Archiv des Autors: Andrea Kamphuis

Mein Eindruck von Clemens G. Arvays „Die Naturgeschichte des Immunsystems“

Wie die vorigen Beiträge ist auch ist dies keine echte Buchbesprechung. Nach abgeschlossener Lektüre möchte ich nur rasch ein paar Eindrücke festhalten.

Genau wie „Immun“ von Philipp Dettmer ist auch dieses Sachbuch sehr gut verständlich geschrieben; es richtet sich an interessierte Laien und ist deutlich weniger harte Kost als das Autoimmunbuch.

Mir sind die Illustrationen im Innenteil z. T. zu kitschig, aber das ist Geschmacksache. Und in der ersten Hälfte hatte ich lauter Déjà-vu-Erlebnisse, da ich unmittelbar zuvor das Büchlein von Robert Jack und Louis Du Pasquier gelesen hatte: Da kam mir doch einiges sehr, sehr bekannt vor, und das nicht nur an den Stellen, an denen Arvay die beiden tatsächlich zitiert. Es ist schon gut, dass auf diese Weise die wichtigen Überlegungen der beiden englisch schreibenden Fachautoren einem breiteren Publikum auf Deutsch vorgestellt werden – nur für mich war der Mehrwert hier praktisch Null.

Überrascht hat mich, dass Arvay den Rundmäulern, also den Neunaugen und Schleimaalen, an mehreren Stellen eine erworbene Abwehr abspricht. Das ist m. E. ein inhaltlicher Fehler, und kein kleiner. Denn dass die erworbene Abwehr nahe an der Wurzel des Wirbeltier-Stammbaums gleich zwei Mal entstanden ist, ist für die Naturgeschichte des Immunsystems ein Knackpunkt, weil es auf eine Zwangsläufigkeit dieser Neuerung hinweist.

Aber das ist der einzige inhaltliche Fehler, der mir auffiel. In der Summe: eine schöne, sympathisch geschriebene Einführung ins Thema, aus der ich persönlich aber nicht wahnsinnig viel mitgenommen habe.

Jack/Du Pasquier: Evolutionary Concepts in Immunology, Teil 4: der Rest

Methicillin-resistenter Stamm des Bakteriums Staphylococcus aureus

Teil 1Teil 2Teil 3

Notizen/Exzerpte

Kapitel 5: Die andere Seite des Wettrüstens

Strategien der Pathogene: per Mutation und Selektion die Abwehr der Wirte ausschalten, also den Rezeptoren entwischen, den Signalweg stören oder dem terminalen Effektor entkommen. Oft kann Pathogen seine Fitness durch Mäßigung der Virulenz erhöhen, damit es länger in einem Wirt bleiben kann. Bsp.: Myxomatose in australischen Kaninchen. Ursprünglich tötete eingeführtes Virus 99,5% der Kaninchen, im Mittel in 11 Tagen. Durchgesetzt hat sich Mutante, die zu 90% tötet und dafür im Mittel 23 Tage braucht. Bsp. für Kompromiss: Wasserfloh Daphia magna und im Verdauungstrakt lebendes pathogenes Bakterium Pasteuria ramosa: Polymorphe Resistenzallele und polymorphe Virulenzallele -> dynamisches Gleichgewicht = negativ häufigkeitsabhängige Selektion; kein Bakterienstamm kann alle Wasserflöhe in einer Population befallen, kein Wasserfloh ist gegen alle Stämme resistent. Bsp. für trojanische Pferde/Zombies, um Hauptwirte zu infizieren: Toxoplasma gondii manipuliert Mäuseverhalten, um in Katzen zu gelangen; auch viele Bsp. im Insektenreich (parasitoide Wespen machen mit Viren-Hilfe Raupen zu Wächter-Zombies …). Bsp. Amöben, domestiziertes Mavirus und Mimivirus: s. Teil 1.

