Schlagwort-Archive: Zytokine

Schmerz

Achtung, lang – aber am Ende ist man wirklich schlauer!

Ein schwieriges Thema

Viele Menschen mit Autoimmunerkrankungen leiden unter Schmerzen, die ihre Lebensqualität erheblich mindern und schwer zu bekämpfen sind. Ich bin von starken Schmerzen in den letzten Jahren zum Glück weitgehend verschont geblieben und hatte – wohl auch deshalb – in meinem Buch kein Kapitel über die Zusammenhänge zwischen Schmerz und Autoimmunstörungen vorgesehen. Schließlich ist mein Thema ohnehin schon furchtbar vielschichtig, auch wenn man die Wechselwirkungen zwischen dem (gesunden oder entgleisten) Immunsystem und dem (intakten oder beschädigten) Nervensystem ausklammert.

Aber dann erreichte mich eine ziemlich verzweifelte Anfrage von jemandem, der gerade höllische Schmerzen durchlitt und einen Zusammenhang mit einer Autoimmunerkrankung vermutete. Zwar konnte ich ihm leider nicht helfen; ich gebe grundsätzlich keine Diagnose- oder Therapieempfehlungen ab, da das meine Kompetenzen weit überschreiten würde. Aber mein Interesse war geweckt, und ungefähr zur selben Zeit wies mich ein Freund auf eine gute neue Übersichtsarbeit zu Schmerz bei Autoimmunerkrankungen hin. Und so habe ich mich doch in dieses Feld gestürzt, viel dazu gelesen, mit der fremden Fachterminologie gekämpft und einiges gelernt.

Was ist Schmerz?

Intuitiv weiß jeder, was mit Schmerz gemeint ist, aber es hilft ungemein, sich die genaue Definition anzusehen. Die Internationale Gesellschaft zur Erforschung des Schmerzes (IASP) spricht von einem „unangenehmen, heftigen Sinnes- und Gefühlserlebnis, das mit tatsächlichen oder potenziellen Gewebeschäden einhergeht“. Schmerz ist also kein unmittelbarer Sinnesreiz, sondern das Ergebnis einer aufwändigen Signalverarbeitung in der Peripherie (also etwa am Ort der auslösenden Verletzung), im Rückenmark und im Gehirn. An dieser Signalverarbeitung beteiligen sich neben den Nervenzellen oder Neuronen auch die sogenannten Gliazellen (ein Sammelbegriff für alle Zellen im zentralen Nervensystem, die keine Neuronen sind) und, wie sich inzwischen gezeigt hat, etliche Zellen des Immunsystems.

P1100559_3_Orte_Schmerzentstehung_800

An der Schmerzentstehung sind die Nervenendigungen im peripheren Nervensystem (1), das Hinterhorn des Rückenmarks (2) und das Gehirn (3) beteiligt. Das Rückenmark zählt zum zentralen Nervensystem.

Etwas enger gefasst ist ein dem Schmerz verwandter Begriff, die Nozizeption. Noxen (vom lateinischen nocere = schaden) sind potenziell schädliche Reizauslöser physikalischer, chemischer, mikrobieller oder auch psychosozialer Natur, also etwa Hitze, ätzende Stoffe oder Krankheitserreger. Deren rein sinnesphysiologische, also ohne Beteiligung von Bewusstsein oder Gefühlen erfolgende Wahrnehmung (Perzeption) im zentralen Nervensystem (ZNS) heißt Nozizeption.

Die Alarmsignale, die im ZNS ankommen, gehen von spezialisierten freien Nervenendigungen in der Peripherie aus, also zum Beispiel in der Haut eines Fingers, in den sich gerade ein Dorn gebohrt hat. Diese für Schmerzreize empfindlichen Nervenendigungen, die Nozizeptoren, registrieren die Gewebeschädigung und senden dann elektrische Signale aus.

