Schlagwort-Archive: Mikrobiom

Literatur-Links bis Oktober 2020

Um endlich einige Browser-Tabs schließen und Lesezeichen löschen zu können, notiere ich hier Hinweise auf neuere Arbeiten zum Immunsystem, zu seiner Evolution, zu Autoimmunstörungen und (unvermeidlich!) zu COVID-19. Das meiste habe ich selbst noch nicht  komplett gelesen; daher verzichte ich vorerst auf allgemeinverständliche Zusammenfassungen und überwiegend auch auf Bewertungen. Die Links gehen teils zu Sekundärliteratur, teils zu den Forschungsarbeiten selbst.

 

Mikrobiom, Humanpathogene:

Ruth Williams (2020): Fecal Transfer from Moms to Babies After C-Section: Trial Results – „Tiny doses of maternal poo mixed with breast milk and given to Cesarean-born infants makes their gut microbiota resemble those of babies born vaginally.“ – Zu K. Korpela et al., “Maternal fecal microbiota transplantation in cesarean-born infants rapidly restores normal gut microbial development: a proof-of-concept study” – Man fragt sich, warum das nicht schon vor Jahren geklärt wurde. Um Kommissar Wallander zu zitieren: „Dann wissen wir das.“

L. H. Morais et al. (2020): The gut microbiota–brain axis in behaviour and brain disorders – Review aus der Mazmanian-Gruppe

C. L. Vernier et al. (2020): The gut microbiome defines social group membership in honey bee colonies

S. Duchêne et al. (2020): The Recovery, Interpretation and Use of Ancient Pathogen Genomes

Ann Gibbons (2020): Newly discovered viruses suggest ‘German measles’ jumped from animals to humans

Weiterlesen

Abb. 93: Artenreichtum und Resilienz

Oben: Ein artenreiches Ökosystem hat eine hohe Resilienz oder Rückstellkraft: Nach Störungen nimmt es bald den alten Zustand wieder ein.

Unten: Ein verarmtes Ökosystem verkraftet Störungen schlechter; der alte Zustand wird langsamer oder gar nicht mehr erreicht. Das gilt nicht nur für Wälder usw., sondern auch für unser Mikrobiom, dessen Verarmung sich auf das Immunsystem auswirkt.

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Der Stempel, den ich gerne hätte: „in mice, not humans!“

Mitte August habe ich den reichweitestärksten Tweet meiner bisherigen Social-Media-„Karriere“ und zugleich den erfolgreichsten deutschsprachigen Wissenschaftskommunikations-Tweet der Woche geschrieben. Verrückterweise wurde er wohl auch wegen des süßen Babyfotos so oft geliket und retweetet, dessen Verwendung ich gerade kritisierte:

Längst nicht jeder wird den ernsten Hintergrund dieses Tweets verstanden haben oder nachvollziehen können – aber es waren auch viele WissenschaftlerInnen und WissenschaftskommunikatorInnen dabei, und einige Rückmeldungen haben mir gezeigt, dass ich mit meinem Frust nicht alleine bin: Seit Jahren werden uns sowohl in der Fachpresse als auch in der Laienpresse Ergebnisse von Mikrobiom-Sudien an Tiermodellen so verkauft, als gälten sie eins zu eins auch für Menschen. Mal sind es die Studienpublikationen selbst, die das in der Überschrift suggerieren und erst irgendwo in der Einleitung oder gar im Methodenteil klarstellen, dass man an einem bestimmten Mäusestamm gearbeitet hat. Mal sind es die Pressemitteilungen der Forschungseinrichtung, die diesen Umstand erst gegen Ende beiläufig erwähnen und zugleich durch das mitgelieferte Bildmaterial falsche Erwartungen wecken, wie in diesem Fall. Und mal fallen die Mäuse und Ratten erst beim Transfer der Nachricht in die Tagespresse unter den Tisch.

Es sind nicht nur Provinzblätter und Werbeseiten, die falsche Erwartungen wecken: Ich habe mich hier schon einmal über eine krasse Text-Bild-Schere im News-Teil des renommierten Wissenschaftsjournals Science mokiert, in dem eine Studie zu Unterschieden zwischen der Darmflora männlicher und weiblicher Mäuse und damit einhergehenden Neigungen zu Autoimmunerkrankungen mit einer Illustration aufgehübscht wurde, in der eine Frau und ein Mann zu sehen sind.

Bei Twitter hat mich dann prompt jemand belehrt: Mäuse und Menschen seien als Säugetiere so eng verwandt und einander physiologisch so ähnlich, dass man an Mäusen gewonnene Erkenntnisse über irgendwelche Mechanismen und Signalwege an der Darmwand durchaus auf Menschen übertragen könne. I beg to differ, und das möchte ich hier anhand zweier aktueller Übersichtsarbeiten näher ausführen – in Ergänzung dessen, was ich bereits vor drei Jahren über Mäuse schrieb (Live fast, Love hard, Die young):

Nguyen, T. L. A., Vieira-Silva, S., Liston, A., & Raes, J. (2015). How informative is the mouse for human gut microbiota research? Disease Models & Mechanisms8(1), 1–16. http://doi.org/10.1242/dmm.017400

Hugenholtz, F., & de Vos, W. M. (2018). Mouse models for human intestinal microbiota research: a critical evaluation. Cellular and Molecular Life Sciences75(1), 149–160. http://doi.org/10.1007/s00018-017-2693-8

Ja, anatomisch und physiologisch haben Mäuse und wir vieles gemeinsam. Aber es gibt auch biologische Unterschiede: im Genom, in der Ernährung, in der Anatomie und Physiologie des Verdauungstrakts und seiner Teile (einschließlich des örtlichen Immunsystems), in der Zusammensetzung der Magen- und Darmflora und in den krankhaften Veränderungen dieses Mikrobioms.

Genom

Mit Mäusen meine ich im Folgenden Stämme der Art Mus musculus, die zum Teil seit über 100 Jahren als Versuchstiere gezüchtet werden. (Als Haustiere werden sogenannte Farbmäuse schon seit 1200 v. Chr. kultiviert, anfangs in China.) Es gibt über 400 Zuchtstämme.

Der letzte gemeinsame Vorfahr von Maus und Mensch lebte vor über 90 Millionen Jahren. Dennoch stimmen wegen einer starken Konservierung (also Selektionsvorteilen der alten Sequenzen gegenüber neuen Varianten, die durch Mutation entstehen) über 85 Prozent ihres Genoms noch überein. Die größten Unterschiede finden sich nicht in DNA-Abschnitten, die Proteine codieren, sondern in Steuerungssequenzen wie den Bindungsstellen von Transkriptionsfaktoren.

Insbesondere das Immunsystem und seine Regulierung haben sich zwischen Maus und Mensch stark auseinander entwickelt. Die Unterschiede im lokalen Immunsystem des Verdauungstrakts dürften einer der Gründe dafür sein, dass die Ergebnisse vieler an Mäusen durchgeführten Studien zu Entzündungen und Erkrankungen mit Beteiligung des Immunsystems bei Menschen nicht reproduziert werden konnten.

Das Gen für TLR5, jenen Rezeptor der angeborenen Abwehr, um den es in der Nature-Veröffentlichung von Fulde et al. geht, die mit dem süßen Baby „beworben“ wurde, gibt es sowohl bei Menschen als auch bei Mäusen. Überhaupt ähneln sich die TLR-Repertoires beider Arten – identisch aber sind sie nicht. Es ist auch nicht sicher, dass die einander genetisch entsprechenden Rezeptoren in Maus und Mensch exakt dieselben Funktionen ausüben, in denselben Zelltypen zu denselben Zeiten exprimiert werden, dieselben Signalketten auslösen und so weiter.

Ernährung, Energie- und Vitamin-Gewinnung

Mäuse sind Allesfresser, wobei der Großteil ihrer Kost pflanzlich ist. Ihre Nahrung enthält wesentlich mehr schwer aufzuschließende Kohlenhydrate als unsere. Menschen sind im Prinzip ebenfalls Omnivoren, die aber weniger schwer verdauliche Pflanzenbestandteile zu sich nehmen. Auch der Aufbau des Verdauungstrakts strikter Veganer ist evolutionär an die gemischte, fleischhaltige Kost ihrer Urahnen angepasst. Unsere Darmflora reagiert dagegen zügig (wenn auch mit recht subtilen Anpassungen) auf eine Ernährungsumstellung.