Strategien gg. angeborene Abwehr: 1. unsichtbar machen für Rezeptoren, z. B. durch Polysaccharidkapsel. Verlust der Kapsel beseitigt oder reduziert Pathogenität. Kapsel schränkt aber auch Virulenzmechanismen durch ggs. Abschirmung ein. Yersinia pestis verursacht Beulen- und Lungenpest mit sehr unterschiedlichem R0, hat zahlreiche Virulenzfaktoren, darunter strukturell verändertes Lipid-A in LPS durch temperaturabhängige Acyltransferase: Flöhe 26 °C -> normal -> Hexa-Acyl-Lipid A; Menschen 37 °C -> Enzym inaktiv -> Tetra-Acyl-Lipid-A, das TLR-4 nicht aktiviert -> Zeitgewinn. Auch Helicobacter pylori beherrscht den Trick, Hexa- in Tetra-A. umzuwandeln. 2. Praktisch alle Signalwege von Rezeptoren zu Effektoren wurden von irgendeinem Pathogen gehackt. 3. Effektoren ausschalten: z. B. Phagozytose: Listeria monocytogenes löst Endosom-Membran und flieht ins Cytosol, Salmonella manipuliert mit Mediatoren Zellskelett (MT) und repliziert in Endosomen; ist dort vor Lysosomen und Cytosol-Rezeptoren geschützt. Zellen versuchen die Bakterien auszuhungern, Salmonellen scheiden Siderophoren aus, um dennoch an divalente Metallionen heranzukommen.

Strategien gg. adaptive Abwehr: HIV, HCMV (Humanes Cytomegalovirus), Mycobacterium tuberculosis oder Trypanosoma brucei entkommen ihr durch 1. brute force, 2. Totstellen oder 3. ständige Veränderung. 1. HIV vernichtet direkt die aktivierten CD4+-T-Zellen, HCMV reduziert Wirksamkeit der CD8+-T-Killerzellen. NK-Zellen als Backup aus dr angeborenen Abwehr, Missing self – aber HCMV exprimiert auf Oberfläche infizierter Zellen Moleküle, die MHC-Klasse-I-Molekülen sehr ähnlich sehen – usw. usf. 2. Latente Infektionen, ebenfalls bei HIV und HCMV. Tuberkulose: größter bakterieller Killer der Menschheit; etwa 90% der Infizierten bleiben symptomfrei. Makrophagen können die Bakterien nicht vertilgen, kapseln sie zusammen mit T-Zellen in Granulomen aus Bindegewebe ein. In deren Mitte gibt es praktisch keinen Sauerstoff, fast nur tote Zellen. M. tuberculosis kann in äußerst feindseliger Umwelt „schlafend“ überleben; ein paar aktive Bakterien verlassen als Scouts die Granulome. Sobald Wirt z. B. durch HIV-Infektion geschwächt ist, erwachen sie.  3. HIV: Hypermutation während reverser Transkription. Schlafkrankheit: Trypanosomen von Tsetsefliegen übertragen, sind im Blut von variablen Oberflächen-Glycoproteinen (VSG) bedeckt. Immunsystem sieht nur Spitzen dieser Fäden, die schlechtes Ziel sind. Die VSG werden im Fließbandverfahren so schnell von vorne nach hinten transportiert und am Flagellum recycelt, dass jedes Molekül, das von einem angeborenen Rezeptor erkannt wurde, nach spätestens 120 Sekunden verschwunden ist. Zwar sind VSG hervorragende Antigene, sodass sie viele Antikörper hervorrufen, aber ein paar Bakterien entkommen aufgrund ihrer Variabilität und breiten sich dann aus. Trypanosomen haben 2000 VSG-Gene, die durch Genkonversion zu einer riesigen Vielfalt gemixt werden.

Kapitel 6: Nachwort

Bei Infektionen und Abwehr geht es ums Überleben, da zählt nicht die eleganteste Lösung, sondern alles, was funktioniert. Ständig werden alte Gene ausgeborgt und durch Mutation zurechtgebogen oder durch Exon-Shuffling neu zusammengewürfelt; permanente Umwälzung.

 

Jack/Du Pasquier: Evolutionary Concepts in Immunology, Teil 3: erworbene Abwehr

Biomphalaria glabrata, Quelle: Fred A. Lewis, Yung-san Liang, Nithya Raghavan & Matty Knight, CC BY 2.5

Teil 1Teil 2

Aus dem dicken 4. Kapitel des Buchs notiere ich hier nur diejenigen Stellen, die für Band 2 des Autoimmunbuchs relevant werden könnten. Wie in den bisherigen Notizen zum Buch löse ich Abkürzungen nicht auf usw.; daher liest sich das Folgende nicht schön und bleibt für Leute, die sich mit der Biologie des Immunsystems nicht auskennen, kryptisch.

