Schlagwort-Archive: IgG

Immunreaktionen auf SARS-CoV-2

Eigentlich wollte ich mich bei Twitter und hier im Blog nicht über COVID-19 äußern, weil ich meiner Meinung nach zu wenig Ahnung davon habe. Mehr Ahnung als die allermeisten, die sich keinerlei Zurückhaltung auferlegen, aber eben doch zu wenig, um etwas Sinnvolles zur Verbesserung der Lage beizutragen.

Das habe ich schon bei Twitter nicht ganz durchgehalten. Und inzwischen gibt es erste Berichte, die in mein Wissensgebiet fallen und die ich daher kurz einordnen möchte: Man hat untersucht, wie das Immunsystem von Patient*innen auf eine SARS-CoV-2-Infektion reagiert. Ich gehe hier zum einen auf eine Besonderheit bei der Antikörper-Produktion ein, die kürzlich im Ärzteblatt mitgeteilt wurde, und zum anderen auf die Nachricht, dass Kuba mit seiner Interferon-alpha-2b-Produktion anderen Ländern bei der Behandlung der Betroffenen helfen will, wie die taz am 20. März berichtete.

Zunächst zu den Antikörpern oder Immunglobulinen. Das sind Proteine, die von B-Lymphozyten (Zellen der sogenannten erworbenen Abwehr) hergestellt werden. Sie erkennen und binden hochspezifisch bestimmte Antigene, also Bestandteile von Krankheitserregern, hier von den Coronaviren. Jeder B-Lymphozyt kann genau ein Antigen erkennen und bekämpfen, mit dem seine Rezeptoren und später seine Antikörper nach dem Schlüssel-Schloss-Prinzip zusammenpassen. Die zu den Viren passenden B-Lymphozyten brauchen ein paar Tage, bis sie von anderen Zellen des Immunsystems ausfindig gemacht und aktiviert wurden, sich hinreichend vermehrt und mit der Massenproduktion von Antikörpern begonnen haben.

Außerdem werden die Antikörper in einer Art Turbo-Mini-Evolution immer passgenauer; sie durchlaufen ein Feintuning, die sogenannte Affinitätsreifung. Und die B-Lymphozyten stellen normalerweise erst ziemlich klobige Antikörper her, das sogenannte Immunglobulin M (kurz: IgM). In ihm sind 5 Y-förmige Funktionseinheiten sternförmig am „Stiel“ miteinander verbunden, sodass insgesamt 10 Antigen-Bindungsstellen nach außen ragen. Diese Sterne sind so groß, dass sie die Blutbahn nicht verlassen können. Sie rauschen in der Frühphase der erworbenen Abwehrreaktion durch unsere Adern und binden dort möglichst alle Viruspartikel, denen sie begegnen. Die so entstehenden Klumpen aus IgM und Viren werden dann von bestimmten Zellen des Immunsystems beseitigt. So wird die sogenannte Virenlast schon stark verringert, aber das IgM allein schafft es meist nicht, alle Viren zu erwischen.

IgM (rechts) verklumpt Virenpartikel. Das kleinere IgG ähnelt wie IgE (Mitte) einem einzelnen Y.

Daher schalten die B-Lymphozyten im Zuge des sogenannten Klassenwechsels schon bald auf die Herstellung einer anderen Antikörperklasse um, nämlich Immunglobulin G (kurz: IgG). Dieses Protein besteht aus einem einzelnen Y und ist damit so klein, dass es aus dem Blut durch die Gefäßwände ins Gewebe eindringen kann, um dort weitere Virenpartikel aufzustöbern und durch Bindung unschädlich zu machen, bevor die Viren in unsere Körperzellen eindringen konnten. Denn nur wenn den Viren das gelingt, können sie sich massenhaft vermehren, die Zellen zerstören und in immer neue Zellen eindringen.

Wie das Ärzteblatt berichtet, hat ein Forscherteam in Melbourne immer wieder den Zustand des Immunsytsems einer 47-jährigen Frau untersucht, die an COVID-19 erkrankt war. Der Verlauf war vergleichsweise leicht, sie musste nicht beatmet werden. „Der Kampf des Immunsystems gegen das neue Virus“, so das Ärzteblatt, „scheint kurz und nicht besonders heftig gewesen zu sein. Einen Anstieg der proinflammatorischen Zytokine und Chemo­kine, die bei einer Influenza einen schweren Verlauf anzeigen, ist … ausgeblieben.“

Am 7. Tag ihres Klinikaufenthalts (der 11 Tage nach ihrer Rückkehr aus Wuhan begann, wo sie sich mutmaßlich angesteckt hatte) wurden bei ihr erstmals Antikörper nachgewiesen. Und jetzt kommt’s: IgG-Antikörper (die kleinen, die ins Gewebe eindringen) wurden zwei Tage vor den IgM-Antikörpern gefunden (den großen, die normalerweise erst mal im Blut aufräumen). Die Ergebnisse bei einer einzelnen Patientin seien aber, so die Studienautoren, vielleicht noch nicht aussagekräftig.