Ein Problem bei Mäuse-Studien: Die Zusammensetzung des Trockenfutters wird von den Herstellern nicht offengelegt und schwankt offenbar je nach Agrarmarktlage. Manchmal enthält es beispielsweise Luzerne, die wiederum Phytoestrogene enthalten kann. Diese Substanzen können im Körper wie Estrogen wirken und damit etwa Immunreaktionen oder auch die Zusammensetzung des Mikrobioms beeinflussen.

Die Transitzeit einer Mahlzeit beträgt beim Menschen 14-76 Stunden – je schwerer verdaulich, desto länger. Resistente Stärke ist zum Beispiel fast 20 Stunden länger in uns unterwegs als leicht verdauliche Stärke. Bei Mäusen ist die Transitzeit mit 6-7 Stunden deutlich kürzer: Wie alle kleinen Warmblüter haben sie eine viel höhere Stoffwechselrate und daher einen (relativ zum Körpergewicht) viel größeren Stoffumsatz als wir. Sie müssen fast rund um die Uhr fressen, um ihren Energiebedarf zu stillen – und haben daher nur wenige Stunden Zeit, ihre schwer verdauliche Nahrung aufzuschließen. Sie lösen dieses Problem mit einem Trick, den wir Menschen (zum Glück!) nicht beherrschen.

Im vorderen Bereich des Mäuse-Dickdarms gibt es eine „Schleimfalle“: Falten und Furchen, in denen mit Darmbakterien durchmischter Nahrungsbrei hängen bleibt. Von dort wird er ein Stück „stromaufwärts“ in den Blinddarm geschoben. In dieser Fermentierkammer gewinnen die Bakterien Fettsäuren, Vitamin K und einige B-Vitamine aus der Kost. Die Nährstoffe und Vitamine können im Dickdarm nicht resorbiert werden und werden mit dem Kot ausgeschieden. Aber Mäuse fressen ihren Kot (sogenannte Koprophagie) und nehmen die wertvollen Stoffe beim zweiten Durchlauf im Dünndarm ins Blut auf. Auch ein Teil der wertvollen Darmflora wird so recycelt.

Aufbau des Verdauungstrakts

Mäuse haben – anders als wir – einen großen drüsenfreien Vormagen, der als reiner Nahrungsspeicher dient und mit einem pH-Wert von 3 bis 4 weniger sauer ist als der menschliche Magen mit seinem pH-Wert von etwa 1. In diesem weniger aggressiven Milieu gedeihen Bakterien: Die Wand des Vormagens ist mit einem Biofilm aus Lactobacillus-Arten ausgekleidet. Auch der Drüsenmagen, der sich an diese Kammer anschließt, ist weniger sauer als der menschliche Magen, da sich in ihm ständig frische Kost mit den Magensäften und der älteren Kost vermischt. Im menschlichen Magen überleben nur wenige Bakterien, die sich an die starke Säure angepasst haben: Streptokokken, Prevotella und Helicobacter pylori.

Der Dünndarm ist bei beiden Arten der längste Teil des Verdauungstrakts. Mit 33 cm ist er bei der Maus 2,5-mal so lang wie der Dickdarm, beim Menschen mit 700 cm 7-mal so lang. Noch deutlicher werden die Verhältnisse bei der Betrachtung der Flächen: In der Maus hat der Dünndarm eine 18-mal größere Oberfläche als der Dickdarm, beim Menschen beträgt der Faktor sogar 400. Durch diese riesige Grenzschicht wird ein Großteil der Nährstoffe in den Körper aufgenommen.

Die Schleimhaut des Dünndarms ist bei der Maus glatt, beim Menschen wirft sie ringförmige Falten, die die Oberfläche vergrößern und den im Schleim lebenden Bakterien Nischen bieten. Die Zotten oder Villi, die ebenfalls die Oberfläche vergrößern, sind dafür bei der Maus länger als beim Menschen.

Der Dickdarm einer Maus ist bis zu 14 cm lang, der eines Menschen etwa 105 cm – relativ zur Körpermasse also viel kürzer als bei dem kleinen, leichten Nager. Man unterscheidet Blinddarm (Caecum – nicht zu verwechseln mit dem Wurmfortsatz, der von Laien oft als Blinddarm bezeichnet wird) und Grimmdarm (Colon). Der Mäuse-Blinddarm dient, wie im vorigen Abschnitt erwähnt, als Fermentationskammer und ist mit 3 bis 4 cm ziemlich lang. Beim Menschen findet die Fermentation dagegen nur im Colon statt; der etwa 6 cm kurze Blinddarm hat keine wichtige Funktion. Der Wurmfortsatz ist bei Mäusen nicht so klar vom Blinddarm abgegrenzt wie wie bei uns. Der Grimmdarm ist bei der Maus glattwandig, beim Menschen hat er Ausbuchtungen (Hausten genannt).

Die Becherzellen, die den Darmschleim produzieren, konzentrieren sich bei der Maus auf den Dünndarm und den Anfang des Dickdarms, während sie sich beim Menschen bis hinunter zum Rektum über die ganze Länge verteilen. Die Paneth-Zellen, die antibakterielle Produkte wie die Defensine ausschütten, fehlen bei der Maus im Colon; es gibt sie nur im Blinddarm. Beim Menschen finden sich dagegen auch einige im Anfang des Colons. Auch die Menge, die Speicherung und die Ausschüttung von Defensinen unterscheiden sich zwischen den Arten; das wiederum kann über die Regulierung der örtlichen Immunreaktionen die Zusammensetzung des Mikrobioms beeinflussen.

Die Colon-Schleimhaut des Menschen produziert den Schleim schneller (etwa 240 µm/h) als die der Maus (etwa 100 µm/h). Die Colon-Schleimschicht wird beim Menschen etwa 480 µm dick und bei der Maus etwa 190 µm. Der Schleim hat eine ähnliche Zähigkeit und Porosität und besteht aus ähnlichen Schleimproteinen, die allerdings in beiden Arten anders glykosyliert werden. Die unterschiedlichen Glykane, die dabei seitlich an das Protein-Grundgerüst angehängt werden, sodass das Makromolekül schließlich wie eine Flaschenbürste aussieht, beeinflussen wiederum die Selektion der Darmflora.

Zusammensetzung des Mikrobioms

Die Darmflora von Maus und Mensch wird von zwei Bakterienstämmen (Stämmen im Sinne von phyla, nicht strains) dominiert, den Bacteroidetes und den Firmicutes. Das gilt auch für viele andere Säugetiere, egal ob Pflanzen- oder Fleischfresser. Dennoch gibt es beträchtliche Unterschiede.

Um diese Unterschiede zu entdecken, muss man sich auf Bakterien konzentrieren, die bei der Mehrheit der untersuchten Mäuse bzw. Menschen vorkommen, und die „Ferner-liefen-Bakterien“ ausklammern, die zwar zur Diversität des Mikrobioms einer der Art beitragen, aber nur in einem Bruchteil der untersuchten Individuen nachzuweisen sind. Sogenannte metagenomische Analysen haben gezeigt: Von den 60 Gattungen der Kern-Darmflora von Mäusen gehören 25 auch zum Kernbestand im menschlichen Darm. Allerdings haben nur 4 Prozent der Mäuse-Bakteriengene mehr oder weniger identische Entsprechungen im Pool der Menschen-Bakteriengene. Ein Beispiel: Lactobacillus reuteri kommt sowohl in Mäusen als auch in Menschen vor, aber die Stämme in den Mäusen (jetzt im Sinne von strains – verdammte terminologische Ambivalenz!) haben andere Urease-Gene, die diese Enzyme befähigen, in einem sauren Milieu zu leben. Auf der funktionellen Ebene sind die Unterschiede kleiner: 80 Prozent der in den Metagenomik-Datenbanken verzeichneten Gen- bzw. Protein-Funktionen sind sowohl bei der Maus als auch beim Menschen vertreten.

Auch wenn eine Bakterien-Gattung bei Mensch und Maus vertreten ist, kann sie in einer der Arten dominieren und in der anderen eine Randerscheinung bleiben. Im Mäuse-Dünndarm sind FaecalibacteriumPrevotella und Ruminococcus viel seltener als im menschlichen Dünndarm. Dafür sind TuricibacterAlistipes und Lactobacillus bei Mäusen viel dominanter als bei uns. Die Gattungen Clostridium, Bacteroides und Blautia sind in beiden Arten etwa gleich stark vertreten.