Somatische Evolution von Immunsystemen, die Protein-Sensoren verwenden: Wird die Schnecke Biomphalaria glabrata von parasitären Würmern angegriffen, sammeln die Rezeptorgene aus der FREP-Familie (fibrinogen-related protein) zufällige somatische Mutationen (Genkonversion sowie Punktmutationen) an, was offenbar hilft, die Parasiten abzuwehren, deren Antigene sich rasch ändern. [Adema C.M. 2015, Fibrinogen-Related Proteins (FREPs) in Mollusks: FREPs sind Plasma-Lektine, die auf Antigene reagieren und 1-2 Immunglobulin-Domänen enthalten. Sie sind sehr polymorph, jede Schnecke hat ein anderes, zudem dynamisches Repertoire. Da nichts auf eine Selektion besonders wirksamer Varianten oder ein immunologisches Gedächtnis hinwiest, verleiht die FREP-Diversifizierung der Schnecke wohl eine antizipative, aber nicht adaptive Immunität.] Dieser Mechanismus blieb eine Fußnote in der Geschichte des Immunsystems; echte proteinbasierte adaptive Abwehr kam erst bei den Wirbeltieren auf.

Toleranz bei Kieferlosen: Jedes hinreichend große Antigen-Repertoire, das durch zufällige Mutationen entsteht, geht zwangsläufig mit tödlichen Autoimmunreaktionen einher. Mit jeder adaptiven Abwehr muss also zugleich ein mächtiger Mechanismus entstehen, der Rezeptoren, die auf Elemente des Selbst reagieren, unterdrückt oder eliminiert. Auch bei den Neunaugen und Schleimaalen muss es einen solchen Toleranzmechanismus geben; er ist aber noch völlig unbekannt!

MHC-Polymorphismus: MHC Klasse I wird auf jeder Zelle mit Zellkern exprimiert, MHC Klasse II auf APC und weiteren Zelltypen -> massives Investment von Energie und Metaboliten. Die Zahl der MHC-Varianten in einem Individuum ist ein Trade-off zwischen diesem Ressourceneinsatz und dem Fitnessgewinn durch ein Peptid-erkennendes T-Zell-System. [Buch: siehe Fische, bei denen Weibchen durch die Partnerwahl die MHC-Diversität im Nachwuchs nicht zu maximieren, sondern auf ein optimales = mittleres Niveau zu bringen versuchen!]

Wechselwarme Wirbeltiere, die keine Keimzentren in den Lymphknoten haben, haben entsprechende Schwierigkeiten, ihre Immunantwort „reifen“ zu lassen (somatische Hypermutation usw.).

Vinuesa C. G. et al. 2016: „Immunity operates on the edge of autoimmunity. The more potent an immune response is, the greater the risk of auto-reactivity an self-harm.“

Gute Erklärung für Klassenwechsel in B-Zellen von Kiefermäulern: B-Zellen sammeln und analysieren Informationen über Zytokine u. a. Faktoren in ihrer direkten Umgebung und entscheiden anhand dessen, welches Effektorsystem  mit dem antigenbindenden Teil des BCR verknüpft wird: Aktivierung Komplementsystem, Phagozytose durch Makrophagen, Schleimhaut mit löslichen Rezeptoren = Antikörpern präparieren, AK durch Plazenta schicken … Das lässt sich am besten erreichen, wenn der ganze antigenbindende Teild es BCR als Modul auf eine Reihe verschiedener konstanter Regionen gepfropft wird, die die Effektorfunktion des Moleküls festlegen -> Klassenwechsel-Rekombination.

Diversität der V-, D-, J-Module, durch deren Rekombination BCR, AK und TCR entstehen: Je größer die Genfamilien werden, desto geringer ist der Selektionsdruck auf jede einzelne Variante -> Mutationen sammeln sich an -> Verfall zu Pseudogenen. Kaninchen und Hühner sowie weitere Wirbeltiere haben nur ein einziges intaktes V-Segment. Sie lösen das Problem der zu geringen Vielfalt mit der „Methode Neunauge“: Nachdem RAG-Rekombinase das letzte verbleibende V-Gensegment mit D und J verbunden hat, wird durch AID-vermittelte Genkonversion Information aus den Pseudogenen in das rearrangierte VDJ-Gensegment hineinkopiert.