Weiterlesen

Große Unterschiede im Immunsystem eineiiger Zwillinge

Nur wenige Forscher beschäftigen sich mit der Entwicklung des gesamten Immunsystems, also all der Komponenten sowohl der angeborenen als auch der erworbenen Abwehr, über das ganze Leben hinweg: von der Geburt bis ins hohe Alter. Hier stelle ich eine dieser wenigen Arbeiten vor:

Petter Brodin et al. (2015): Variation in the Human Immune System Is Largely Driven by Non-Heritable Influences (Open Access)

Die Autoren haben an 105 gesunden Zwillingspaaren, also 210 Personen, 204 Immunsystem-Parameter untersucht, darunter die Häufigkeit von 95 verschiedenen Immunzelltypen, die Konzentration von 51 Zytokinen, Chemokinen und Wachstumsfaktoren im Serum und die Veränderungen dieser Werte nach Anregung der Immunzellen durch Botenstoffe. 78 Zwillingspaare waren eineiig, 27 zweieiig. Bei der großen Mehrheit, nämlich 77 Prozent der Parameter waren die Unterschiede zwischen den Zwillings-Messwerten überwiegend (nämlich zu mehr als der Hälfte) nicht erblich, sondern durch unterschiedliche Umwelteinflüsse bedingt. Die Unterschiede bei 58 Prozent der Immunsystem-Parameter waren sogar ganz überwiegend (zu mehr als 80 Prozent) nicht erblich bedingt. Außerdem unterschieden sich die Immunsysteme älterer Zwillingspaare deutlich stärker als die jüngerer: Der Umwelteinfluss nimmt mit den Jahren zu.

Mit den Jahren entwickeln sich Zwillinge immunologisch immer weiter auseinander, weil unterschiedliche Umwelteinflüsse auf sie einwirken, etwa Impfungen, Infektionen, Allergene oder Nahrung

Mit den Jahren entwickeln sich Zwillinge immunologisch immer weiter auseinander, weil unterschiedliche Umwelteinflüsse auf sie einwirken, etwa Impfungen, Infektionen, Zellgifte oder ihre Kost.

Die Erblichkeit der Parameter wurde anhand von Messungen an eineiigen und zweieiigen Zwillingspaaren ermittelt. Zwischen eineiigen Zwillingen sollten erbliche Faktoren (also Gene und dauerhafte epigenetische Markierungen des Erbguts) zu 100 Prozent übereinstimmen, zwischen zweieiigen Zwillingen dagegen – wie bei anderen Geschwisterpaaren – nur zu 50 Prozent. Umweltfaktoren (darunter auch stochastische epigenetische Veränderungen) sollten dagegen ein- und zweieiige Zwillinge gleichermaßen beeinflussen.

Unter den Immunzelltypen gab es einige wenige, deren Häufigkeit im Blut der Probanden stark erblich bedingt war, also zwischen eineiigen Zwillingen sehr gut übereinstimmte – vor allem naive CD27+-T-Zellen und CD4+-Gedächtnis-T-Zellen. Die Häufigkeit der meisten Zellen der erworbenen (T- und B-Zellen) sowie der angeborenen Abwehr (Granulozyten, Monozyten und NK-Zellen) unterschied sich dagegen zwischen eineiigen Zwillingen praktisch ebenso stark wie zwischen zweieiigen Zwillingen, sodass man annehmen muss, dass Zufälle und Umweltreize wie Infektionen die Werte prägen.

Unter den Zytokinen erwies sich IL-12p40 als besonders stark erblich. Varianten im Gen dieses Proteins werden mit Krankheiten wie Psoriasis oder Asthma in Verbindung gebracht, an denen das Immunsystem beteiligt ist. Bei vielen anderen Zytokinen war der erbliche Einfluss gering.

Schon im Ruhezustand (oben) unterscheiden sich viele Immunparameter zwischen Zwillingen. Eine Anregung des Immunsystems löst bei den wenigen erblich dominierten Parametern gleich starke Veränderungen aus (Zeile 2), bei vielen nicht erblich dominierten Parametern aber ungleich starke Veränderungen, die die Unterschiede zwischen den Basiswerten ausgleichen oder verstärken können.

Schon im Ruhezustand (oben) unterscheiden sich viele Immunparameter zwischen Zwillingen. Eine Anregung des Immunsystems löst bei den wenigen erblich dominierten Parametern (etwa den homöostatischen Zytokinen IL-2 und IL-7, die die Vermehrung von T-Zellen steuern) gleich starke Veränderungen aus (Zeile 2). Bei den vielen nicht erblich dominierten Parametern (etwa IL-6, IL-20 oder IL-21) können die unterschiedlichen Reaktionsstärken die Unterschiede zwischen den Basiswerten ausgleichen oder verstärken.