Bei einer Viren-Infektion produziert das Immunsystem erst das große IgM und dann zunehmend das kleinere IgG. Bei einer erneuten Infektion spielt IgM keine große Rolle; dafür schießt die IgG-Herstellung schnell in die Höhe.

Tatsächlich stellt sich die Lage in einer chinesischen Arbeit anders dar. Die Autoren haben das Blut von 173 COVID-19-Patient*innen in einer Klinik wiederholt auf die Antikörper gegen das Virus SARS-CoV-2 untersucht und dies mit der Schwere der Erkrankung in Beziehung zu setzen versucht. Antikörper vom Typ IgM, die gegen das Virus gerichtet waren, ließen sich im Median am 12. Tag nach der Klinikeinweisung nachweisen, IgG folgte dann am 14. Tag: der klassische Verlauf, wie bei anderen Infektionen. Das lässt vermuten, dass die Melbourne-Patientin untypisch war. Je schwerer der Krankheitsverlauf, desto mehr Antikörper hatten die chinesischen Patient*innen im Blut. Und vor allem bei den sehr schweren Verläufen reichten die Antikörper offenbar nicht aus, um die Infektion besiegen: Das Erbgut der Viren war trotz der starken Abwehrreaktion der B-Lymphozyten noch im Blut nachweisbar.

Nun zur zweiten Nachricht, die auch bei Twitter Entrüstung über das vermeintliche Versagen unseres Gesundheitssystems im Vergleich zu demjenigen Kubas geführt hat: Wie die taz berichtet hat, feiert Kuba große Erfolge bei der Behandlung von COVID-19-Patient*innen mit dem Zytokin Interferon alfa-2b. Ich bezweifle nicht, dass man in der Frühphase (!) bestimmter viraler Infektionen das Immunsystem durch die Gabe dieses Immunzellbotenstoffs unterstützen kann. Aber: Das ist eine sehr, sehr unspezifische Therapie, denn Interferone bewirken an tausenderlei Stellen im Organismus tausend verschiedene Dinge – nicht alle davon sind der Genesung förderlich.

Gleich zu Beginn einer Viren-Infektion stoßen befallene Zellen Interferone aus, um andere Zellen zu warnen und Immunzellen anzulocken.

Und vor allem kommt es auf das Timing an: Die großen Schwierigkeiten schwer erkrankter COVID-19-Patient*innen, die mit kaputter Lunge an einen Beatmungsapparat angeschlossen sind, stammen ja nicht primär von den Viruspartikeln und den durch sie vernichteten Zellen, sondern vor allem von der bereits heftigen Reaktion des Immunsystems auf die Infektion. Eine überschießende Abwehrreaktion kann lebenswichtiges Gewebe zerstören – hier in der Lunge.

Interferon alpha (IFNα) und beta (IFNβ) spielen in der Frühphase einer Infektion eine große Rolle. Noch bevor die Antikörperproduktion einsetzt, geht ihre Konzentration im Blut wieder stark zurück.

Die meisten COVID-19-Patient*innen in den Kliniken, insbesondere auf den Intensivstationen, sind in einem sehr weit fortgeschrittenen Krankheitsstadium. Sie nun mit einem Interferon zu traktieren, das kann böse nach hinten losgehen. Einige Zytokine können einen sogenannten Zytokinsturm auslösen, eine Überreaktion, bei der die Botenstoffe zum Beispiel die Adern so weit stellen, dass das Blut viel langsamer fließt und daher gleich mehrere Organe des Körpers nicht mehr hinreichend mit Sauerstoff versorgt werden – und das womöglich in einer Situation, in der durch die kaputte Lunge ohnehin schon Sauerstoffmangel herrscht. Es ist also keine Borniertheit, dass Mediziner*innen in Deutschland kaum über Interferon reden, wenn es um mögliche COVID-19-Medikamente geht.

 

Abb. 216: Sekundäre Immunantwort – schneller und schärfer

Bei einer sekundären Immunantwort auf eine Infektion mit demselben Erreger (Pfeile) läuft die Produktion spezifischer Antikörper schneller und steiler an. Auch der Klassenwechsel von den klobigen IgM-Pentameren zu Monomeren wie IgG erfolgt schneller. Siehe auch Abb. 212 .

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Die Milch macht’s – zumindest bei Mäusen

Dass Muttermilch Antikörper enthält, die das Neugeborene in den ersten Monaten vor Infektionen schützen, ist schon länger bekannt. Aber Milch leistet noch mehr für das Immunsystem des Nachwuchses, wie zwei neuere Arbeiten zeigen:

M. K. Ghosh et al. (2016): Maternal Milk T Cells Drive Development of Transgenerational Th1 Immunity in Offspring Thymus (Open Access); dazu auch die Pressemitteilung der Universität: Vaccinating Babies Without Vaccinating Babies

In der Vorläuferstudie hatten die Forscher herausgefunden, dass Mäuse ihrem Nachwuchs beim Säugen nicht nur durch Antikörper, sondern auch durch Immunzellen eine Immunität gegen Pathogene vermitteln, mit denen ihr eigenes Immunsystem kürzlich konfrontiert wurde. Seltsamerweise ist diese Immunität noch beim erwachsenen Nachwuchs nachzuweisen, obwohl dieser keinerlei mütterliche Immunzellen mehr enthält. Die Natur und die Entstehung der Zellen, die diese Immunität vermitteln, sollte hier untersucht werden. Um eine Übertragung im Mutterleib auszuschließen, ließ man die gegen das Bakterium Mycobacterium tuberculosis oder gegen den Pilz Candida albicans immunisierten Mäuseweibchen fremden Nachwuchs aufziehen.