Selektive Nische, in der mehrfach adaptive Abwehr entstand: Proteinbasiertes antizipatives adaptives IS erfordert sehr große Zahl unterschiedlicher Rezeptoren. Da jeder Lymphozyt nur 1 spezifischen Rezeptor trägt, müssen ständig sehr viele Lymphozyten produziert werden, von denen die meisten gleich wieder einkassiert werden und unter den Überlebenden die meisten nie dem passenden Antigen begegnen. Metabolisch kostspielig, lohnt sich nicht für kleine, kurzlebige Vielzeller mit wenigen Immunzellen wie Würmer oder Taufliegen. Erst zu Beginn der Wirbeltier-Evolution wurde die Generationslücke zwischen sich schnell reproduzierenden Pathogenen und immer größeren und langlebigeren Tieren groß genug, dass sich der Unterhalt eines adaptiven IS lohnte.

Evolutionäre Beziehung zwischen adaptiven Abwehrsystemen der Kieferlosen und der Kiefermäuler: Analogie oder Homologie? Vergleich mit Augen-Evolution als Bsp. für „tiefe“ Homologie: Strukturell sehr verschiedene Systeme bauen alle auf Pax6-Transkriptionsfaktor-Kaskade auf. TF-Netzwerke sind sehr schwer evolutionär zu ändern, wenn erst die passenden Erkennungssequenzen an den Anfang der von ihnen gesteuerten Gene eingebaut sind -> hochgradig konserviert. Zugleich gibt es so viele unterschiedliche TF, dass es schon ein arg unwahrscheinlicher Zufall wäre, wenn in 2 so unterschiedlichen adaptiven Immunsystemen dieselben TF auftauchen. B-Zellen sind die einzigen Blutzellen, in denen TF Pax5 zum Einsatz kommt; in den Neunaugen wird Pax5 nur in den VLRB-Zellen exprimiert, die – wie B-Zellen – nach ihrer Aktivierung eine lösliche Form ihres Rezeptors herstellen. Auf vergleichbare Weise ähneln die TF-Profile der VLRA- und VLRC-Zellen jenen der Alpha-beta- und der Gamma-delta-T-Zellen -> Homologie. Die 2. starke Homologie ist die Existenz von spezialisierten FOXN1- und DLL4-exprimierenden sekundären Lymphorganen, nämlich Thymus und „Thymoid“.

Evolution der AID-artigen Cytidin-Aminase-Funktionen: Zu Beginn der Wirbeltier-Evolution tauchte eine neue Familie von Cytidin-Deaminasen auf, die „aktivierungsinduzierten Deaminasen“ (AID). Im kieferlosen Neunauge spielen diese Enzyme die Schlüsselrolle bei der Genkonverson, die zum adaptiven Rezeptor-Repertoire führt. Bei den Kiefermäulern ist stattdessen die RAG-Rekombination dafür zuständig. Das sind zwei recht unterschiedliche Mechanismen; wie ist der Übergang gelaufen? Große Sprünge macht die Evolution nur selten. Es gibt tatsächlich Übergänge: Im Ammenhai, einem basalen Kiefermäuler, arbeiten RAG und AID offenbar noch zusammen, um das primäre Repertoire zu bilden. Auch später wurde diese Funktion der AID nicht völlig vergessen, wie das Bsp. der AID-vermittelten V-Genkonversion bei Hühnern und Kaninchen (s. o.) zeigt. Als RAG im Laufe der Kiefermäuler-Evolution die Rolle des primären Erzeugers der Rezeptordiversität zunehmend allein übernahm, wurde AID frei für neue Rollen wie die Initiation der Klassenwechsel-Rekombination und der somatischen Hypermutation bei B-Zellen in den Keimzentren, die bei den Kieferlosen kein Pendant haben.