Das galt sowohl für die Basiswerte, die ohne Stimulation des Immunsystems erhoben wurden, als auch für viele Werte, die nach Anregung einer Immunreaktion ermittelt wurden. Eine stark erbliche Komponente fand sich bei den sogenannten homöostatischen Zytokinen IL-2 und IL-7, die bei einer Aktivierung des Immunsystems für die Vermehrung und die richtige Spezialisierung von T-Zellen sorgen. Die meisten Messwerte variierten jedoch nach der Immunsystem-Stimulation zwischen eineiigen Zwillingen fast ebenso unterschiedlich wie zwischen zweieiigen Zwillingen. Dabei waren schwache und starke Immunsystem-Reaktionen gleichermaßen nicht erblich, also durch Umweltfaktoren geprägt.

Stellt man alle gemessenen Immunsystem-Parameter als Netzwerk dar, in dem voneinander abhängige Größen durch Linien verbunden sind, zeigt sich: Die relativ wenigen Parameter mit starker Erblichkeit sind von Parametern umgeben, deren Variabilität durch die Umwelt bedingt ist. Das könnte erklären, warum bekannte Risiko-Genvarianten für bestimmte Krankheiten des Immunsystems oft nur für einen kleinen Teil des Erkrankungsrisikos verantwortlich zeichnen: Ihr Einfluss wird durch andere, nicht erbliche Faktoren abgepuffert, die zum Beispiel in denselben Signalketten oder Regelkreisen angesiedelt sind.

Der im Laufe des Lebens zunehmende Einfluss der Umwelt, vor allem wohl der Infektions- und Impfgeschichte auf den Zustand des Immunsystems war bei den regulatorischen T-Zellen oder Tregs am auffälligsten: Während ihre Häufigkeit bei jungen Zwillingspaaren gut übereinstimmte (Erblichkeit 0,78 von maximal 1,0), waren die Werte bei alten Zwillingspaaren so gut wie unkorreliert (Erblichkeit 0,24, also knapp über der Nachweisbarkeitsgrenze von 0,2). Besonders großen Einfluss auf das Immunsystem nimmt offenbar das Cytomegalovirus (CMV), das uns – wie andere Herpesviren – ein Leben lang erhalten bleibt. In 16 eineiigen Zwillingspaaren aus der Versuchspopulation war ein Geschwister mit CMV infiziert und das andere nicht. Viele ihrer Immunsystem-Parameter unterschieden sich stark, und zwar sowohl im Basiszustand als auch nach Stimulation.

Die Antikörperproduktion nach einer Grippeschutzimpfung war bei den Zwillingspaaren so gut wie gar nicht erblich beeinflusst, sondern fiel – wohl je nach Impf- und Infektionsgeschichte der Individuen – recht unterschiedlich aus.

Angesichts dieser Ergebnisse ist es kein Wunder, dass unter Geschwistern, die dieselben Risikogenvarianten für Autoimmunerkrankungen erben, oftmals nur eines wirklich erkrankt.

Junge rote Blutkörperchen regulieren Immunreaktionen

Im letzten Beitrag habe ich eine Studie vorgestellt, der zufolge unreife rote Blutkörperchen unser Immunsystem in den Wochen nach der Geburt so stark zäumen, dass die Erstbesiedlung des Darms mit gutartigen Bakterien nicht zu einer gefährlichen großflächigen Entzündung führt. Hier nun die passenden Skizzen – zunächst ein erwachsener, kernloser Erythrozyt, der bekanntlich die Aufgabe hat, Sauerstoff aus den Lungen in unser Gewebe zu transportieren, und ein junger, unreifer Erythrozyt, der wegen seines Zellkerns noch nicht die typische Scheibenform der roten Blutkörperchen angenommen hat. Seine Aufgabe ist es, Immunreaktionen aufzuhalten:

P1260500_Reifer_unreifer_Erythrozyt_650Dass die kernhaltigen rote Blutkörperchen von Nicht-Säugetieren wie Fischen und Vögeln auch Aufgaben im Immunsystem übernehmen, ist schon lange bekannt. Insofern sollte es uns nicht überraschen, dass dies auch bei Menschen der Fall ist – wenn auch nur in einem schmalen Zeitfenster: Vorläufer späterer roter Blutkörperchen, die den Marker CD71 auf der Oberfläche tragen, hemmen durch Enzyme und womöglich weitere lösliche Substanzen die Aktivität der T-Zellen, B-Zellen, dendritischen Zellen und Makrophagen von Neugeborenen. Eventuell fördern sie zudem durch Freisetzung von Zytokinen die Bildung von regulatorischen T-Zellen (Tregs) und T-Helferzellen des Typs 2 (Th2).