Wie hier im Blog schon mehrfach besprochen, prägen die sogenannten segmentierten filamentösen Bakterien (SFB) im Darm von Mäusen die Reifung des Immunsystems – vor allem, indem sie in der Schleimhaut junger Mäuse die Bildung von entzündungsfördernden Th17-Helferzellen auslösen. Das prägt nicht nur die „Stimmung“ des örtlichen Immunsystems, sondern sogar die Entwicklung des Gehirns. Bis vor wenigen Jahren dachte man, im menschlichen Darm gebe es gar keine SFB. Inzwischen wurden diese Bakterien, die zu den Firmicutes zählen und auch als Candidatus arthromitus bezeichnet werden, im Mikrobiom einiger (aber längst nicht aller) Kleinkinder unter drei Jahren entdeckt. Ob sie dort eine ähnlich prägende Rolle spielen wie in jungen Mäusen und so womöglich die Neigung bestimmter Erwachsener zu chronischen Entzündungen fördern, ist noch unklar.

Erschwert werden Vergleiche zwischen Mensch und Maus durch die enormen Mikrobiom-Unterschiede zwischen den untersuchten Mäusen. Nicht nur der Zuchtstamm, sondern auch ihr Futter, die Einrichtung, in der sie gehalten werden, und der Käfig, in dem sie mit anderen Mäusen zusammenleben, prägen die Zusammensetzung. (Man denke an die Koprophagie!)

Enterotypen

Auch beim Menschen unterscheidet sich die Mikrobiom-Zusammensetzung zwischen den Individuen. Seit einigen Jahren kennt man drei Enterotypen: Gruppen, deren Darmflora von jeweils anderen Bakterien dominiert wird. Wie klar und stabil diese Gruppen voneinander abgegrenzt sind, ist allerdings umstritten, und wie sie zustande kommen, ist unbekannt.

Bei Labormäusen wurden bislang zwei Enterotypen identifiziert: Wenn Lachnospiraceae und Ruminococcaceae dominieren, entspricht dies dem menschlichen Enterotyp 3; wenn Bacteroidaceae und Enterobacteriaceae vorherrschen, ähnelt dies dem menschlichen Enterotyp 1. Auch bei Wildmäusen lassen sich zwei Enterotypen unterscheiden, die von Bacteroides oder Robinsoniella dominiert werden.

Bei den Labormäusen korreliert die Einteilung mit dem Artenreichtum des Mikrobioms und mit der Neigung zu Entzündungen. Der Bacteroidaceae/Enterobacteriaceae-Enterotyp ist artenärmer und weist mehr Calciprotectin auf, das als Entzündungsmarker fungiert. Das entspricht den Verhältnissen bei Menschen mit starkem Übergewicht, deren Darmflora ebenfalls verarmt und durch ähnliche Bakteriengruppen (Bacteroidetes und Proteobacteria) dominiert ist und die ebenfalls stärker zu Entzündungen neigen.

Krankhafte Veränderungen

Während sich das Mikrobiom in Maus-Modellen für Fettleibigkeit auf ähnliche Weise verschiebt wie beim Menschen, sind die Parallelen bei anderen Erkrankungen längst nicht so stark. So kann zum Beispiel nach wie vor kein Modell für Colitis ulcerosa alle wichtigen Eigenschaften des Erkrankungsprozesses und der Darmflora-Veränderung rekapitulieren.

Das führt auch zum Scheitern von Therapie-Ansätzen. So hatte man nach Studien an IL-10-Knockout-Mäusen große Hoffnungen, dass das Zytokin IL-10 chronisch-entzündliche Darmerkrankungen eindämmen könne. In klinischen Studien an Menschen ließ sich der Effekt aber nicht reproduzieren – vermutlich, weil Menschen einen großen Pool recht unterschiedlicher IL-10-Rezeptoren haben.

Mäuse mit humanisierter Darmflora: keine Patentlösung

Angesichts der Unterschiede zwischen den Darmfloren von Maus und Mensch und der Unvollkommenheit, mit der viele Tiermodelle menschliche Erkrankungen imitieren, liegt es nahe, das Mikrobiom der Mäuse menschenähnlicher zu machen. Dazu kann man keimfreie, also ohne eigenes Mikrobiom geborene und gehaltene junge Mäuse mit menschlicher Darmflora animpfen. Man spricht dann von humanisierten gnotobiotischen Mäusen – „gnotobiotisch“, weil man dann weiß, welche Bakterien in ihnen leben (griechisch gnosis = Wissen).

Dabei können sich alle der in der menschlichen Darmflora vorkommenden Stämme (Phyla), 11 von 12 der Klassen und etwa 88 Prozent der Gattungen aus dem humanen Mikrobiom im Mäusedarm ansiedeln: gar keine schlechte Annäherung. Aber dieses aus dem Menschen stammende Mikrobiom und die Maus haben keine gemeinsame Evolution durchlaufen, sie haben sich nicht über Jahrmillionen aneinander anpassen können. Und wie sich zeigt, reifen humanisierte gnotobiotische Mäuse nicht normal; sie reagieren zum Beispiel nicht normal auf Infektionen. Vielleicht liegt es daran, dass Bakterien und Mäusezellen nicht genau dieselbe Sprache sprechen, ihre Botenstoffe und Signalketten also wegen der 90 Millionen Jahre getrennter Evolution von Maus und Mensch nicht mehr zueinander passen. Oder bei der Ansiedlung gehen einige seltene, aber für die Entwicklung essentielle Bakterien verloren.

An Mäusen führt kein Weg vorbei

All das heißt nicht, dass man keine Mikrobiom-Forschung oder keine immunologischen Studien an Mäusen betreiben sollte. Mäuse sind klein, haben eine kurze Generationsdauer und sind günstig in der Anschaffung und im Unterhalt. Man kann sie auch genetisch verändern, um z. B. bestimmte Gene „auf Knopfdruck“ auszuschalten (sog. Knockout-Mäuse). Für viele Versuche müssen sie getötet werden, etwa um ihnen Gewebeproben zu entnehmen – und zwar in großer Zahl, um statistisch belastbare Ergebnisse zu erhalten. Dieselben Untersuchungen etwa an Schweinen oder Affen durchzuführen, wäre ethisch und praktisch problematisch. Grundlegende Mechanismen oder Signalwege lassen sich an Mäusen durchaus ermitteln – aber sie müssen gründlich am Menschen überprüft werden.

Forscherinnen und Wissenschaftskommunikatoren sollten der Versuchung eigener vorschneller Extrapolationen und erst recht mutwillig evozierter Missverständnisse widerstehen: Wer an Mäusen geforscht hat, sollte das bereits in der Überschrift und im Abstract deutlich machen. Und die Menschen in den PR-Abteilungen der Forschungseinrichtungen sollten wirklich die Finger von süßen Babyfotos und Formulierungen wie „Kindheit“ lassen, wenn es um junge Mäuse geht. Auch der inflationäre Gebrauch von Superlativen, mit denen die jeweilige Studie aus dem medialen Grundrauschen herausgehoben werden soll, geht letzten Endes nach hinten los: Wenn ich innerhalb einer Woche lese, dank der bahnbrechenden Studie A sei nun endlich bewiesen, dass die Darmflora in einem kleinen Zeitfenster nach der Geburt fürs ganze Leben geprägt werde, und die bahnbrechende Studie B habe endlich gezeigt, dass anhaltender Durchfall bei Erwachsenen die Darmflora nachhaltig verändern könne, dann werde ich nächste Woche die bahnbrechenden Studien C, D und E mit einem Achselzucken an mir vorüberziehen lassen.

Die Darmflora der Inuit

Vor zwei Jahren war ich in Grönland und habe gesehen, wie stark die Kultur dort bei aller Modernisierung noch durch die Jagd geprägt ist. Seither habe ich mich gefragt, wie sich die traditionelle, an tierischen Fetten und Proteinen außerordentlich reiche Kost der Inuit auf die Zusammensetzung und Diversität ihrer Darmflora auswirkt.

Vergleiche zwischen dem Mikrobiom von Menschen mit „westlicher“ Ernährung und solchen aus traditionellen Agrargesellschaften in Afrika (etwa in Burkina Faso) oder Nordamerika (etwa bei den Hutterern) habe ich hier im Blog bereits vor Jahren vorgestellt. Nach meiner Rückkehr war ich erpicht darauf, zu erfahren, wie die Darmflora der Inuit aussieht: Ist sie artenreicher als unsere verarmte „westliche“ Darmflora? Dominieren in ihr wegen der Fleischlastigkeit der Kost womöglich andere Schlüsselorganismen?