Eigentümlichkeit bei den Knorpelfischen: nicht ein einziger großer Cluster von V, D, J, die dann rekombinieren, sondern mehrere Mini-Cluster, die jeweils wenige V-, D- und J-Segmente enthalten – oftmals schon in der Keimbahn rekombiniert zu D-J-, V-D- oder sogar V-D-J-Segmenten (Lee et al. 2000: Rearrangement of immunoglobuline genes in shark germ cells). Demnach muss RAG in den Vorfahren in der Keimbahn aktiv gewesen sein – evtl. eine Strategie, um neue keimbahncodierte Rezeptoren der angeborenen Abwehr zu erschaffen. Evtl. geht die RAG-basierte adaptive Abwehr in den Kiefermäulern also auf ein Versehen zurück, als RAG nicht in der Keimbahn, sondern in Lymphozyten-Vorläufern exprimiert wurde. Ähnliches kann mit der AID-Expression in den Kieferlosen geschehen sein.

Update: Long COVID und das Immunsystem

Vor gut zwei Jahren bin ich meinem Vorsatz untreu geworden und habe mich im Blog zu COVID-19 geäußert – weil die Schnittmenge dieses Themas zu meinem, der Biologie der Autoimmunerkrankungen, nicht mehr zu übersehen war.

Zeit für ein kurzes Update! Kurz, weil ich einfach auf eine gute Übersicht in The Scientist verweisen kann, die diese Woche erschienen ist. In ihrem Artikel stellt Natalia Mesa die wichtigsten Mechanismen vor, die zu anhaltenden Symptomen unterschiedlichster Natur noch lange nach der akuten Infektion mit Sars-CoV-2 führen könnten: chronische Entzündungen, durch die Konfrontation mit dem Virus ausgelöste Autoimmunreaktionen, persistierende, also irgendwo im Körper weiterbestehende Viren, Veränderungen im Endothel, also der Auskleidung der Blutgefäße, und schließlich Mikrothrombosen: kleine Klumpen im Blut.

Diese Erklärungsansätze schließen einander nicht aus. Beispielsweise gehen chronische Entzündungen (fehlgeleitete angeborene Abwehr) und Autoimmunreaktionen (fehlgeleitete erworbene Abwehr) oft miteinander einher, wobei die Richtung der Verursachung unklar bleiben kann. Es kann auch sein, dass Long COVID ein grob gezimmertes Dach ist, unter das die Medizin derzeit mehrere Teilpopulationen von Betroffenen setzt, bei denen unterschiedliche Mechanismen zugeschlagen haben. Die Zukunft wird es zeigen.

In einer noch nicht begutachteten Übersichtsarbeit über gut 50 typische Long-COVID-Symptome von Lopez-Leon et al. führt übrigens ein Symptom mit großem Abstand: Fatigue.

Quelle: Lopez-Leon et al. 2021, https://doi.org/10.21203/rs.3.rs-266574/v, CC BY 4.0

Wie neulich schon in Sachen Stammhirn- und Hypothalamus-Neuronen geschrieben, stellt sich die Frage, auf welchem Wege die SARS-Cov-2-Infektion bzw. die Immunreaktion darauf eine Veränderung im zentralen Nervensystem auslöst. Mesa nennt ein mögliches Bindeglied: Die zu den Immunzellen zählenden Mikrogliazellen, die unsere Nervenzellen beschützen sollen, könnten durch Botenstoffe in einen überaktiven Zustand versetzt werden, in dem sie den Nervenzellen Schaden zufügen.

CRISPR-Cas: weit mehr als die erworbene Abwehr der Prokaryoten

Vor gut 10 Jahren habe ich hier die Funktionsweise von CRISPR-Cas erklärt, dem erworbenen oder adaptiven Immunsystem der Bakterien und Archäen. Schon damals war bekannt, dass  Prokaryoten-Zellen beim versehentlichen Einbau von Sequenzen aus dem eigenen Erbgut anstelle von Viren-Sequenzen an Autoimmunreaktionen sterben können. Und schon damals wurde die Frage gestellt, ob der Einbau eigener Sequenzen nicht auch andere Folgen, ja regelrechte Funktionen haben kann, etwa die Regulierung der Ablesung eigener Gene.

Heute ist in nature microbiology eine Arbeit erschienen, in der dies am Beispiel des Typ-IV-CRISPR-Cas-Systems des Bakteriums Pseudomonas oleovorans nachgewiesen wird. Der Artikel steckt hinter einer Bezahlschranke, aber das Manuskript ist an anderer Stelle frei zugänglich. Die Funktion der Typ-IV-Systeme waren der Forschung lange ein Rätsel, denn sie können fremde Nukleinsäuren, also virale Eindringlinge gar nicht zerschneiden. Nun zeigt sich, dass die spezifischen Erkennungssequenzen an bakterieneigene Gene binden und so deren Transkription unterdrücken – siehe Pressemitteilung beim idw.