Die Immunität wird offenbar von Gedächtnis-T-Zellen übertragen, die über CD4+-Marker und MHC-Klasse-II-Komplexe verfügen – eine kuriose Kombination, denn normalerweise empfangen CD4+-T-Zellen Signale von antigenpräsentierenden Zellen wie etwa dendritischen Zellen, die Antigene auf MHC-Klasse-II-Komplexen präsentieren. Dendritische Zellen sind aber viel zu kurzlebig, um die hier beobachteten Effekte zu erklären; es waren eindeutig antigenpräsentierende CD4+-T-Zellen, die die Immunität übertrugen – vielleicht, weil nur T-Zellen gezielt in den Thymus wandern können. Wie diese Zellen an die MHC-Klasse-II-Komplexe gelangt sind, ist unklar. Die Autoren vermuten Trogozytose: die Übergabe von Membranflößen einschließlich MHC-Komplex und Kostimulatoren an einer immunologischen Synapse, also einer Bindungsstelle zwischen der (primären) antigenpräsentierenden Zelle und einer T-Zelle, deren T-Zell-Rezeptor spezifisch an den Komplex bindet. Diesen Mechanismus habe ich hier bereits vorgestellt.

Nach der Aufnahme über die Muttermilch wandern diese ungewöhnlichen mütterlichen Gedächtnis-T-Zellen gezielt in den Thymus und die Milz der Mäusebabies. Um an den Grenzen – also am Brustdrüsen-, Darm- und Thymusepithel – nicht von anderen Immunzellen aufgehalten zu werden, „verschlucken“ sie vermutlich ihre MHC-Klasse-II-Komplexe samt Antigenen in Vesikeln und befördern sie erst am Ziel wieder an die Zelloberfläche. Im Thymus werden die MHC-Klasse-II-Komplexe einschließlich der Antigene womöglich durch eine weitere Trogozytose an „ordentliche“ antigenpräsentierende Zellen übergeben, oder die CD4+-T-Zellen werfen die Antigene ab, und antigenpräsentierende Zellen nehmen sie auf.

Jedenfalls werden die Antigene aus den Pathogenen, mit denen die Mütter infiziert waren, nun den unreifen Mäusebaby-Thymozyten präsentiert, die daraufhin zu CD8+-T-Zellen mit einer Spezifität für diese Antigene heranreifen. Diese Immunitätsübertragung nennen die Autoren „maternal educational immunity“, um sie von der passiven Immunität zu unterscheiden, die vor allem durch mütterliche Antikörper in der Milch übertragen wird und sich rasch verliert, da diese Antikörper im Jungtier nicht nachproduziert werden können.

In der Pressemitteilung der Universität finden sich interessante Spekulationen über eine mögliche Nutzung dieses Mechanismus zur „indirekten Impfung“ von Säuglingen (nämlich durch Impfung der Mütter während der Schwangerschaft) und über die hohe historische Überlebensrate von Kleinkindern aus Adelsfamilien, die häufig von Ammen aus der Unterschicht gestillt wurden und so vielleicht eine besonders gute „Immunsystem-Erziehung“ genossen. Dabei sollte aber nicht vergessen werden, dass die Reifung des Immunsystems bei jungen Mäusen anders verläuft als bei Menschenkindern.

M. A. Koch et al. (2016): Maternal IgG and IgA Antibodies Dampen Mucosal T Helper Cell Responses in Early Life (Bezahlschranke, nur Abstract und eine Abbildung); dazu auch Meldung „Breast Milk Primes Gut for Microbes“ in The Scientist

Mütterliche, über die Milch übertragene Antikörper der Typen IgG und IgA dienen vor allem dazu, Pathogene im Darm junger Mäuse zu bekämpfen, solange deren Immunsystem dazu noch nicht imstande ist – so glaubte man bisher. Jetzt zeigt sich, dass insbesondere IgG auch Immunreaktionen hemmt, und zwar solche gegen nützliche Bakterien, die nach der Geburt den Darm von Mäusebabies besiedeln. Fehlen die mütterlichen Antikörper, reagiert das Lymphgewebe am Darm heftig auf die neue Darmflora: Es entstehen viel mehr T-Helferzellen, die wiederum B-Zellen zur Produktion von Antikörpern gegen die gutartigen Darmbakterien anregen.