Zu meiner großen Verwunderung fand ich dazu absolut nichts in der Fachliteratur: keine einzige Arbeit. Genetische Anpassungen der Inuit an ihren Lebensraum und deren Auswirkungen auf ihre Gesundheit waren durchaus untersucht worden, ihre Darmflora aber nicht – obwohl das nun wirklich sehr nahe lag. Seither habe ich die Literatursuche ab und zu wiederholt – und inzwischen bin ich fündig geworden:

Forscherinnen und Forscher um B. Jesse Shapiro haben 2017 in zwei Arbeiten die Resultate ihrer 16S-rRNA-Analysen von Stuhl- und Toilettenpapier-Proben veröffentlicht, die sie zum einen in Inuit-Siedlungen in Resolute Bay (Nunavut, Kanada) und zum anderen in Montréal (Québec, Kanada) bei Nachfahren von Europäern gesammelt haben. Diese Nukleinsäuren stammen aus den Ribosomen von Bakterien, und es gibt große Datenbanken, in denen man einer bestimmten Basensequenz eine Bakterienart oder -Gattung zuordnen kann.

Zur Überraschung des Teams unterschied sich die typische Darmflora der weitgehend traditionell lebenden Inuit kaum vom Artenspektrum im Darm der „westlich“ lebenden Leute aus Montréal. Die Unterschiede zwischen den Individuen in beiden Gruppen waren viel größer als die zwischen den Gruppen. Auch war das Mikrobiom der Inuit nicht auffällig vielfältiger als das der „Westler“. Allerdings waren Bakterienarten der Gattung Prevotella, die vor allem Ballaststoffe aus pflanzlicher Nahrung aufschließen können, bei den Inuit signifikant schwächer vertreten als bei den Städtern europäischer Herkunft.

In einer weiteren Analyse hat das Team die Veränderung der Darmflora-Zusammensetzung im Jahresverlauf untersucht – in der Annahme, dass die Kost der Inuit sich mit den Jahreszeiten stärker verändert als in der Großstadt. Sie fanden zwar Unterschiede, aber auch diese waren außerordentlich subtil: Bei den Inuit erklärt die Saisonalität einen etwas höheren Prozentsatz der Variabilität der Mikrobiom-Zusammensetzung als bei den europäischstämmigen Städtern. Diese Schwankungen schlagen sich aber nicht in einer klaren Zu- oder Abnahme bestimmter Bakterienarten, -gattungen oder -familien im Jahreszyklus nieder, sondern nur in stärkeren Abweichungen zwischen den Individuen in der Inuit-Gruppe. Vermutlich ist deren Ernährung (noch) nicht so standardisiert wie bei den Nachfahren der Europäer in der großen Stadt.

Womöglich – so die Autorinnen und Autoren – ist die alles homogenisierende „Verwestlichung“ der Lebensweise und Ernährung bereits zu stark vorangeschritten, um noch markante Unterschiede zu entdecken. Jedenfalls ist das Inuit-Mikrobiom weder das „andere Extrem“ im Vergleich zur artenreichen Darmflora sehr fleischarm lebender ländlicher Gemeinschaften, nämlich besonders artenarm, noch ein weiteres Exempel für die größere Darmflora-Vielfalt nicht westlich lebender Menschen: Es ähnelt in fast allem unserem eigenen Mikrobiom.

 

Girard, Catherine et al. “Gut Microbiome of the Canadian Arctic Inuit.” Ed. Rosa Krajmalnik-Brown. mSphere 2.1 (2017): e00297–16. PMC. Web. 18 Aug. 2018.

Dubois, Geneviève et al. “The Inuit Gut Microbiome Is Dynamic over Time and Shaped by Traditional Foods.” Microbiome 5 (2017): 151. PMC. 

Fotos vom Arctic Circle Trail zwischen Kangerlussuaq und Sisimiut sowie von Fleischmarkt in Nuuk, Westgrönland, 2016

Geschlechtsspezifische Unterschiede im Mikrobiom von Menschen mit chronischem Erschöpfungssyndrom

Vor knapp zwei Jahren war ich noch skeptisch und auch ein wenig spöttisch, was das sogenannte Mikrogenderom angeht. Damals waren geschlechtsspezifische Unterschiede im Mikrobiom, die mit Autoimmunerkrankungen korrelieren, ausschließlich bei einem Tiermodell für Diabetes (NOD-Maus) nachgewiesen. Die in der Fachpresse suggerierte Übertragbarkeit auf den Menschen erschien mir fraglich, da man bis dahin nur bei traditionell lebenden Hadza in Tansania gewisse Unterschiede in der Zusammensetzung der Bakterienpopulationen im Darm gefunden hatte, die vermutlich auf die unterschiedliche Kost von Männern und Frauen zurückgehen: „Mag sein, dass wir nur noch genauer hinsehen müssen, um auch in anderen menschlichen Populationen geschlechtsspezifische Darmflora-Nuancen zu entdecken, die, wenn es sie gibt, dann vermutlich auch (auf höchst subtile und verschachtelte Weise) mit unserem Immunsystem wechselwirken und insofern womöglich ihr Scherflein zu den höheren Autoimmunerkrankungsrisiken von Frauen beitragen. Aber das ist noch ein langer Weg, den wir auch ohne Kunstworte aus der Hölle beschreiten können.“

Inzwischen sind wir einen Schritt weiter: Ein australisches Autorenteam um Amy Wallis hat 2016 und 2017 auf kleine bis mittelstarke geschlechtsspezifische Interaktionen zwischen Darmbakterien aus der Abteilung der Firmicutes und den Symptomen von Menschen mit chronischem Müdigkeits- oder Erschöpfungssyndrom (CES) hingewiesen.

CES trifft Frauen häufiger und schwerer

CES ist eine chronische Erkrankung unter Beteiligung des Nerven- und Immunsystems, die sich unter anderem durch pathologische Abgeschlagenheit und starke Erschöpfung bereits nach leichter körperlicher Betätigung auszeichnet. Die Ursachen sind nicht bekannt, und wie bei einigen Autoimmunerkrankungen belasten die schwierige, oftmals um Jahre verzögerte Diagnose und ärztliche Ignoranz die Betroffenen zusätzlich. Einiges spricht für eine starke Beteiligung des Immunsystems an der Erkrankung, aber offenbar eher des angeborenen als des erworbenen Arms unserer Abwehr. Damit ist CES wohl keine Autoimmunerkrankung, sondern eher eine chronische Entzündung.

Wie viele Autoimmunerkrankungen trifft auch CES mehr Frauen als Männer, etwa im Verhältnis 2:1. Bei 9 von 13 durch Fragebögen erhobenen Faktoren berichteten die hier befragten Patientinnen stärkere CES-Symptome als Patienten, was vermutlich nicht auf ein sogenanntes overreporting, also – salopp gesagt – eine größere Wehleidigkeit von Frauen zurückzuführen ist, sondern tatsächlich auf schwerere Beeinträchtigungen. So gehen die höheren Symtomberichtswerte von Frauen oftmals mit höheren Zytokinwerten im Blut einher.

Bakteriensuppe durchsequenzieren – oder Bakteriengattungen kultivieren?

Interessanterweise mussten die Forscher nun ganz genau hinschauen, um geschlechtsspezifische Unterschiede in der Darmflora der untersuchten und befragten 274 Patientinnen und Patienten zu entdecken. Grundsätzlich kann man die Zusammensetzung der Darmflora auf zwei Weisen analysieren:

Entweder durch Metagenomik, also indem man – wiederum salopp gesagt – eine Stuhlprobe komplett durch einen DNA-Sequencer jagt und die gefundenen Basensequenzen mit Datenbanken abgleicht, in denen die Erbinformationen von Bakterien hinterlegt sind. So findet man sehr viele Bakterienarten oder sogar -stämme, aber man weiß nicht, ob es sich bei diesen Organismen um etablierte „Mitbewohner“ handelt oder um Verunreinigungen oder „Durchreisende“, etwa aus einer Mahlzeit oder einer akuten Infektion.

Oder durch den Versuch, möglichst viele der Organismen in Kulturmedien anzusiedeln, die den Lebensbedingungen im Darm nahekommen, und sie auszuzählen. Bei dieser Kultivierung kann man nur die Gattung der Bakterien bestimmen, aber dafür kann man gut abschätzen, wie groß ihr Anteil an der Darmflora ist. Die Forscher haben sich für Letzteres entschieden.

Gut für das eine Geschlecht, schlecht für das andere?

