Extrazelluläre Nukleinsäuren deuten nämlich normalerweise auf Infektionen oder ein massives Zellsterben hin.

Lit.: S. Elahi (2014): New insight into an old concept: role of immature erythroid cells in immune pathogenesis of neonatal infection

 

Ärger mit dem Passwort

Normalerweise wird an der Grenze von Lymphstrukturen sehr genau geprüft, welche Zellen hineindürfen. Autoreaktive B-Zellen werden abgewiesen, sodass sie eingehen, weil sie keine Überlebensnischen finden. Zytotoxische T-Zellen (CD8+-Zellen) werden eingelassen, um im Inneren aufzuräumen – zum Beispiel von Viren befallene B-Zellen abzutöten, bevor sie sich vermehren.

P1240322_Einlasskontrolle_tertiäre_Lymphstruktur_650

In den tertiären Lymphstrukturen vieler Menschen mit Autoimmunerkrankungen scheint diese Einlasskontrolle nicht zu funktionieren: Die nützlichen zytotoxischen T-Zellen werden abgewiesen, autoreaktive B-Zellen aber eingelassen.

Crosslinking: Wie B-Zellen erfahren, wann sie aufhören können

Immunreaktionen, die viel Energie kosten und auch den eigenen Körper schädigen können, sollten beendet werden, sobald sie nicht mehr nötig sind. Um das zu erfahren, setzen B-Zellen Rezeptoren ein, die an das konstante Ende von Antikörpern andocken:

P1240317_B-Zelle_Crosslinking_Immunkomplex_ohne_IK_650

Oben: Bindet ein frei im Gewebe oder Blut umhertreibendes Antigen an einen antigenspezifischen B-Zell-Rezeptor, so löst dieser in der B-Zelle eine Signalkette aus, die zur Produktion von Antikörpern führt. Denn freie Antigene deuten auf eine Gefahr hin, die bekämpft werden muss.

Unten: Bindet gleichzeitig ein benachbarter Fc-Rezeptor (hier FcγR, ein Rezeptor für Gamma-Immunglobulin) an das konstante Ende eines Antikörpers, so kann die B-Zelle davon ausgehen, dass das Antigen bereits von Antikörpern erkannt und zu einem Immunkomplex gebunden wurde – dass die Gefahr also bereits gebannt ist. Der Fc-Rezeptor stoppt daher die Signalkette; die B-Zelle produziert keine weiteren Antikörper.

Die doppelte Bindung von Immunkomplexen durch B-Zell-Rezeptoren und Fc-Rezeptoren nennt man Crosslinking (Vernetzung).

Räumliche und lineare Antigen-Erkennung

Noch eine nachgeholte Simpel-Skizze für den bereits geschriebenen Teil des Buches:

Proteine und andere Antigene bestehen zwar aus Kettenmolekülen, haben aber auch eine charakteristische dreidimensionale Gestalt (Brezel).

P1240316_Antigen-Erkennung_3D_vs_2D_650

Immunglobuline, also B-Zell-Rezeptoren und Antikörper, erkennen ihr spezifisches Antigen-Epitop an seiner dreidimensionalen Struktur (Brezel-Ausschnitt links).

Bei der Antigenbindung durch T-Zell-Rezeptoren kommt es dagegen nur auf die Aminosäuresequenz eines kurzen, linearen Antigenabschnitts an (Buchstabenfolge rechts).

Wie aussagekräftig sind Immunzellkonzentrationen im Blut?

Wie findet man heraus, ob bestimmte Immunzelltypen an einer organspezifischen Autoimmunerkrankungen oder chronischen Entzündungen beteiligt sind? Wenn nicht gerade eine Operation oder eine Biopsie ansteht, die einem Gewebeproben liefert, misst man die Konzentrationen der Zelltypen in einer Blutprobe und versucht daraus auf die Verhältnisse im erkrankten Organ oder Gewebe zu schließen.