Allerdings scheinen die Mäuse, denen das mütterliche IgG vorenthalten wurde, keine langfristigen Gesundheitsschäden davonzutragen. Der Begleitartikel in The Scientist stellt dennoch Spekulationen über langfristige Folgen einer gestörten Mikrobiom-Entwicklung an, etwa Morbus Crohn und Colitis ulcerosa – nur um dann abzuwiegeln und auf die Unterschiede zwischen Mensch und Maus hinzuweisen. Zum Beispiel darauf, dass menschliche Muttermilch viel weniger IgG enthält als die von Mäusen. Es ist zum Mäusemelken.

Das vorgeburtliche Immunsystem: nicht unreif, sondern aktiv tolerant

In der Immunologie entwickeln sich die Techniken und mit ihnen im Idealfall auch die Einsichten so schnell, dass fünf oder gar zehn Jahre alte Arbeiten meist zum alten Eisen gehören. Aber es gibt Ausnahmen. Manches Konzept taucht irgendwann wieder aus der Versenkung auf, in der es verschwunden war, weil es zur Zeit seiner Entstehung nicht überprüft und weiterentwickelt werden konnte. Das gilt zum Beispiel für die Hypothese vom geschichteten oder gestaffelten Immunsystem, der layered immune system hypothesis, die 1989 von Leonore und Leonard Herzenberg aufgestellt wurde.

Die Schichten oder Phasen sind dabei ursprünglich sowohl stammes- als auch individualgeschichtlich zu verstehen. Auch wenn der Name Ernst Haeckel nirgends fällt, schwingt dessen biogenetisches Grundgesetz mit, also die Rekapitulationsregel: „Die Ontogenese rekapituliert die Phylogenese.“ In seiner dogmatischen Form war dieses „Gesetz“ nicht zu halten, und Haeckel hat der Sache mit seinen didaktisch geschönten grafischen Darstellungen keinen Gefallen getan.

Aber nach wie vor gilt: Je jünger ein Embryo, desto weniger spezifische Züge seiner Art trägt er, und desto mehr Züge hat er noch mit ähnlich frühen Entwicklungsstadien entfernt verwandter Arten gemeinsam – Züge, die evolutionär älter sind als die gattungs- und artspezifischen Ausdifferenzierungen der späteren Entwicklungsstadien. Auf das Immunsystem bezogen hieße das zum Beispiel: Die Elemente der evolutionär älteren angeborenen Abwehr bilden sich im werdenden Individuum früher heraus als die Bestandteile der evolutionär jüngeren erworbenen Abwehr.

Schon bei den Herzenbergs und erst recht in den neueren Arbeiten, die sich auf die Hypothese beziehen, steht aber die Ontogenese, die Embryonalentwicklung, im Vordergrund. Die Entwicklung des individuellen Immunsystems wird traditionell als Reifung verstanden: Vor der Geburt ist das System unreif – im Sinne von unterentwickelt oder nicht funktionstüchtig; nach der Geburt reift es durch den Kontakt mit Antigenen aus der Umwelt heran; im Alter erschöpft es sich.

In den letzten Jahren mehren sich aber die Anzeichen, dass das menschliche Immunsystem bereits weit vor der Geburt Funktionen erfüllt – nur eben andere als nach der Geburt. Die Geburt markiert also nicht den Beginn der Aktivität, sondern eine Änderung des Aufgabenprofils, die mit einer Änderung der zellulären Zusammensetzung und der „Gestimmtheit“ des Immunsystems einhergeht: mit dem Rückbau einer Ebene und dem Ausbau einer anderen.

Die Entwicklungsphasen der tolerogenen Immunität durch fetale T-Zellen und der aggressiven Immunität durch adulte T-Zellen überlappen sich. Nach Burt 2013, Abb. 1

Die Entwicklungsphasen der tolerogenen Immunreaktionen durch fetale T-Zellen und der aggressiven Immunreaktionen durch adulte T-Zellen überlappen sich. Nach Burt 2013, Abb. 1

Die für eine Ebene oder Phase des Immunsystems typischen Lymphozyten besiedeln die Lymphorgane und die Peripherie nicht kontinuierlich, sondern in Wellen. Ein Beispiel sind die beiden B-Zell-Populationen, die bei Mäusen zu unterschiedlichen Zeiten auftauchen, von unterschiedlichen hämatopoetischen Stammzellen im Knochenmark abstammen und unterschiedliche Eigenschaften haben: In neugeborenen Mäusen dominieren die B-1-Zellen, die vor allem in der Bauchhöhle vorkommen; bei erwachsenen Mäusen herrschen B-2-Zellen vor, die schlagkräftigere Antikörper produzieren.

Auch das T-Zell-Repertoire entwickelt sich in Wellen. Wie bereits besprochen, entstehen beim Menschen während der 9. Schwangerschaftswoche zunächst γδ-T-Zellen, die bei Erwachsenen nur noch etwa fünf Prozent der T-Zellen ausmachen. Ab der 10. Woche werden αβ-T-Zellen produziert, und zwar sowohl zyto­to­xi­sche T-Zellen (CD8+) als auch CD4+-T-Zellen, die entweder zu Helferzellen oder zu regu­la­to­ri­schen T-Zellen (Tregs) werden. Die frühen CD4+-T-Zellen haben eine starke Neigung, sich – manchmal schon im Thymus, zu einem großen Teil aber erst in der Peripherie – zu Tregs zu entwickeln und fortan besänftigend auf das restliche Immunsystem einzuwirken.