Auf der Ebene der Bakterien-Gattungen waren die Mikrobiome der Frauen und Männer im Durchschnitt nahezu gleich zusammengesetzt. Aber es gab zahlreiche Korrelationen zwischen den CES-Symptomstärken und dem Anteil der Gattungen im Mikrobiom der Patientinnen und Patienten – und viele dieser positiven wie negativen Korrelationen waren geschlechtsspezifisch. Beispielsweise kamen im Darm von Frauen, die besonders starke Erschöpfung nach körperlichen Tätigkeiten angaben, mehr Clostridien vor als im Darm von Patienten, die nach einer Kraftanstrengung weniger erschöpft waren – aber bei Männern, die stark unter diesem CES-Symptom litten, war der Clostridien-Anteil nicht erhöht. Zweites Beispiel: Im Darm männlicher Patienten, die besonders stark unter Schmerzen litten, fanden sich deutlich weniger Eubakterien als bei Betroffenen, die schwächere Schmerzen hatten – aber auch weniger als bei Frauen, die besonders starke Schmerzen hatten. Der Darm von Frauen mit starken Schmerzen enthielt dafür signifikant weniger Streptokokken als der Darm von Betroffenen mit schwächeren Schmerzen – aber auch von Männern mit starken Schmerzen.

Besonders stark klafften die Korrelationen zwischen Bakterienhäufigkeit und Symptomstärke bei der letztgenannten Gattung auseinander: Bei 9 der 13 erhobenen Symptomfaktoren unterschieden sich die Korrelationen zwischen männlichen und weiblichen CES-Patienten signifikant, und stets war die Korrelation bei den Frauen negativ und bei den Männern positiv. Wollte man diese Zusammenhänge kausal interpretieren, hieße das: Streptokokken schützen Frauen vor heftigen Symptomen, verstärken aber die Belastung der Männer durch die Krankheit.

Das andere Extrem waren die Bifidobakterien, die nicht zur Abteilung Firmicutes gehören, sondern zu den Actinobakterien: Nur bei einem einzigen Symptom unterschied sich die Korrelation zwischen Bifidobakterien-Häufigkeit im Darm und Symptomschwere signifikant zwischen den Geschlechtern; insgesamt schienen diese Bakterien – wiederum kausal gedeutet – beide Geschlechter eher vor schweren Symptomen zu schützen.

Wie wirkt der Darminhalt auf das Nervensystem ein?

Über die Mechanismen, die solche kausalen Zusammenhänge möglicherweise vermitteln, konnten die Autoren nur Hypothesen aufstellen, denn ein mutmaßlich entscheidender Vermittlungsweg – der Hormonstatus – war bei den Patientinnen und Patienten nicht erhoben worden. Bekannt ist, dass viele Darmbakterien Hydroxysteroid-Dehydrogenasen produzieren, also Enzyme, die Vorformen von Sexualhormonen verstoffwechseln und so zum Beispiel den Estrogen-Pegel im Körper beeinflussen können. Unsere Sexualhormone wiederum docken an die Hormonrezeptoren vieler Zellen an und beeinflussen so unter anderem das Immun- und das Nervensystem – und damit zum Beispiel unsere Schmerzwahrnehmung.

Es gibt aber auch einen Rückkanal, und damit ist die Richtung des Kausalzusammenhangs offen: Ein durch eine Erkrankung aus dem Lot geratenes Hormonsystem kann die Darmflora durcheinander bringen, teils durch direkte Einwirkung auf die Bakterien, teils vermittelt durch die Darmschleimhautzellen. Und schließlich könnte beides – ein Ungleichgewicht in der Darmflora und starke CES-Symptome – Folge von etwas Drittem sein, zum Beispiel von Vorlieben für bestimmte Nahrungs- oder Genussmittel. Ernährungsgewohnheiten wiederum können vom Geschlecht beeinflusst sein, teils kulturell, teils hormonell vermittelt. Vor allem bei männlichen CES-Patienten scheint der D-Laktat- oder -Milchsäure-Spiegel im Blut sowohl mit der Schwere kognitiver und neurologischer Symptome als auch mit der übermäßigen Vermehrung bestimmter Bakterien im Darm zusammenzuhängen.

Ignorieren gilt nicht

Erschwerend kommt hinzu, dass nicht nur der aktuelle Hormonspiegel geschlechtsspezifische Interaktionen – etwa zwischen Darmflora und Gehirn – vermitteln kann, sondern unter Umständen auch der ehemalige Hormonstatus des Embryos oder des Neugeborenen. Denn wie ich im übernächsten Beitrag darlegen werde, prägt insbesondere Testosteron die Entwicklung des männlichen Nerven- und Immunsystems bereits kurz vor und nach der Geburt, in der sogenannten Minipubertät. Obwohl Jungen während ihrer Kindheit kaum noch Testosteron produzieren, hält diese frühe Wirkung an, weil sie sich epigenetisch dauerhaft niederschlägt: durch die Methylierung der DNA und damit die Ablesbarkeit zahlreicher Gene auf all unseren Chromosomen.

Dieses Durcheinander aufzuklären, wird nicht leicht. Dazu müsste man (1.) in allen klinischen Studien zwischen Männern und Frauen und möglichst auch in allen präklinischen Tierversuchen zwischen Männchen und Weibchen unterscheiden, (2.) stets auch den Hormonstatus ermitteln – und (3.) die Zusammensetzung des Mikrobioms noch genauer aufklären, am besten durch Kombination beider oben erläuterter Ansätze (Metagenomik und Kulturen).

Einfach nur die durchschnittliche Häufigkeit der Bakterien-Gattungen in Proben aus Männern und Frauen zu vergleichen und dabei keine Auffälligkeiten festzustellen, reicht jedenfalls nicht aus, um die Existenz und medizinische Bedeutung eines Mikrogenderoms beim Menschen auszuschließen.

Literatur

A. Wallis et al. (2016): Support for the Microgenderome: Associations in a Human Clinical Population

A. Wallis et al. (2017): Support for the microgenderome invites enquiry into sex differences

 

Vom Kaiserschnitt bis zur Erdnussbutter: Einflüsse auf das kindliche Immunsystem

Unter dem Titel Early-Life Microbiome wurden in The Scientist zwei Studien beschrieben, in denen – anders als in der gestern vorgestellten Mäuse-Studie – die Entwicklung des Mikrobioms von Kleinkindern untersucht wurde. (Die Fachartikel selbst stecken hinter Bezahlschranken.) Das erste Team hat Stuhlproben aus den ersten drei Lebensjahren von 39 finnische Kindern analysiert. Während in der Darmflora der meisten vaginal geborenen Kindern Bacteroides vorherrschten, fehlten diese Bakterien bei den per Kaiserschnitt zur Welt gekommenen und auch bei einigen vaginal geborenen Kindern in den ersten 6-18 Monaten. Nach einer frühen Antibiotika-Therapie wegen Atemwegs- oder Ohrinfekten fanden sich im Mikrobiom der Kinder Antibiotikaresistenz-Gene, von denen einige wenige noch lange nach der Behandlung nachzuweisen waren. Das andere Team hat die Entwicklung der Darmflora von 43 US-amerikanischen Kindern über die ersten beiden Lebensjahre verfolgt und festgestellt, dass neben der Geburtsmethode und Antibiotika auch die Muttermilch bzw. Muttermilchersatz die Zusammensetzung des Mikrobioms beeinflussen. Kausale Zusammenhänge zwischen diesen Faktoren und später auftretenden Störungen des Immunsystems wie Allergien oder Autoimmunerkrankungen lassen sich mit solchen Studien allerdings nicht nachweisen.

Einen Schritt zur Aufklärung des Zusammenhangs zwischen früher Darmflora-Dysbiose und späterem Asthma hat das Team um K. E. Fujimura in seiner Arbeit „Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation“ unternommen, über die ebenfalls The Scientist berichtet: Neonatal Gut Bacteria Might Promote Asthma. Kinder, in deren Darmflora im Alter von einem Monat vier „gute“ Bakteriengruppen (Bifidobacteria, Lactobacillus, Faecalibacterium und Akkermansia) schwächer und zwei Pilze (darunter Candida) stärker vertreten waren als bei den meisten Gleichaltrigen, hatten im Alter von zwei Jahren ein dreimal höheres Allergierisiko und im Alter von vier Jahren ein deutlich erhöhtes Asthmarisiko. Diese Risiken werden offenbar durch Stoffwechselprodukte der Darmflora vermittelt, die die Entwicklung der T-Zellen beeinflussen. Den Allergie- und Asthma-anfälligen Kindern fehlten entzündungshemmende Fettsäuren und Oligosaccharide (Zucker), die die Darmflora aus der Muttermilch produziert. T-Zellen aus gesunden Erwachsenen, die Stoffwechselprodukten der Mikrobiome der Hochrisiko-Kinder ausgesetzt wurden, entwickelten sich bevorzugt zu Th2-Helferzellen, die mit Allergien in Verbindung gebracht werden. Zugleich bildeten sich weniger regulatorische T-Zellen (Tregs), die Allergien dämpfen können. Unter den Darmflora-Produkten fielt vor allem das Lipid 12,13-DiHOME auf, das alleine schon die Entwicklung von T-Zellen zu Tregs verhindern konnte.