P1240189_kommunizierende_Röhren_Wurm-Chemotaxis_650

Im einfachsten Fall stehen Gewebe und Blut wie kommunizierende Röhren miteinander in Verbindung: Werden mehr (oder weniger) Zellen eines Typs produziert, kommen sie sowohl im Blut als auch im Gewebe häufiger (oder seltener) vor.

Tatsächlich bewegen sich Immunzellen aber aktiv in das Gewebe hinein oder aus ihm heraus. Je stärker einerseits ihre Chemotaxis und andererseits die Signale, die das Zielgewebe aussendet, desto schneller bewegen sie sich dort hin. Schlimmstenfalls ist ein Organ so isoliert, dass die Veränderung einer Zellkonzentration im Blut überhaupt nichts über die Vorgänge vor Ort aussagt.

Oder die Konzentrationen stehen in einem reziproken Verhältnis: Im Blut lassen sich kaum noch Zellen eines bestimmten Typs nachweisen, weil bereits fast alle in ihr Zielorgan eingewandert sind und auch dort bleiben, oder umgekehrt.

Und was hat das mit dem Wurm mit der Wäscheklammer auf der Nase zu tun? Nichts. Der gehört in einen anderen Teil des Buches.

Follikuläre T-Helferzelle

Die Produktivität hat ab Mittag unter den Nachrichten aus Frankreich gelitten. Aber eine Zeichnung gibt es:

P1240183_Tfh_Rezeptoren_und_Liganden_650

Follikuläre T-Helferzellen nehmen in den Lymphknoten mit follikulären B-Zellen Kontakt auf und versorgen sie, sofern sie die Qualitätsprüfung bestehen, mit Informationen, Überlebenssignalen und Stimulatoren für Zellteilungen, Affinitätsreifung und Immunglobulin-Klassenwechsel. Für einen erfolgreichen Kontakt müssen mindestens acht verschieden geartete Signale ausgetauscht werden.

Epstein-Barr-Viren kapern und überdauern in B-Zellen

P1230954_EBV-Schläfer_in_B-Zelle_650

Etliche Bakterien und Viren entziehen sich der Abwehr, indem sie sich ausgerechnet im Inneren von Immunzellen einnisten. Eines der bekanntesten Beispiele ist das Humane Immundefizienz-Virus (HIV), das in T-Zellen überdauert. Viel häufiger und zum Glück weniger gefährlich ist das Epstein-Barr-Virus (EBV), das zu den Herpes-Viren gehört und sich in unseren B-Zellen versteckt. Einmal infiziert, trägt man es so ein Leben lang mit sich herum, und meistens bemerkt man davon nichts.

Bis zum 35. Lebensjahr haben sich über 95 Prozent aller Menschen das Virus zugezogen. Während sich in den Entwicklungsländern – wie früher auch bei uns – die meisten bereits als Kleinkinder symptomfrei anstecken, infizieren sich etliche Menschen in hoch entwickelten Ländern mit guter Hygiene erst als Jugendliche oder junge Erwachsene und entwickeln dann das Pfeiffer-Drüsenfieber. Nach einer akuten Infektionsphase in den Mandeln startet das Virus ein Latenzprogramm: Es nistet sich in langlebigen B-Gedächtniszellen ein, in denen es nicht weiter stört, aber die Funktion der B-Zellen subtil beeinflussen kann. Die B-Gedächtniszellen wandern über die Blutbahn in andere Organe.