Shokrollah Elahi vermutet, dass die massiven Entzündungen, unter denen viele Frühgeborene leiden, auf einen Mangel an CD71+-Zellen zurückzuführen sind. Diese Schutzpolizisten entstehen nämlich vor allem in den letzten Schwangerschaftswochen vor dem normalen Geburtstermin. Bei einer Frühgeburt ist ihre Zahl noch viel zu gering, um das Immunsystem während der Erstbesiedlung des Darms mit unseren Darmbakterien vom Amoklauf abzuhalten.

Wie aber werden unreife Erythrozyten „erwachsen“? Sie versammeln sich im roten Knochenmark um Makrophagen, scheiden ihre Zellkerne ab und nehmen ihre Arbeit als Sauerstofftransporteure auf. Die Kerne, die dabei nur stören würden, werden von den Makrophagen vertilgt:

P1260501_Unreife_Erythrozyten_und_Makrophage_650

Wie so oft übernehmen die Makrophagen also die Müllentsorgung – besonders wichtig, wenn es um die Beseitigung von Kernen geht, da diese jede Menge Nukleinsäuren (DNA) enthalten, die andernfalls starke Immunreaktionen auslösen würden. Extrazelluläre Nukleinsäuren deuten nämlich normalerweise auf Infektionen oder ein massives Zellsterben hin.

Lit.: S. Elahi (2014): New insight into an old concept: role of immature erythroid cells in immune pathogenesis of neonatal infection

 

Das Immunsystem in der Embryonalentwicklung: zwei Überraschungen

Nach langer Pause zwei schnörkel- und skizzenlose Anmerkungen zur Entwicklung des Immunsystems während der Embryogenese, die ich in Teil 4 des Buches behandle:

1. Aliens aus dem Dottersack

Bis vor wenigen Jahren dachte man, all unsere Immunzellen seien Nachfahren der Stammzellen im Knochenmark – und somit „Blätter“ am hämatopoetischen Stammbaum, den ich hier vor einer Weile in zwei Artikeln vorgestellt habe. Dann entdeckte man, dass das auf die Mikrogliazellen (makrophagenähnliche Zellen in unserem Gehirn) nicht zutrifft: Diese gehen vielmehr auf Vorläuferzellen zurück, die während der frühen Embryonalentwicklung noch vor der Schließung der Blut-Hirn-Schranke aus dem Dottersack (!) ins spätere Gehirn einwandern. Diese Ur-Mikrogliazellen sind also extraembryonale Aliens; sie gehören zu keinem der drei Keimblätter, aus denen ansonsten all unsere Gewebe und Organe entstehen: Endoderm, Mesoderm und Exoderm. Dass wir bis an unser Lebensende auf Zellen angewiesen sind, die nicht aus einem Keimblatt hervorgegangen sind, hätte man vor wenigen Jahren noch für völlig unmöglich erklärt.

Inzwischen hat sich herausgestellt, dass das auch auf viele andere Gewebsmakrophagen zutrifft – zum Beispiel die Makrophagen, die im Herzmuskelgewebe Patrouille laufen und die Homöostase aufrecht erhalten. Diese Zellen, die teils direkt auf Vorläufer im Dottersack, teils auf Dottersackzellen-Nachfahren aus der fetalen Leber zurückgehen, sind offenbar ebenfalls imstande, sich ein Leben lang durch Teilung selbst zu erhalten. Erst bei einer Entzündung wandern zusätzlich aus Knochenmark-Stammzellen entstandene Monozyten in das Gewebe ein, die dort zu Makrophagen heranreifen.

Diese „Notfall-Makrophagen“ siedeln sich aber in vielen Geweben nicht dauerhaft an, sondern werden nach erfolgreicher Bekämpfung der Entzündung von den örtlichen Gewebsmakrophagen abgetötet und beseitigt. In einjährigen Mäusen etwa stammen die meisten Makrophagen in der Leber, im Gehirn und in der Haut (also Kupffer-, Mikroglia- und Langerhans-Zellen) größtenteils noch von den Dottersack- und Leber-Vorfahren ab, während sich das Verhältnis in den Lungen mit zunehmendem Alter zugunsten der Monozyten-Makrophagen verschiebt.