Einen guten Überblick über die Vielfalt möglicher CRISPR-Cas-Funktionen jenseits der erworbenen Viren-Abwehr bietet eine frei zugängliche und mit anschaulichen Schemazeichnungen ausgestattete Übersichtsarbeit von Devi et al. (2022): CRISPR-Cas systems: role in cellular processes beyond adaptive immunity.

Neuronale Basis für Krankheitsverhalten im Stammhirn aufgespürt

Maus-Netsuke

Wenn Tiere oder Menschen krank sind, zeigen sie charakteristische Verhaltensweisen, die zusammen als sickness behaviour bezeichnet werden. Mit Verhalten sind hier keine bewussten Handlungen gemeint, die sich ebenso bewusst unterbinden oder lenken lassen, sondern tief einprogrammierte, körpernahe Phänomene. Hier habe ich sie 2017 vorgestellt – und auch auf den Hypothalamus als beteiligte Hirnregion hingewiesen.

Neben dem Hypothalamus ist auch das Stammhirn an diesen Verhaltensweisen beteiligt, die bei akuten Erkrankungen der Genesung dienen, indem sie möglichst viele Ressourcen an das Immunsystem umleiten – bei chronischen Erkrankungen wie Autoimmunkrankheiten aber vermutlich Fehlsteuerungen darstellen, da beispielsweise Lethargie oder Nahrungsverweigerung auf die Dauer nicht zur Heilung beitragen. Bislang wusste man aber nicht, welche Neuronengruppen im Gehirn dafür verantwortlich sind.

Einem Beitrag in The Scientist entnehme ich, dass eine Forschergruppe um Anoj Ilanges diese Neuronen im Stammhirn von Mäusen mithilfe eines trickreichen mehrschrittigen Versuchs ausfindig gemacht hat. Die Nervenzellgruppen werden kurz als NTS und AP bezeichnet; die nur für Neurolog*innen aussagekräftigen Langnamen erspare ich uns. Einem anderen Team war kürzlich Ähnliches mit Hypothalamus-Neuronen gelungen, die offenbar für die Koordinierung von Fieber, Appetitverlust und das Aufsuchen von Wärme zuständig sind.

Noch ist nicht belegt, was genau diese Verhaltensänderungen im Krankheitsfall auslöst. Aber im Allgemeinen empfängt der NTS Signale vom Vagusnerv, der Informationen aus den inneren Organen übermittelt, während die AP auf humorale (in Flüssigkeit gelöste) Signale reagiert, also etwa Zytokine, die von Immunzellen am Infektionsort in die Blutbahn ausgeschüttet wurden. Die Nervensignale treffen schneller im zentralen Nervensystem ein als die Botenstoffe aus der Blutbahn.

Bestimmte Verhaltensweisen aus dem Komplex sickness behaviour treten auch bei Autoimmunerkrankungen, Krebserkrankungen oder etwa ME/CFS auf, beispielsweise Fatigue – in unterschiedlichen Ausprägungen. Daher lohnt es sich, diese Forschungsrichtung weiter zu verfolgen. In meistens sehr leichter und nur wenige Tage anhaltender Form kann Krankheitsverhalten übrigens auch nach Impfungen auftreten.

Die Originalarbeit ist in Nature erschienen und frei zugänglich: Ilanges et al.: Brainstem ADCYAP1+ neurons control multiple aspects of sickness behaviour

Warum wir uns für das Immunsystem von Amphibien interessieren sollten

Prachtlaubfrosch

Einmal abgesehen von reiner Neugier und dem Erkenntniswert von Vergleichen der Immunsysteme unterschiedlicher Organismen – etwa, um besser zu verstehen, warum unser eigenes Immunsystem so oft übers Ziel hinausschießt: Warum sollten wir uns für das Immunsystem von Fröschen und anderen Lurchen interessieren?