Um Allergierisiken geht es auch in einem weiteren The-Scientist-Artikel: Study: Nail-Biters, Thumb-Suckers Have Fewer Allergies. In einer Längsschnittstudie haben Stephanie J. Lynch und ihre Kollegen gut 1000 Neuseeländer untersucht, die 1972 oder 1973 geboren wurden. Unter denjenigen, die als Kinder am Daumen gelutscht oder an ihren Nägeln geknabbert hatten, reagierten 39 Prozent in einem Allergietest positiv auf mindestens ein gängiges Allergen. Wer nichts davon getan hatte, kam auf 49 Prozent. Und nur bei 31 Prozent derer, die früher sowohl am Daumen gelutscht als auch an den Nägeln gekaut hatten, schlug der Allergietest an: eine Bestätigung der Hygiene-Hypothese, denn durch das Lutschen und Knabbern nehmen Kinder Mikroorganismen aus ihrer Umwelt auf. Bei Asthma oder Heuschnupfen zeigten sich dagegen keine Unterschiede zwischen den Gruppen.

Auch zur alten Streitfrage, ob eine frühe Allergen-Exposition spätere Überreaktionen des Immunsystems eher fördert oder hemmt, gibt es Neues. Unter dem Titel Further Support for Early-Life Allergen Exposure berichtet The Scientist über eine Metaanalyse von 146 Studien mit zusammen über 200.000 Kindern. Die Ergebnisse: Kleinkinder, die schon früh Eier oder Erdnüsse zu sich nehmen, haben ein geringeres Risiko, später allergisch auf diese Lebensmittel zu reagieren. Bei Milch, Fisch und Muscheln, Nüssen und Weizen gab es dagegen keine hinreichenden Indizien für eine Schutzwirkung durch frühe Aufnahme in den Speiseplan. Auch für einen Schutz vor Autoimmunerkrankungen wie Zöliakie durch eine frühe Konfrontation des Immunsystems mit Weizen oder anderen Gluten-Quellen fanden die Forscher keine Hinweise.

Frühe Antibiotika-Gaben verändern Mikrobiom, Gen-Expression im Darm, Immunsystem und Diabetes-Risiko

Bevor ich die vor dem Urlaub begonnene Artikelserie zum Immunsystem, Krebs und Autoimmunerkrankungen zu Ende bringe, möchte ich auf einige neuere Arbeiten über das Immunsystem und das Mikrobiom von Menschen- und Mäusekindern hinweisen. Den Anfang macht eine Studie an jungen NOD-Mäusen:

Antibiotic Therapy During Infancy Increases Type 1 Diabetes Risk in Mice: eine Meldung zu A. E. Livanos et al., „Antibiotic mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice“ (Bezahlschranke, daher nur Abstract gelesen)

Für Typ-1-Diabetes gibt es genetische Risikofaktoren, aber auch Trigger in unserer Lebenweise – anders lässt sich der rasante Anstieg der Prävalenz in den westlichen Ländern im letzten halben Jahrhundert nicht erklären. Schon länger hat man die Veränderung der frühkindlichen Darmflora durch Antibiotika im Verdacht, den Ausbruch der Erkrankung in späteren Jahren zu fördern.

In dieser Studie erkrankten Mäuse des für Typ-1-Diabetes anfälligen NOD-Stamms mit höherer Wahrscheinlichkeit, wenn sie in der ersten Lebensphase mit Antibiotika behandelt wurden. Die Jungmäuse erhielten die erste Tylosin-Gabe, während sie noch gesäugt wurden, und zwei kurz danach. Diese Pulse sollten dem Timing vieler Antibiotika-Behandlungen von Kleinkindern entsprechen.

Mit 32 Wochen war der Anteil der an Diabetes erkrankten männlichen Mäuse im Tylosin-Arm doppelt so hoch wie im Vergleichsarm. Kurz nach den Antibiotika-Gaben veränderte sich zudem die Darmflora der männlichen Tiere; vor allem Bifidobacteria und die Bacteroidales der S247-Familie gingen zurück. Diese Bakterien-Taxa werden beim Menschen mit einer gesunden, ungestörten Darmflora assoziiert: Bifidobacteria helfen Säuglingen, den Zucker aus der Muttermilch abzubauen, und S247-Bacteroidales sind bei isoliert lebenden indigenen Gruppen viel stärker vertreten als bei US-Amerikanern.

Auch das Immunsystem der Mäuse veränderte sich infolge der Antibiotika-Gaben: In der Darmschleimhaut fanden sich weniger Th17-Helferzellen und weniger regulatorische T-Zellen (Tregs), zu deren Aufgaben die Abwehr von Pathogenen gehört. Im Darm der behandelten Mäuse wurde unter anderem das Gen für das Protein Serum-Amyloid A (SAA) schwächer exprimiert. Normalerweise regen Darmbakterien die Darmschleimhautzellen zur Produktion von SAA an, das wiederum Th17-Helferzellen anlockt. Auch der Lipidstoffwechsel der Bakterien und die Expression von Mäusegenen, die an der Cholesterinsynthese beteiligt sind, waren gestört. – Zu prüfen wäre nun, ob Antibiotika bei Menschenkindern ähnlich wirken.

Der Einfluss der Darmflora auf Krebs

Neulich beschrieb ich das Autoimmunbuchprojekt als „Türme von Hanoi“ mit 500.000 Scheibchen und 200 pulsierenden Stapeln. Das Bild ist natürlich schief, denn „Türme von Hanoi“ ist ein deterministisches Spiel, ein einfacher rekursiver Algorithmus. Mein Projekt verhält sich weniger vorhersagbar: Ständig sortiere ich die Literatur um, spalte ein Unterthema auf, fusioniere welche, werfe andere über Bord, nehme neue hinein … Zu Beginn hatte ich mir etwa vorgenommen, Krebs komplett auszuklammern, um nicht noch ein großes Fass aufzumachen. Aber manchmal werfen neue Erkenntnisse unsere Pläne über den Haufen: Tumoren haben so viel mit dem Immunsystem und wohl auch mit Autoimmunreaktionen zu tun, dass ich sie nicht ignorieren kann.

Zu allem Unglück werden nicht nur Autoimmunerkrankungen, sondern auch Krebserkrankungen und Krebstherapien vom Mikrobiom beeinflusst – und wirken umgekehrt auf dieses ein. Die boomende Mikrobiomforschung treibt mich ohnehin in den Wahnsinn, weil all die Einflüsse, Abhängigkeiten, Synergien und Hemmnisse zwischen unseren zahlreichen mikrobiellen Mitbewohnern, unserem Immunsystem, unserem Erbgut, dem Rest unseres Körpers und unserer Umwelt unglaublich schlecht in der linearen Erzählstruktur eines Sachbuchs abzubilden sind.

Bevor aber die drei Arbeiten, die ich gerade gelesen habe, vor lauter Zögern und Hadern Staub ansetzen, zerschlage ich den gordischen Knoten und versuche die wichtigsten Erkenntnisse aus der aktuellen Forschung festzuhalten – ganz gleich, wo im Buch sie letzten Endes landen.

Mit Magenkrebs fing es an

Seit J. Robin Warren und Barry J. Marshall Ende der 1970er entdeckten, dass Gastritis, Magengeschwüre und im worst case auch Magenkrebs oft auf das Magenbakterium Helicobacter pylori zurückgehen, ist klar, dass Pathogene in ihrer Umgebung Krebs auslösen oder fördern können. Das gilt auch für andere Teile des Verdauungstrakts: Mäuse entwickeln eher Darmkrebs, wenn man in ihrer Darmflora die Bakterien Citrobacter rodentium oder Helicobacter hepaticus ansiedelt. Und Menschen mit Darmkrebs haben eine anderes zusammengesetzte Darmflora als Gesunde, etwa einen Überschuss der normalerweise in der Mundhöhle anzutreffenden Gattungen Fusobacterium und Porphyromonas. Ein Forscherteam konnte 2014 aus der relativen Häufigkeit von 22 Bakterienarten im Stuhl von Versuchsteilnehmern sogar ablesen, ob sie Darmkrebs hatten oder nicht.

Henne oder Ei?