Lit.: A. Dey, J. Allen, P. A. Hankey-Giblin (2015): Ontogeny and polarization of macrophages in inflammation: blood monocytes versus tissue macrophagesE. Gomez Perdiguero et al. (2015): Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors

2. Neonatales Immunsystem voll entwickelt und aktiv unterdrückt

Lange glaubte man, Neugeborene seien so anfällig für Infektionen, weil ihr Immunsystem noch sehr unreif sei. Wie sich Ende 2013 herausstellte, ist es tatsächlich bereits voll entwickelt: Das Knochenmark, aus dem die Zellen der angeborenen Abwehr und die B-Zellen hervorgehen, ist schon lange vor der Geburt aktiv, und auch der Thymus, in dem die positive und negative Selektion der T-Zellen stattfindet, hat seine Arbeit schon aufgenommen.

Das Immunsystem wird aber in den ersten Lebenswochen aktiv unterdrückt, um eine Besiedlung des Darms mit lebensnotwendigen Bakterien und anderen Mikroorganismen zu ermöglichen. Dafür sind spezielle rote Blutkörperchen oder Erythrozyten zuständig, die den Oberflächenmarker CD71 tragen und vor allem in wenigen Wochen vor und nach der Geburt hergestellt werden. Sie produzieren das Enzym Arginase-2, das zu einem Mangel an der Aminosäure Arginin führt. Dieser Mangel wiederum hemmt die Herstellung von Zytokinen in den Zellen der angeborenen Abwehr.

Zwar können sich Neugeborene wegen dieses Mangels an Abwehrstoffen leicht mit Erregern wie Escherichia coli oder Listeria monocytogenes anstecken. Aber dafür reagieren sie auf die Besiedlung mit unserem Mikrobiom-Starterkit nicht mit einer heftigen Immunreaktion, die noch weitaus gefährlicher wäre.

Lit.: S. Elahi et al. (2013): Immunosuppressive CD71+ erythroid cells compromise neonatal host defence against infection

Wie erfährt Immunsystem, wie spät es ist?

Auf drei Wegen: über das Hormon Melatonin aus der Zirbeldrüse, über das Hormon Cortisol aus der Hypothalamus-Hypophysen-Nebennierenrinden-Achse und über das autonome Nervensystem, das Signale an die endokrinen Drüsen und an Lymphorgane wie Milz und Leber übermittelt:

P1200146_SCN_Nerven_Hormone_IS_schwarz_650

Alle drei Instanzen beziehen die zentrale Uhrzeit vom suprachiasmatischen Nucleus (SCN), einem Teil des Hypothalamus. Der circadiane Rhythmus im SCN wird regelmäßig durch Tageslicht nachjustiert, damit die zentrale Uhr nicht vor- oder nachgeht.

Auch das Immunsystem kann die zentrale Uhr verstellen, zum Beispiel, wenn der Körper bei einer Infektion Ruhe braucht. Dann senden die Immunzellen Zytokine aus, Botenstoffe, die im SCN die Ablesung der Uhr-Gene beeinflussen.

(Abbildungsvorlage aus Mavroudis PD et al., Systems biology of circadian-immune interactions. J Innate Immun 2013; 5:153-162)

Schichtarbeit: Der Tag-Nacht-Rhythmus von Immunreaktionen

Neulich las ich, dass selbst schwaches Nachtlicht eine Brustkrebstherapie u. U. wirkungslos machen kann, weil das Licht die nächtliche Melatoninproduktion stört, was wiederum die Tumorzellen stärkt. Beim Nachrecherchieren führte eins zum anderen, und zack: Schon muss das Autoimmunbuch um ein Kapitel erweitert werden. Wie die sogenannte circadiane Rhythmik – das Schwingen aller möglicher Abläufe in unserem Körper mit einer Periode von etwa 24 Stunden – und der nächtliche Schlaf unser Immunsystem regeln, ist nämlich hochspannend und auch für Autoimmunerkrankungen relevant.

Von dem Dutzend Arbeiten, die ich zum Thema gelesen habe, empfehle ich vor allem die Übersicht „T Cell and Antigen Presenting Cell Activity During Sleep“ von Tanja Lange und Jan Born (2011), auf der die meisten der folgenden Abbildungen basieren.