Zum Beispiel, weil dessen Versagen bei Infektionen mit dem Pilz Batrachochytrium dendrobatidis die Amphibien-Bestände weltweit zusammenbrechen lässt. Und dieser Verlust an Biodiversität ist nicht nur für die jeweiligen Ökosysteme ein Drama, sondern gefährdet auch die menschliche Gesundheit. Wie vergangene Woche bei The Scientist zu lesen war, scheinen die vermehrten Malaria-Ausbrüche, unter denen die Menschen in den 1990er- und den frühen 2000er-Jahren in Panama und Costa Rica gelitten haben, mit dem Massensterben der dortigen Amphibien zusammenzuhängen. Es fehlten auf einen Schlag sehr viele Tiere, die Moskitos fressen. Und Moskitos übertragen Plasmodien, die Erreger der Malaria.

Wer sich näher mit dem Immunsystem von Amphibien, mit den für die Lurche tödlichen Pilzen und den Hypothesen über die Ursachen ihrer massiven Ausbreitung beschäftigen will (Stichwort: Klimawandel), findet hier eine gute Übersichtsarbeit von Louise A. Rollins-Smith aus dem Jahr 2020 (Open Access): Global Amphibian Declines, Disease, and the Ongoing Battle between Batrachochytrium Fungi and the Immune System.

Jack/Du Pasquier: Evolutionary Concepts in Immunology, Teil 2

Fortsetzung meiner Notizen zum Buch, Kapitel 3: angeborene Abwehr

Modularität: Abwehrsysteme bestehen aus 3 Teilen: 1. Information über gefährliche Lage (lösliche extrazell. Rezeptormoleküle und zellassoziierte Sensoren), 2. Befehls- und Steuerungskomplex (Signalketten), 3. Effektoren (Enzyme, ROS etc.), die gut dosiert und verwahrt werden müssen, da sie auch eigenes Gewebe zerstören. Ausnahme: „smart weapons“ wie konstitutiv exprimierte kationische antimikrobielle Peptide, die an anionische Mikroben-Oberfläche binden und dann mit hydrophober Domäne in die Membran eindringen.

Evolution der Rezeptoren: in angeb. Abwehr alle möglichen Proteine, während sie in der erw. Abwehr alle zur Immunglobulin-Superfamilie gehören. Vielfalt über Jahrmillionen selektiert, für Pathogene schwerer auszuschalten als eine einzelne Proteinfamilie. Keimbahn-codiertes „phylogenetisches Pathogen-Gedächtnis“. Gene für erfolgreiche Rezeptorstrukturen oftmals dupliziert -> neue Bindungseigenschaften -> Familien. Viele Rezeptoren bestehen aus 2 oder mehr funktionalen Modulen.

Weiterlesen

Lupus: Behandlungserfolge mit CAR-T-Zellen

Therapien interessieren mich ja nun überhaupt nicht, zumindest nicht für Band 2 des Autoimmunbuchs. Dennoch möchte ich kurz auf diese gute Nachricht vom 16. September hinweisen:

Den Reset-Knopf drücken: Wie sich eine Autoimmunerkrankung auflöst (PM der Uni Erlangen)

A. Mackensen et al.: Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus (das Paper in nature medicine, nur Abstract frei lesbar)

Erfolg bei CAR-T-Zelltherapie gegen Lupus (Expertenstimmen, eingesammelt vom Science Media Center)

Das Ende des Horrors (Bericht in der SZ aus dem Jahr 2021)

Die CAR-T-Zell-Therapie kommt nur bei wirklich schweren Autoimmunerkrankungen infrage, die man auf anderem Wege nicht in den Griff bekommt. Zum einen ist sie unglaublich aufwändig und kostspielig. Zum anderen werden hier mal eben alle CD19-exprimierenden B-Zellen im Körper platt gemacht. Die fünf SLE-Patient*innen haben das offenbar gut vertragen und sind dem Tod vorerst von der Schippe gesprungen – aber ohne Not tut man so etwas nicht.

Dennoch: ein Durchbruch. Womöglich erleben wir gerade das Ende der Ära, in der Autoimmunerkrankungen per se als unheilbar galten.