Aber was kommt zuerst, der Krebs oder die Veränderung der Darmflora? Im Tierversuch ließ sich das klären: Man behandelte Mäuse zunächst mit Antibiotika, um die Mikrobiom-Zusammensetzung zu verändern, und verabreichte ihnen dann ein Karzinogen sowie eine entzündungsfördernde Substanz. Im Vergleich zu Mäusen, die keine Antibiotika erhalten hatten, entwickelten sie weniger und zudem kleinere Tumoren. Die meisten Tumoren bildeten keimfrei aufgezogene Mäuse aus, denen man die Darmflora bereits krebskranker Mäuse verabreichte.

Eine solche lokal krebsfördernde Wirkung bestimmter Komponenten der Darmflora kann beispielsweise durch eine von den Bakterien ausgelöste Entzündung der Darmschleimhaut vermittelt werden, die zu einer Freisetzung von reaktiven Sauerstoffspezies (ROS) und Wachstumsfaktoren aus den angeschlagenen Schleimhautzellen führt. Die ROS können das Erbgut anderer Zellen in der Nähe mutieren lassen, sodass sie zu „Tumorkeimen“ werden, und die Wachstumsfaktoren können eine übermäßige Zellteilung und die Bildung neuer Blutgefäße fördern, die die entstehenden Tumoren mit Nährstoffen versorgen.

Fernwirkungen

Dass Veränderungen im Darm (etwa eine Dysbiose) weitere Veränderungen im Darm (etwa die Bildung von Tumoren) nach sich ziehen können, ist nicht unbedingt überraschend. Seit einigen Jahren zeichnet sich aber ab, dass es auch Fernwirkungen gibt: Die Darmflora beeinflusst das Krebsrisiko in weit entfernten Organen. Teils verringert, teils erhöht sie die Gefahr, dass sich dort Tumoren bilden.

So entwickelten Mäuse nach der Infektion mit Helicobacter hepaticus nicht nur Darmkrebs, sondern auch Brustkrebs oder Prostatakrebs. Und die Melanome, die man Mäusen des Zuchtstamms „Black 6“ in die Haut implantierte, entwickelten sich je nach dem Zuchtlabor, aus dem die Tiere stammten, ganz unterschiedlich – weil sich ihre Mikrobiome unterschieden. Sobald man sie eine Weile im selben Käfig hielt, verschwanden die Unterschiede in der Fähigkeit des Immunsystems, die Melanome in Schach zu halten.

Die krebshemmende Wirkung ging von Bakterien der Gattung Bifidobacterium aus, die offenbar dendritische Zellen aktivieren. Diese wiederum präsentierten T-Zellen Antigene aus den Bakterien oder aus den Krebszellen und befähigten sie so, die Krebszellen aufzusuchen und zu töten. Diese Aktivierung ist nötig, weil viele Krebszellen an ihrer Oberfläche molekulare „Self“-Signale präsentieren, um das Immunsystem von Attacken abzuhalten.

Bakterien beeinflussen den Therapieerfolg 

Doch nicht nur die natürliche Fähigkeit des Immunsystems, Krebsvorstufen und Tumoren zu bekämpfen, wird durch die Darmflora gefördert oder behindert: Chemotherapien und andere Krebstherapien verlaufen je nach Zusammensetzung des Mikrobioms mehr oder weniger erfolgreich. Auch dies wurde zunächst an Mäusen entdeckt, und zwar etwa zeitgleich von den Arbeitsgruppen um Romina Goldszmid und Giorgio Trinchieri am amerikanischen National Cancer Institute und um Laurence Zitvogel am französischen INSERM: Keimfrei aufgezogene oder mit Antibiotika behandelte Tiere, die entweder eine angeborene Neigung zu Lungenkrebs hatten oder verschiedenartige Tumoren implantiert bekamen, sprachen auf Chemotherapien schlechter an als Artgenossen mit intakter Darmflora.

Die Mechanismen setzen offenbar teils an der angeborenen, unspezifischen und teils an der erworbenen, antigenspezifischen Abwehr an:

  • Platin-Chemotherapien und Immuntherapien mit CpG-Oligonukleotiden bekämpfen Krebs, indem sie Entzündungen fördern. Ein Übermaß entzündungshemmender Bakterien kann dem in die Quere kommen.
  • In anderen Fällen will man eine Entzündung gerade vermeiden. Ein Probiotikum (also eine Bakterienmischung) namens Prohep brachte etwa Lebertumoren in Mäusen zum Schrumpfen, wohl weil es Entzündungen im Darm hemmt.
  • Monoklonale Antikörper binden als sogenannte Checkpoint-Inhibitoren an bestimmte Proteine auf der Oberfläche von Krebszellen, etwa PD-L1 oder CTLA-4, die sonst an passende Rezeptoren auf aktivierten T-Zellen andocken und die T-Zellen durch Vortäuschung eines gutartigen Charakters friedlich stimmen. Bestimmte Bakterien (bei Mäusen etwa Bifidobacteria oder Bacteroides) verstärken diese Form der Krebsbekämpfung – zum Teil indirekt durch ihre Wirkung auf die angeborene Abwehr und zum Teil direkt, indem sie dieselben T-Zell-Rezeptoren stimulieren.
  • Eine Chemotherapie mit Cyclophosphamid macht die Darmschleimhaut durchlässig, sodass Bakterien die Barriere überwinden und sich im Lymphgewebe des Darms ansammeln. Dies gelingt nur Arten, die nicht im Darmlumen, sondern in der zähen Schleimschicht direkt über der Schleimhaut angesiedelt sind, etwa Lactobacillus johnsonii, nicht aber Escherichia coli. In den Lymphknoten und der Milz fördern sie die Bildung von T-Helferzellen des Typs 1 (Th1) und des Typs 17 (Th17), die dann zum Tumor wandern und dort Krebszellen abtöten.

Nützliche Autoimmunität – gefährliche Hygiene?

Nach Ansicht von Laurence Zitvogel und anderen Forschern kann man solche vom Mikrobiom beeinflussten Anti-Tumor-Aktivitäten unseres Immunsystems als nützliche Form der Autoimmunität auffassen. Unsere Abwehrzellen greifen schließlich die gefährlichen, aber körpereigenen Wucherungen an, weil sie ihre Toleranz gegen die sich harmlos gebenden Krebszellen abgelegt haben – und zwar aufgrund der teils antigenspezifischen, teils unspezifischen Stimulation durch Bestandteile von Bakterien. Was bei Autoimmunerkrankungen zu ernsten, teils lebensbedrohlichen Angriffen auf normales Gewebe führt, wäre bei der Bekämpfung von Krebs und Krebsvorstufen demnach lebensnotwendig: die Kreuzreaktivität von Immunzellen, die sowohl auf Bakterienbestandteile als auch auf ähnlich aufgebaute Marker an der Oberfläche körpereigener Zellen anspringen.

Und so, wie man sich die Zunahme von Autoimmunerkrankungen und Allergien zum Teil durch eine Verarmung unseres Mikrobioms und die daraus folgende Unterstimulation unseres Immunsystems erklären kann, so lässt sich auch eine „Krebs-Hygiene-Hypothese“ formulieren: Zumindest einige Krebsarten wie chronische lymphatische Leukämie (CLL) oder das Hodgkin-Lymphom treten häufiger bei Menschen auf, die als Kinder selten Infektionen hatten oder in sogenannten guten Verhältnissen aufwuchsen, die im Allgemeinen mit einer besseren Hygiene korrelieren.

Und dann noch die Gene …

Wie eingangs erwähnt, wird die Sache durch weitere Wechselwirkungen unübersichtlich. So wird der Einfluss des Mikrobioms auf Krebs und Krebstherapien seinerseits durch unser Erbgut beeinflusst. Bestimmte Mutationen im Gen für einen Rezeptor der angeborenen Abwehr, TLR5, verhindern eine starke Reaktion der Immunzellen auf das weit verbreitete Bakterienprotein Flagellin. Brustkrebs-Patientinnen, die außer einer Mutation im Estrogenrezeptor auch diese TLR5-Genvariante aufweisen, haben besonders schlechte Prognosen. Bei Eierstock-Krebs hingegen haben Trägerinnen derselben Mutation eine höhere Überlebenswahrscheinlichkeit als Frauen ohne die Mutation.

An Mäusen fand man heraus, dass diese Mutation Zytokinkonzentrationen verändert: Mit ihr produzieren unsere Zellen weniger Interleukin 6, aber mehr Interleukin 17 als mit der Standard-Genvariante – allerdings nur, wenn sie mit einem Mikrobiom konfrontiert werden: In keimfrei aufgezogenen Mäuse mit oder ohne die Mutation schreitet der Krebs gleich schnell voran.