Wie stellt das Immunsystem sicher, dass sich entzündungsfördernde und entzündungshemmende Signale, die angeborene und die erworbene Abwehr sowie der Th1- und der Th2-Arm der erworbenen Abwehr nicht ins Gehege kommen? Durch räumliche und zeitliche Trennung: Der Tag gehört den entzündungshemmenden Signalen, der angeborenen Abwehr und denjenigen Zellen der erworbenen Abwehr, die Pathogene unmittelbar bekämpfen: den zytotoxischen T-Zellen. Und in der Nacht – vor allem, wenn man schläft und nicht durchwacht – dominieren Entzündungsreaktionen, die uns tags bei lebensnotwendigen Aktivitäten stören würden. Außerdem wird nachts durch die Kontakte zwischen antigenpräsentierenden Zellen und T-Helferzellen das immunologische Gedächtnis angelegt.

Hormone aus der Zirbeldrüse und der Hypophyse im Gehirn sowie aus der Nebennierenrinde, deren Ausschüttung von der zentralen inneren Uhr im Hypothalamus gesteuert wird, sorgen dafür, dass die richtigen Zellpopulationen zu jeder Zeit am richtigen Ort sind – also im Blut, im Lymphsystem, im peripheren Gewebe oder im Knochenmark. Die zentrale innere Uhr basiert auf einer Handvoll Gene, deren Ableseprodukte (die Proteine PER, CRY, REV-ERB, ROR, CLOCK und BMAL) wechselseitig ihre eigene Ablesung ein- und ausschalten. Ohne äußere Impulse oszilliert diese Rückkopplung mit einer Periode von etwas mehr als 24 Stunden. Durch Tageslichtsignale – von Nervenzellen in der Netzhaut an den Hypothalamus übermittelt – wird sie auf genau 24 Stunden eingestellt.

Die zentrale Uhrzeit wird vor allem durch das Zirbeldrüsen-Hormon Melatonin an die Zellen im gesamten Körper übermittelt. Die Melatoninkonzentration ist mitten in der Nacht am höchsten, fällt noch in der Nacht steil ab und bleibt tags sehr niedrig, bis sie abends wieder anzusteigen beginnt:

TagNacht_Melatonin_beschriftet_Quelle_Netz_650In dieser und den folgenden Abbildungen ist die Konzentration im Blut während etwas mehr als 24 Stunden dargestellt, beginnend mit dem Abend eines Tages bis zum Abend des nächsten Tages.  Die beiden senkrechten Linien markieren die Nacht, in der man idealerweise zwischen 23 und 7 Uhr schläft. In der ersten Nachthälfte gerät man in den Tiefschlaf, hier wegen der englischen Bezeichnung slow-wave sleep als SWS bezeichnet. Diese Schlafphase ist für die Regelung des Immunsystems entscheidend.

Weiterlesen

Polygenie der Autoimmunerkrankungen

Zwei neue Skizzen fürs Buch, inspiriert durch An Goris und Adrian Liston, „The immunogenetic architecture of autoimmune disease„, 2012 (Open Access):

P1180505_Genetik_AIE_Voodoopuppe_NOD-Maus_650

Nur wenige Autoimmunerkrankungen folgen einem einfachen Mendel’schen Erbgang. Meist sind zahlreiche Genvarianten beteiligt, die das Erkrankungsrisiko für sich genommen – wenn überhaupt – nur minimal steigern und erst gemeinsam zum Ausbruch führen. Dabei tragen einige Genvarianten zur allgemeinen Neigung des Immunsystems zu Überreaktionen bei (Voodoo-Nadeln), und andere legen fest, welches Organ betroffen sein wird (Zielscheiben).

NOD-Mäuse wurden als Typ-1-Diabetes-Modell gezüchtet; normalerweise wird ihre Bauchspeicheldrüse durch Autoimmunreaktionen zerstört (Zielscheibe auf dem Rumpf). Wenn man ihr Diabetes-Risikoallel H2g7, das zum HLA-Komplex gehört, durch die Genvariante H2h4 ersetzt, bleiben die Tiere nicht etwa gesund: Sie bekommen eine Schilddrüsen-Autoimmunerkrankung (Zielscheibe am Hals). Auch beim Menschen scheinen die meisten HLA- oder MHC-Klasse-II-Varianten auf dem 6. Chromosom festzulegen, welche Autoantigene und damit welche Organe angegriffen werden, während Risikogenorte an anderen Stellen im Genom darüber entscheiden, ob das Immunsystem überhaupt zu Autoimmunstörungen neigt.