Vor allem im zweiten Schwangerschaftsdrittel wimmelt es im Körper des werdenden Kindes von Tregs. In der 24. Schwangerschaftswoche machen sie 15 bis 20 Prozent aller CD4+-T-Zellen aus, während es bei der Geburt nur noch 5 bis 10 Prozent und bei Erwachsenen unter 5 Prozent sind. Fehlen sie, etwa aufgrund eines genetischen Defekts im Treg-typischen Gen FoxP3, so kommt es bereits kurz nach der Geburt zu einer massiven, viele Organe umfassenden Autoimmunreaktion (IPEX). Erst im dritten Trimester werden die tolerogenen fetalen T-Zellen allmählich von aggressiveren adulten T-Zellen abgelöst.

Das kam für viele Forscher überraschend, denn man hatte die Entwicklung der erworbenen Abwehr jahrzehntelang fast nur an Labormäusen erforscht, bei denen die T-Zell-Produktion knapp vor der Geburt anläuft und nicht bereits im ersten Trimester. Die ersten Tregs verlassen den Mäuse-Thymus sogar erst am dritten Tag nach der Geburt. Dieser grundlegende Unterschied zwischen Mensch und Maus ist – wie so vieles – mit der ebenso grundverschiedenen life history der beiden Arten zu erklären.

So, wie das mütterliche Immunsystem während der langen Schwangerschaft beim Menschen vor der Herausforderung steht, den (halb)fremden Fetus nicht abzustoßen, muss auch der Fetus mit (halb)fremden Eindringlingen zurechtkommen, nämlich mütterlichen Zellen und Antikörpern. Mikrochimärismus – der Einbau von Zellen aus der Mutter in den Organismus ihres Kindes ebenso wie der Einbau von Zellen des Kindes in den Organismus seiner Mutter – ist bei Menschen und anderen großen, langlebigen Säugetieren weit verbreitet und in den allermeisten Fällen völlig harmlos: Das Immunsystem lernt rechtzeitig, dass diese Zellen von nun an dazugehören, und die Einwanderer integrieren sich anstandslos. Zu ihnen zählen auch mütterliche Immunzellen aller Art, etwa Monozyten, natürliche Killerzellen, T- und B-Zellen. In den fetalen Lymphknoten präsentieren einige von ihnen den Immunzellen des Kindes mütterliche Antigene.

In der Mythologie ist die Chimäre ein Wesen, das vorne Löwe, in der Mitte Ziege und hinten Drachen ist. Wir alle sind Chimären: Unser Körper enthält Zellklone, die aus unseren Müttern stammen.

Die Chimäre der Mythologie ist vorne Löwe, in der Mitte Ziege und hinten Drache. Wir alle sind Chimären: Unsere Körper enthalten Zellklone, die aus unseren Müttern stammen.

Neben mütterlichen Zellen dringen auch mütterliche Antikörper in den Fetus ein, und zwar massenhaft: Gegen Ende der Schwangerschaft ist die Konzentration von mütterlichem Immunglobulin G (IgG) im Fetus höher als im mütterlichen Blut. Über die Muttermilch nimmt das Neugeborene weiter IgG auf. Diese Antikörper schützen das Kind in den ersten Lebensmonaten vor Infektionen. Antikörper sind bekanntlich Proteine und als solche nicht nur Waffen, sondern zugleich Ziele der Abwehr – sofern das Immunsystem nicht lernt, sie zu tolerieren.

Außer mütterlichen Antigenen tauchen währen der Entwicklung des Fetus auch immer wieder neue Gewebstypen und Organe auf und mit ihnen Autoantigene, auf die das Immunsystem nicht aggressiv reagieren darf. Und die bakterielle Flora, die unsere Haut und unsere Schleimhäute unmittelbar nach der Geburt besiedelt, muss zwar in ihre Grenzen verwiesen, aber ansonsten toleriert werden. Ähnliches gilt vermutlich für einige Pathogene, etwa Viren, die die Schutzwälle rings um den Fetus überwinden und ihn bereits vor der Geburt chronisch infizieren können: Auch sie müssen zwar eingedämmt, dürfen aber nicht aggressiv bekämpft werden, weil das für das werdende Kind das Ende bedeuten würde.

Die zentrale Toleranz durch die negative T-Zell-Selektion im Thymus reicht für diese Herunterregulierung der Abwehr offenbar nicht aus: Auch in der Peripherie muss Frieden gestiftet werden. Naive fetale CD4+--T-Zellen müssen sich bei Bedarf schnell zu antigenspezifischen Tregs weiterentwickeln können. Dazu brauchen sie Signale aus der TGF-β-Familie, die tatsächlich in fetalen Lymphknoten in viel höherer Konzentration vorliegen als in adulten Lymphknoten. Auch können sich fetale Tregs, wenn sie in den Lymphknoten mit Interleukin 2 angeregt werden, stark vermehren, selbst wenn ihre T-Zell-Rezeptoren gerade nicht durch das passende präsentierte Antigen stimuliert werden – was bei adulten Tregs eine strikte Voraussetzung für die Zellteilung ist.