Zurück auf Los: Was ist überhaupt Krebs?

Auch die nächsten Blogbeiträge werden sich um Krebs drehen. Im nächsten Artikel stelle ich die vermeintlich banale Frage, was Krebs überhaupt ist, und beantworte sie anhand des unverwüstlichen Leitspruchs von Theodosius Dobzhansky: „Nichts in der Biologie hat einen Sinn außer im Lichte der Evolution.“ Und im übernächsten Artikel dringe ich zur eigentlichen Schnittmenge mit dem Thema meines Buches vor: Lassen sich Autoimmunerkrankungen als aus dem Ruder gelaufene Krebsabwehr verstehen – und was wäre damit gewonnen?

Literatur

Kate Yandell: Microbes Meet Cancer. The Scientist Magazine, 1. April 2016 – wissenschaftsjournalistische Zusammenfassung mit guter Grafik

Laurence Zitvogel et al.: Microbiome and Anticancer Immunosurveillance. Cell 165, 7. April 2016 – gute Übersichtsarbeit, ebenfalls gut illustriert

S. Viaud et al.: Gut microbiome and anticancer immune response: really hot Sh*t! Cell Death and Differentiation 22, 2015 – mit Details überfrachtete, nicht sehr sorgfältig durchgearbeitete und anstrengend zu lesende Übersichtsarbeit mit wirrer Grafik

 

Magenkeim Helicobacter pylori scheint zu Hashimoto-Thyreoiditis beizutragen

Auf ihrem im Mai 2016 vorgestellten Konferenz-Poster beleuchten Iryna Voloshyna et al. einen der mittlerweile zahlreichen Zusammenhänge zwischen unserem Mikrobiom und Autoimmunerkrankungen: Während in einer Vergleichsgruppe von Gesunden 53 Prozent Anzeichen für eine Infektion* mit dem Magenbakterium Helicobacter pylori aufwiesen, waren es unter 146 Menschen mit Hashimoto-Thyreoiditis 70 Prozent: ein statistisch signifikanter, aber an sich noch nicht sensationeller Unterschied. Zudem steht er im Widerspruch zu älteren Studien, darunter der hier bereits besprochenen Arbeit von V. Bassi et al., der zufolge Morbus-Basedow-Patienten wohl, Hashimoto-Patienten aber nicht überdurchschnittlich mit H. pylori infiziert sind.

Aber jetzt kommt’s: Die Forscher haben die Helicobacter-Infektion bei den Versuchsteilnehmern mit Hashimoto-Thyreoiditis mit der Gabe von drei Antibiotika über 14 Tage bekämpft. Bei 86 Prozent der Betroffenen war das erfolgreich. In dieser Gruppe ging die Konzentration der für die Autoimmunerkrankung typischen und mutmaßlich auch an ihrem Fortschreiten beteiligten Anti-TPO-Autoantikörper signifikant zurück, und zwar nach 30 Tagen auf etwa 38 Prozent der Ausgangskonzentration. Ihr Schilddrüsengewebe war im Ultraschall zudem deutlich weniger entzündet als das derjenigen Teilnehmer, bei denen die antibiotische Eliminierung der Keime misslungen war. Bei diesen „Non-respondern“ blieb auch die Autoantikörper-Konzentration unverändert hoch.

Auf die TSH-, T3- und T4-Werte hatte die Eliminierung des Magenkeims keinen Einfluss – was auch kein Wunder ist, da alle Hashimoto-Patientinnen und -Patienten mit L-Thyroxin auf normale Hormonwerte eingestellt waren.

Dies ist, wie gesagt, nur eine von vielen Arbeiten aus den letzten Jahren, die enge und zum Teil komplexe Zusammenhänge zwischen Autoimmunerkrankungen und einzelnen Angehörigen, der Zusammensetzung oder dem Artenreichtum unseres Mikrobioms aufzeigen. Ähnliche Erkenntnisse gibt es auch bei Krebserkrankungen. Darauf gehe ich in einigen der folgenden Blogbeiträge näher ein.


* Die pauschale Einstufung von H. pylori als Pathogen ist allerdings umstritten: Vielen Menschen bereitet dieses Bakterium keine Gesundheitsprobleme, und einige Stämme des Bakteriums scheinen sogar vor bestimmten Erkrankungen zu schützen, während andere Stämme wirklich aggressiv sind.

Das Immunsystem indigener Gruppen und das ethische Dilemma des Erstkontakts

Vor einem Jahr erschien eine Arbeit über das Mikrobiom unkontaktierter Yanomami, die ich damals nur kurz besprechen konnte. Jetzt habe ich sie noch einmal gelesen, obwohl sie immunologisch unergiebig ist: Die Entnahme von Blutproben, die Aufschluss über den Zustand des Immunsystems dieser Menschen hätte geben können, war bei einem Erstkontakt selbstverständlich unmöglich. Man muss schon froh sein, dass sie Abstriche aus ihrer Mundschleimhaut und das Einsammeln von Stuhlproben gestattet haben – vermutlich nicht, ohne sich über dieses merkwürdige Verhalten zu amüsieren.

Die Hauptergebnisse: Die Bakteriengemeinschaften auf der Haut und im Stuhl dieser mutmaßlich seit über 11.000 Jahren isolierten Menschen sind erheblich artenreicher als unsere – und auch als die Mikrobiome anderer naturnah lebender Völker. Die sogenannte Alpha-Diversität ihrer Mikrobiome ist also sehr hoch, vermutlich, weil sie nie mit antimikrobiellen Substanzen zu tun hatten und weil sie in ständigem Kontakt mit ihrer Umwelt leben. In ihrer Darm- und Hautflora leben zum Beispiel Bakterien, die man bislang für reine Bodenbakterien gehalten hat. Zugleich sind die Unterschiede in der Mikrobiom-Zusammensetzung zwischen den 34 Yanomami, von denen die Proben stammen, viel geringer als zwischen denen zweier Menschen aus einer Gruppe aus unserem Kulturkreis. Die sogenannte Beta-Diversität ist mithin sehr klein – wohl wegen des engen Zusammenlebens, der hygienischen Verhältnisse und der gleichartigen Lebensweise und Ernährung aller Gruppenmitglieder.

Unter den Genen dieser Bakterien, und zwar überweigend den Genen von zuvor unbekannten Stämmen des Darmbakteriums Escherichia coli, finden sich 28, die Antibiotika-Resistenzen vermitteln – sogar gegen einige neue, synthetische Antibiotika. Allerdings werden diese Gene in den Bakterien nicht abgelesen, sie sind „stummgeschaltet“ (silenced), sodass die Bakterien anfangs dennoch auf die Antibiotika ansprechen würden. Aber man muss damit rechnen, dass sie sehr bald wirklich Resistenzen entwickeln würden, und zwar gleich gegen mehrere Antibiotika. In Weltgegenden und Kulturen, in denen die sogenannte Therapietreue (die regelmäßige Einnahme des Medikaments über den kompletten notwendigen Zeitraum) vermutlich gering ist, geht das umso schneller.

Erstkontakt: Es gibt keinen Weg zurück

Dem Forscherteam war bewusst, dass die Probensammlung beim Erstkontakt eine einmalige Gelegenheit ist, ein Mikrobiom-Archiv anzulegen, das vermutlich große strukturelle und funktionale Ähnlichkeiten mit dem Mikrobiom unserer altsteinzeitlichen Vorfahren hat – auch wenn sich die einzelnen Bakterien-Arten und -Stämme natürlich auf dem Weg ihrer Wirte nach und durch Südamerika weiterentwickelt haben. 11.000 Jahre entsprechen ungefähr 100 Millionen Bakteriengenerationen. Zugleich begann mit dieser Begegnung zwischen der bislang isolierten Dorfgemeinschaft und den Medizinern und Wissenschaftlern unwiderruflich der Niedergang dieser Diversität – spätestens mit der ersten Antibiotika-Gabe.

Die Autoren schreiben in ihrer Danksagung: „Wir sind auch den Leuten in dem neu kontaktierten Dorf dankbar für ihr Vertrauen und für unser gemeinsamen Wunsch, dass der unvermeidliche Kontakt mit unserer Kultur ihrem Volk gesundheitliche Vorteile und Schutz bringen möge.“ Ist das nicht ein arg frommer Wunsch angesichts der bisherigen Erfahrungen mit der gesundheitlichen und sozialen Entwicklung neu kontaktierter, kleiner indigener Gruppen?  Weiterlesen