P1180507_AIE_polygen_650

Die Genetik der Autoimmunerkrankungen ist ein etwas undankbares Forschungsfeld, auf dem man nicht hoffen darf, die eine Genvariante zu entdecken, die für einen Großteil der Erkrankungen verantwortlich ist, und daraus eine simple Therapie abzuleiten. Stattdessen kann es sein, dass jemand chronisch krank wird, weil

  • eine MHC-Klasse-II-Variante auf Chromosom 6 zu einer schlechten Präsentation eines Autoantigens im Thymus führt, sodass das Immunsystem diesem Autoantigen später nicht gänzlich tolerant gegenüberstehen wird (geknicktes Tablett),
  • ein anderes MHC-Klasse-II-Molekül, das auf demselben Chromosom codiert ist, ein Autoantigen besonders stabil bindet, sodass dieses Autoantigen den T-Zellen im Lymphgewebe besonders häufig und lange präsentiert wird, womit die Gefahr einer T-Zell-Aktivierung steigt (tiefes Tablett),
  • eine seiner Genvarianten zu besonders scharfsichtigen T-Zell-Rezeptoren führt, sodass die T-Zellen bei einer Präsentation des passenden Autoantigens besonders leicht aktiviert werden (Brille),
  • eine andere Genvariante die regulatorischen T-Zellen (Tregs), die überzogene Immunreaktionen normalerweise ausbremsen, träge oder blind macht (Schlafmaske),
  • ein weiteres Risikoallel in aktivierten Immunzellen zu einer ungewöhnlich starken Produktion entzündungsfördernder Zytokine führt, die dann immer weitere Immunzellen anlocken (Megafon),
  • wieder ein anderes Risikoallel die Expression bestimmter Autoantigene im Thymus schwächt, sodass das Immunsystem ihnen gegenüber nicht tolerant gestimmt wird (geschrumpftes AAG) und
  • eine Genvariante an noch einem anderen Genort die Wundheilung in einem Organ hemmt, das durch einen Autoimmunprozess beschädigt wurde (Pflaster).

Auch diese Darstellung der Polygenie der Autoimmunerkrankungen ist noch stark vereinfacht – von den Wechselwirkungen zwischen unseren Genprodukten und dem Mikrobiom, unserer Nahrung, Krankheitserregern und weiteren Umweltfaktoren einmal ganz abgesehen.

Wenn also der nächste Wunderheiler um die Ecke kommt, der behauptet, man müsse nur ein bestimmtes Vitamin weglassen oder ein Mineralpräparat zu sich nehmen, um von einer nahezu beliebigen Autoimmunerkrankung geheilt zu werden: bitte auslachen.

Homing: Organspezifische Moleküle sorgen für den richtigen Passierschein

Nachdem ich in den letzten Wochen im Manuskript von Teil 3 typische Immunreaktionen im Darm und in der Haut geschildert habe, fasse ich hier noch mal grafisch zusammen, wie die T-Zellen, die in den jeweiligen lokalen Lymphorganen aktiviert werden, nach ihrer Rezirkulation durch den Körper an ihren Einsatzort finden:

P1180496_Homing_Darm_Haut_Vitamine_650Oben: Darmzellen – und nur sie – stellen aus unserer Nahrung Vitamin A bzw. Retinsäure her. Dieses Molekül löst in den örtlichen dendritischen Zellen die Herstellung bestimmter Zytokine aus, die wiederum in den T-Zellen, die von den dendritischen Zellen aktiviert werden, die Produktion darmspezifischer Lockstoff-Rezeptoren bewirken. Der Darm wird diesen T-Zellen gewissermaßen als Heimatort in den Pass eingetragen, und wenn sie bei ihrer Wanderung durch die Blutgefäße in eine Gegend kommen, die die entsprechenden Lockstoffe herstellt, beenden sie ihre Reise und nehmen ihre Arbeit auf.

Unten: In den Hautzellen – und nur in ihnen – entsteht durch die UV-B-Strahlung Vitamin D3. Dieses Molekül löst in den dendritischen Zellen der Haut die Herstellung von Substanzen aus, die dann in den aktivierten T-Zellen die Produktion hautspezifischer Lockstoff-Rezeptoren bewirken. In den Pass dieser T-Zellen wird also die Heimat Haut eingetragen. Entsprechend beenden sie ihre Reise durch die Blutgefäße, sobald sie hautspezifische Chemokine wahrnehmen.