Auch wenn sich fetale und adulte Tregs äußerlich zum Verwechseln ähneln: Sie stammen – wie Experimente an „humanisierten“ Mäusestämmen zeigen – von unterschiedlichen hämatopoetischen Stammzellen ab, haben unterschiedliche Genexpressionsprofile und Aktivierungsschwellen und gelangen in der Peripherie in unterschiedliche Signal-Landschaften, die ihr Verhalten und ihre weitere Entwicklung in entsprechende Bahnen lenken.

Einige Vertreter der Hypothese vom mehrschichtigen oder gestaffelten Immunsystem meinen, die individuell unterschiedliche Neigung zu Autoimmunerkrankungen, Allergien und Nahrungsmittelunverträglichkeiten könne mit dem Mischungsverhältnis zwischen fetalen und adulten T-Zell-Populationen zum Zeitpunkt der Geburt zusammenhängen: Neugeborene, die nur noch wenige fetale, tolerogene T-Zellen aufweisen und dafür bereits sehr viele aggressive T-Zellen vom adulten Typ, könnten im kritischen Zeitfenster nach der Geburt eine bleibende Neigung zu Überreaktionen auf Autoantigene und harmlose fremde Antigene ausbilden.

Die Hypothese vom layered immune system ist nach wie vor umstritten, wie die Diskussion zwischen Mold und Anderson (s. u.) zeigt. Aber sie passt zu den Arbeiten über die Hemmung des bereits voll einsatzfähigen neonatalen Immunsystems durch CD71+-Zellen (junge rote Blutkörperchen), die ich hier vor einigen Monaten in zwei Beiträgen besprochen habe: Offenbar kommen wir – zumindest immunologisch – keineswegs so unreif auf die Welt, wie man früher annahm. Wieder einmal zeigt sich, dass Menschen keine groß geratenen Mäuse sind.

Literatur (chronologisch)

Herzenberg, L. A., & Herzenberg, L. A. (1989). Toward a Layered Immune System. Cell, 59, 953-954. (PDF)

Mold, J. E., & McCune, J. M. (2011). At the crossroads between tolerance and aggression: Revisiting the “layered immune system” hypothesis. Chimerism,2(2), 35–41. http://doi.org/10.4161/chim.2.2.16329

Mold, J. E., & Anderson, C. C. (2013). A discussion of immune tolerance and the layered immune system hypothesis. Chimerism, 4(3), 62–70. http://doi.org/10.4161/chim.24914

Burt, T. D. (2013). Fetal Regulatory T Cells and Peripheral Immune Tolerance in utero: Implications for Development and Disease. American Journal of Reproductive Immunology (New York, N.Y. : 1989), 69(4), 346–358. http://doi.org/10.1111/aji.12083

Loewendorf, A. I., Csete, M., & Flake, A. (2014). Immunological considerations in in utero hematopoetic stem cell transplantation (IUHCT). Frontiers in Pharmacology, 5, 282. http://doi.org/10.3389/fphar.2014.00282

Yang, S., Fujikado, N., Kolodin, D., Benoist, C., Mathis, D. (2015). Immune tolerance. Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. Science, 2015 May 1;348(6234):589-94. http://doi.org/10.1126/science.aaa7017

 

Trogozytose: Kleider machen Leute

Die Funktion einer Immunzelle wird während ihrer Entwicklung von der Stammzelle im Knochenmark zur reifen Effektorzelle immer weiter festgelegt. Aber es gibt Ausnahmen. So bringt die sogenannte Trogozytose (vom griechischen trogo = nagen, knabbern) Flexibilität ins Spiel: Zellen können Oberflächenmarker an andere Zellen – insbesondere Immunzellen – übergeben. Die Empfängerzelle übernimmt dann trotz eines unveränderten Genexpressionsprofils neue Aufgaben, etwa Antigenpräsentation oder Toleranzinduzierung. In der Fachliteratur wird dieser Mechanismus auch als „cross-dressing“ bezeichnet.

T-Zelle, als B-Zelle verkleidet

T-Zelle, als B-Zelle verkleidet

So können etwa Monozyten oder Makrophagen Immunkomplexe aus Antigenen und Antikörpern des Typs IgG von B-Zellen übernehmen. Spender und Empfänger bilden dazu eine Synapse, eine innige Verbindung, bei der Fcγ-Rezeptoren an der Oberfläche der Empfänger an die freien konstanten Ende der Antikörper binden, die wiederum mit ihrer antigenspezifischen Seite an die Antigene gebunden sind, die die B-Zellen auf ihrer Oberfläche tragen. Wenn sich die Zellen wieder voneinander lösen, bleibt ein Teil der Membran des Spenders mitsamt Antikörpern und Antigenen an der Empfängerzelle haften. Die Spenderzelle schnürt diesen Membranteil ab, ohne dabei Schaden zu nehmen. Der Empfänger baut die geklauten Proteine ab oder präsentiert sie auf seiner Oberfläche, wo sie von anderen Zellen erkannt werden können.