Schon lange steht das Virus im Verdacht, bei Menschen mit entsprechender genetischer Veranlagung den Ausbruch von Autoimmunerkrankungen zu fördern, etwa Lupus, Multiple Sklerose, rheumatoide Arthritis, Hashimoto-Thyreoiditis, Sjögren-Syndrom, Typ-1-Diabetes, systemische Sklerose oder chronisch-entzündliche Darmerkrankungen. Gegen welches Organ oder Gewebe sich die Autoimmunreaktionen richten, scheint von ererbten Risikoallelen abzuhängen, insbesondere von bestimmten MHC-Klasse-II-Genvarianten und einer Veranlagung zu einem Mangel an regulatorischen T-Zellen (Tregs). Aber wie tragen die Viren zum Ausbruch der Autoimmunerkrankung bei? Alle möglichen Mechanismen werden in der Literatur diskutiert: molekulare Mimikry zwischen EBV-Proteinen wie EBNA-1 und menschlichen Proteinen wie dem Lupus-Autoantigen Ro, Bystander Activation autoreaktiver T-Zellen durch Entzündungssignale aus den infizierten B-Zellen, Epitope Spreading über das anfangs dominante EBV-Antigen hinaus oder polyklonale Antikörperbildung im Zuge der Vermehrung und Aktivierung der befallenen B-Zellen.

Außerdem wurde spekuliert, die Viren könnten naive autoreaktive B-Zellen so umprogrammieren, dass sie sich auch ohne Aktivierung durch Autoantigen-Kontakt in sehr langlebige Gedächtnis-B-Zellen umwandeln, die dann später Autoimmunreaktionen auslösen. Die Viren könnten auch endogene Retroviren wie HERV-K18 oder HERV-W aktivieren, die normalerweise untätig in unserem Genom schlummern, nach ihrer Erweckung durch EBV aber Superantigene herstellen, die zahlreiche T-Zellen polyklonal aktivieren könnten. Bewiesen ist aber nichts.

Dass im Blut von Patienten mit Autoimmunerkrankungen manchmal deutlich mehr Anti-EBV-Antikörper oder EBV-DNA-Moleküle nachzuweisen sind als bei Gesunden, belegt noch keine Verursachung der Erkrankung durch EBV: Vielleicht stört umgekehrt die Autoimmunerkrankung das Gleichgewicht in den infizierten B-Zellen, sodass die Viren aus ihrem Latenzzustand erwachen und sich vermehren. Da die üblichen Tiermodelle für Autoimmunerkrankungen, insbesondere Mäuse- und Rattenstämme, sich nicht mit EBV infizieren lassen, können auch Tierversuche keine rasche Klärung bringen.

Bystander Activation und Epitope Spreading

Bystander activation (Aktivierung Unbeteiligter) und epitope spreading (Epitop-Ausweitung) sind zwei der vier meistdiskutierten Mechanismen, über die sich akute Infektionen zu chronischen Autimmunerkrankungen auswachsen können.

P1230946_Bystander_activation_650

Bei einer bystander activation liefert die Bekämpfung einer akuten Infektion (rechts) Signale, die zufällig in der Nähe befindliche autoreaktive T-Zellen (links) aktivieren – etwa Interferon-α bei einer Vireninfektion oder Kostimulationssignale auf antigenpräsentierenden Zellen.

P1230942_Epitope_spreading_Schlange_650

Epitope spreading sorgt dafür, dass die Abwehr, die zunächst nur ein Epitop (einen kurzen Abschnitt) eines Antigens erkennt, nach und nach auch andere Epitope dieses Antigens und evtl. auch anderer, mit ihm gemeinsam auftretender Antigene erkennt. Im Fall eines tatsächlich gefährlichen Antigens (Schlange) macht das die Abwehr schlagkräftiger. Aber wenn das System fälschlicherweise auf ein harmloses Autoantigen (Blindschleiche) anspringt, kann derselbe Mechanismus auch die Autoimmunreaktion ausweiten.

Die anderen beiden Hauptmechanismen sind die molekulare Mimikry (siehe z. B. Punkt 5 im Artikel über Immunneuropathien) und die Aktivierung von T-Zellen durch Superantigene (siehe z. B. unterste Abbildung im Artikel über MHC-Moleküle und Superantigene). Die vier Mechanismen schließen einander nicht aus, sondern ergänzen sich. So kann das ursprüngliche „Missverständnis“ beim epitope spreading (gepunkteter Pfeil) durch molekulare Mimikry zustande kommen.