Nach diesem Prinzip gelangen auch alle anderen T-Zellen an ihren jeweiligen Einsatzort. Durch die Rezirkulation nach ihrer Aktivierung können die T-Zellen organ- oder gewebespezifischen Pathogene nicht nur in der engsten Umgebung ihres Aktivierungsorts bekämpfen, sondern im gesamten Organ oder Gewebe. Und dass sie ihre Heimatadresse chemisch wiedererkennen, verhindert, dass sie an völlig falschen Orten ihr Pulver verschießen oder gar Schaden anrichten.

(Nachtrag: Wie die T-Zellen beim Homing vorgehen, habe ich hier schon mal skizziert.)

Westliche Kost löst in neuem Tiermodell für Morbus Crohn Dysbiose und E.-coli-Invasion aus

Martinez-Medina M et al. Western diet induces dysbiosis with increased E coli in CEABAC10 mice, alters host barrier function favouring AIEC colonisation. Gut 2014;63:116-124

Hold GL. Western lifestyle: a ‚master‘ manipulator of the intestinal microbiota? Gut 2014;63-1 (Kommentar zu Martinez-Medina M et al. 2014)

Gegenstand der Studie an einem neuen Maus-Modell für Morbus Crohn: Auswirkungen fett- und zuckerreicher „westlicher Kost“ auf die Zusammensetzung der Darmflora, den Zustand der Darmschleimhaut und die Anfälligkeit für AIEC-Infektionen in CEABAC10-Mäusen, die bestimmte humane Zelladhäsionsmoleküle (CEACAMs) exprimieren. AIEC = adhärent-invasive Escherichia coli.

Westliche Kost ist mit reduzierter Darmflora bei gleichzeitiger Zunahme von schleimabbauenden Bakterien aus dem Stamm Bacteroidetes (Gruppe Bacteroides/Prevotella) sowie Ruminococcus torques (Familie Lachnospiraceae, Stamm Firmicutes) assoziiert, wobei die genetischen Anlagen des Wirts sein Mikrobiom ebenfalls beeinflussen.

Zunahme der AIEC in den Mäusen entspricht der Situation in Morbus-Crohn-Patienten, vor allem, wenn deren Ileum (Krummdarm) betroffen ist: AIEC haben Typ-I-Pili und Geißeln, die an CEACAM6 binden – ein typisches Oberflächenprotein, das durch das Bakterium und auch durch proinflammatorische Zytokine des Wirts hochreguliert wird. Hochregulierung -> noch mehr von diesen Bakterien in der Lamina propria (Bindegewebsschicht unter dem Epithel der Schleimhaut) und in Makrophagen; Bakterien überleben in deren Phagolysosomen.

Verschiebung der Mikrobiom-Zusammensetzung -> Darmschleimhaut wird durchlässiger, Barrierefunktion (Zahl der Becherzellen, Mucin-Expression, Dicke der Schleimschicht) beeinträchtigt, Expression von Genen der angeborenen Abwehr verstärkt, Entzündungskaskaden hochgeregelt: mehr Nod2 (intrazellulärer Rezeptor, der Bakterienzellwandbestandteile erkennt) und TLR5 (Rezeptor, der Flagellin erkennt) -> MAP-Kinase-Weg und NF-κB-Signalweg -> Sekretion entzündungsfördernder Zytokine wie TNFα.

AIEC profitiert als opportunistisches Pathogen (Pathobiont) von den lokalen Bedingungen, die bei entsprechender genetischer Disposition durch westliche Kost geschaffen werden.

Zusammenfassung des Morbus-Crohn-Modells in Abb. 6: Westliche Kost (Ursache 1) -> Dysbiose -> leichte Entzündung (TNFα hochreguliert); bei genetischer Disposition des Wirts (CEACAM-Überexpression, Ursache 2) -> stärkere Dysbiose; bei Gegenwart von AIEC-Keimen (Ursache 3) -> Besiedlung des Darms durch den Pathobionten -> Entzündung verstärkt (TNFα noch weiter hochreguliert). Barrierefunktion wird immer schwächer, Immunreaktion immer stärker.

Offene Frage: Übertragbarkeit der Tierversuchsergebnisse auf Menschen; anderes Mikrobiom, andere Immunreaktionen …