Nach diesem Schema verläuft auch die Übernahme von Antigen-beladenen MHC-Komplexen durch T-Zellen:   Weiterlesen

Crosslinking: Wie B-Zellen erfahren, wann sie aufhören können

Immunreaktionen, die viel Energie kosten und auch den eigenen Körper schädigen können, sollten beendet werden, sobald sie nicht mehr nötig sind. Um das zu erfahren, setzen B-Zellen Rezeptoren ein, die an das konstante Ende von Antikörpern andocken:

P1240317_B-Zelle_Crosslinking_Immunkomplex_ohne_IK_650

Oben: Bindet ein frei im Gewebe oder Blut umhertreibendes Antigen an einen antigenspezifischen B-Zell-Rezeptor, so löst dieser in der B-Zelle eine Signalkette aus, die zur Produktion von Antikörpern führt. Denn freie Antigene deuten auf eine Gefahr hin, die bekämpft werden muss.

Unten: Bindet gleichzeitig ein benachbarter Fc-Rezeptor (hier FcγR, ein Rezeptor für Gamma-Immunglobulin) an das konstante Ende eines Antikörpers, so kann die B-Zelle davon ausgehen, dass das Antigen bereits von Antikörpern erkannt und zu einem Immunkomplex gebunden wurde – dass die Gefahr also bereits gebannt ist. Der Fc-Rezeptor stoppt daher die Signalkette; die B-Zelle produziert keine weiteren Antikörper.

Die doppelte Bindung von Immunkomplexen durch B-Zell-Rezeptoren und Fc-Rezeptoren nennt man Crosslinking (Vernetzung).

Affinitätsreifung der B-Zellen in den Keimzentren

In den Follikeln des sekundären und tertiären Lymphgewebes kommt es nicht nur zum Immunglobulin-Klassenwechsel, den ich im letzten Beitrag skizziert habe, sondern auch zur Affinitätsreifung durch somatische Hypermutation und anschließende Selektion auf verbesserte Antigen-Bindungsstärke:

P1240180_Follikel_Affinitätsreifung_650

Im Uhrzeigersinn, bei 4 Uhr beginnend:

A  Eine B-Zelle, die ein Antigen aufgenommen hat, präsentiert ihren Fund einer T-Helferzelle und wird vollends aktiviert, sofern der T-Zell-Rezeptor das Antigen erkennt. Sie erhält von der T-Helferzelle die Lizenz, in das Keimzentrum des Follikels einzutreten.

B  Im Keimzentrum des Follikels vermehrt sich die B-Zelle stark durch Teilung. Währenddessen verändert das Enzym AID in dem Gen, das die antigenspezifische Bindungsstelle des Immunglobulins codiert, nach dem Zufallsprinzip einzelne Basen (A, T, C, G). Diesen Vorgang nennt man somatische Hypermutation.

C  Die B-Zellen treten aus der dunklen Zone des Keimzentrums in die helle Zone über, wo sie von dendritischen Zellen (DC) erwartet werden und nach der Mutation eine Selektion durchlaufen.

D  Die dendritischen Zellen präsentieren ihnen das Antigen, um die Bindungsstärke des mutierten B-Zell-Rezeptors zu prüfen.

E  Hat die Mutation die Bindung der Immunglobuline an das Antigen geschwächt, stirbt die B-Zelle durch Apoptose kontrolliert ab.

F  Hat die Mutation die spezifische Bindung an das Antigen gestärkt, so führt die B-Zelle dieses Antigen nun auf ihrem MHC-Klasse-II-Komplex einer follikulären T-Helferzelle vor, die es mit ihrem spezifischen T-Zell-Rezeptor erkennt. Durch diesen Kontakt wird auch der Klassenwechsel bei den Immunglobulinen ausgelöst, sodass die B-Zelle nun kein IgM mehr herstellt, sondern IgG, IgE oder IgA – je nachdem, welchen Botenstoff die T-Helferzelle ausschüttet.

Je nach Bedarf und dem Ergebnis dieser weiteren Prüfung schlägt die B-Zelle danach einen von vier Wegen ein:

G  Die B-Zelle ist unbrauchbar, weil sie der T-Zelle ihr Antigen nicht effizient präsentiert, und stirbt durch Apoptose.

H  Die B-Zelle ist zur humoralen Abwehr geeignet, verlässt das Keimzentrum und entwickelt sich zur Plasmazelle weiter, die massenhaft Antikörper erzeugt.

I  Einige B-Zellen reifen stattdessen zu Gedächtniszellen heran, die mit ihrem Wissen um die aktuelle Infektion dafür sorgen, dass das Immunsystem auf ein späteres erneutes Auftreten desselben Antigens schneller und stärker reagieren kann.

J  Einige besonders schlagkräftige B-Zellen erhalten die Order, erneut in das Keimzentrum einzutreten, um sich zu vermehren und durch Mutation und Selektion weiter zu verbessern. So steigert der Organismus die Affinität der Immunglobuline zu einem bestimmten Antigen mit der Zeit. Diesen Vorgang nennt man Affinitätsreifung.

Alcaligenes: das Vieh in unseren Peyer-Plaque-Corrals

Die nächste Skizze fürs Buch:

P1180270_Alcaligenes_sIgA_ILCs_Corral_korr_650Eine der seltsamsten Entdeckungen, die in den letzten Jahren in unserem Darm gemacht wurden, ist die „Viehwirtschaft“ in den Peyer-Plaques – jenen Lymphfollikelhaufen unter dem Dünndarmepithel, in denen die lokale Immunabwehr organisiert wird.

Das Epithel, hier als Palisade dargestellt, besteht aus einer einzelnen Schicht von Enterozyten, die seitlich durch tight junctions so eng miteinander verbunden sind, dass sich nichts Gefährliches zwischen ihnen hindurch aus dem Darmlumen (oben) in das darunter liegende Gewebe (unten) quetschen kann. Aber direkt über jedem Peyer-Plaque sitzt eine M-Zelle (die Pforte), die Substanzen aus der Nahrung, Bakterien und Bakterienbruchstücke aus dem Darmlumen aufnimmt und an ihrer Unterseite wieder ausscheidet (sog. Transzytose, von trans = hindurch und Endozytose).

Dort nehmen normalerweise dendritische Zellen, die unterhalb des Epithels Wache schieben, die Antigene auf, um sie zu verarbeiten und dann in den Peyer-Plaques den naiven T- und B-Zellen zu präsentieren. Dort werden die zu den Antigenen passenden Zellen der erworbenen Abwehr aktiviert; sie vermehren sich, wandern durch die Blutbahn und kehren in den Darm zurück, wo sie z. B. Infektionen bekämpfen.

Solange keine akute Infektion vorliegt, sondern den B-Zellen vor allem Antigene aus harmlosen Darmbakterien (Kommensalen) präsentiert werden, produzieren sie sogenanntes sekretorisches Immunglobulin A (sIgA): Dimere aus zwei Y-förmigen IgA-Antikörpern, die an ihren „Stielenden“ zusammengeheftet sind. Dieses sIgA wird durch das Epithel ins Darmlumen ausgeschieden, wo es an Antigene an der Oberfläche von Kommensalen bindet. sIgA löst keine Komplementreaktion und damit keine Entzündung aus, sondern hindert die Kommensalen einfach nur daran, sich an das Epithel anzulagern und damit die Enterozyten und die Immunzellen in der Nähe „nervös zu machen“.

Manchmal aber geschieht Seltsames: Das sIgA bindet an lebende Bakterien der Gattung Alcaligenes, klopft dann gewissermaßen an die M-Zellen-Tür und wird mitsamt der Bakterien durch die M-Zellen in die darunter liegenden Peyer-Plaques eingeschleust. Ich habe das sIgA hier als Cowboys und die Alcaligenes-Zellen als Rinder dargestellt. Im Peyer-Plaque – dem Corral – werden die Bakterien nicht etwa abgetötet, sondern sie leben weiter, werden mit Nährstoffen versorgt und vermehren sich offenbar sogar.

Noch ist nicht ganz auszuschließen, dass es sich um eine perfide Ausbeutung durch die Bakterien handelt. Wahrscheinlicher ist diese Form der „Viehhaltung“ aber eine Symbiose: Alcaligenes lässt sich in geschützter Umgebung versorgen und stimmt dafür das lokale Immunsystem tolerant, indem es ihm ständig kommensalentypische Antigene präsentiert. So werden gefährliche Überreaktionen auf harmlose Kommensalen vermieden.

Wichtig ist, dass die Bakterien nicht aus ihrem Corral ausbrechen. Dafür sorgen offenbar ILCs – die vor wenigen Jahren entdeckten innate lymphoid cells, die an der Grenze zwischen angeborenem und erworbenem Immunsystem stehen. Rings um die Peyer-Plaques machen sie sich als Hirten verdient. Fehlen sie oder haben sie einen Defekt, so brechen die Alcaligenes-Bakterien aus, die örtlichen B-Zellen schalten auf die Produktion von Antikörpern des Typs IgG um, und der Dünndarm entzündet sich.

Quellen:

  • Kunisawa J. und H. Kiyono (2012): Alcaligenes is Commensal Bacteria Habituating in the Gut-Associated Lymphoid Tissue for the Regulation of Intestinal IgA Responses. Front Immunol. 2012; 3: 65, doi: 10.3389/fimmu.2012.00065
  • Sonnenberg G. F. et al (2012): Innate Lymphoid Cells Promote Anatomical Containment of Lymphoid-Resident Commensal Bacteria. Science 336: 6086; doi: 10.1126/science.1222551

 

Gekurve

Nach einer Übersetzungspause endlich wieder ein paar Skizzen fürs Buch: Zeitverläufe von Immunisierungen bzw. Infektionen. (Erläuterungen folgen im Buch.)