Antigen-präsentierende Zellen spenden T-Zellen ihre Telomere

Telomere und ihre Rolle bei der Alterung (Seneszenz) von Immunzellen habe ich im Blog schon öfter thematisiert, denn ihre Verkürzung bei jeder Zellteilung könnte einer der Faktoren sein, die bei älteren Menschen zum Ausbruch von Autoimmunerkrankungen beitragen. Jetzt gibt es sensationelle Neuigkeiten:

Lanna, A., Vaz, B., D’Ambra, C. et al. An intercellular transfer of telomeres rescues T cells from senescence and promotes long-term immunological memory. Nat Cell Biol (2022). https://doi.org/10.1038/s41556-022-00991-z

Bei Nature in der Artikel nur in einer Leseansicht ohne Markierungs- und Download-Funktion verfügbar, aber das Manuskript ist bei biorxiv zu finden. Frei zugänglich ist auch die Meldung bei The Scientist: T Cells Ward Off Aging with Help from Their Friends

Abstract: T-Zellen sollen nach bisheriger Vorstellung ihre Alterung aufhalten durch Telomerase, die ihre Telomere wieder verlängert (s. Nothing in Oncology Makes Sense Except in the Light of Evolution). Die Autor*innen zeigen hier: Vor allem naive T-Zellen und zentrale Gedächtnis-T-Zellen nehmen Telomer-Vesikel von APCs auf und verlängern ihre Telomere so ohne Telomerase-Aktivität. Bei Kontakt bauen APCs Shelterin ab; ihre Telomere werden vom Trimming-Faktor TZAP abgeschnitten und an der Immun-Synapse in extrazelluläre Vesikel verpackt. Diese enthalten auch den Rekombinationsfaktor Rad51, der die Fusion mit Enden der T-Zell-Telomere bewirkt. Die antigenspezifischen T-Zellen empfangen die Telomerverlängerungen (im Mittel ca. 3000 Basenpaare) vor ihrer klonalen Expansion, was zu langfristiger Immunität führt.

Intro: Telomere = TTAGGG-Wiederholungen. Bei kurzen Telomere von < 4kb lässt die Teilungsfähigkeit nach (replikative Seneszenz). Bei vielen Alterskrankheiten und Krebs werden kurze Telomere beobachtet. Zellen können die Verkürzung mit oder ohne Telomerase aufhalten. – Immunologische Synapsen dienen der Kommunikation zwischen APCs und Lymphozyten, initiieren Immunreaktionen, die zu langlebigen Gedächtnis-T-Zellen führen. Eine Synapse aktiviert die Telomerase in der T-Zelle zunächst; mehrfache synaptische Interaktion zieht aber einen Aktivitätsrückgang nach sich und damit die Seneszenz der T-Zelle, ein Nachlassen des immunologischen Gedächtnisses, u. U. also mehr Infektionen, Krebs, Tod. Telomerase allein kann also die T-Zell-Seneszenz letztlich nicht verhindern. Wenn T-Zellen aber Telomere aus APCs empfangen, werden sie zu Stammzell-ähnlichen und/oder zentralen langlebigen Gedächtniszellen, während andere T-Zellen altern und sterben. Die APCs entscheiden also bei der ersten Synapse über das Schicksal der T-Zellen.

Ergebnisse: Das Team hat eine Verlängerung von T-Zell-Telomeren und gleichzeitige Verkürzung von APC-Telomeren beobachtet, in Gegenwart von Antigenen aus Epstein-Barr-Virus-, Influenza-Virus- und Cytomegalovirus-Lysaten. Das klappt auch in T-Zellen ohne Telomerase (Knock-out), kann auch nicht auf alternativem Telomer-Verlängerungs-Mechanismus per Rekombination und DNA-Synthese beruhen, weil sich die T-Zellen noch gar nicht teilten. Gelabelte Telomer-DNA aus den APCs tauchte später in den T-Zellen auf; damit war die Herkunft belegt. TCR-besetzte planare Lipiddoppelschichten lösen die Telomer-Freisetzung aus den APCs ebenso gut aus wie komplette T-Zellen. Außer TCR sind auch Anti-CD3 und Antigene auf den APC-MHC-Komplexen nötig. Die APCs sterben nicht nach Telomer-Angabe, zeigen auch kein Blebbing. Myeloide APCs (dendritische Zellen und Monozyten) geben am meisten Telomere ab, B-Zellen weniger. Die Vesikel enthalten außer Telomeren auch Histokompatibilitäts-Antigen-Proteine sowie TZAP (telomeric zinc-finger associated protein), ein telomerbindendes Protein, das die terminalen Enden von Chromosomen beschneidet (Telomer-Trimming) und fürs Abschneiden und Verpacken der Telomere nötig ist. Damit TZAP an die Telomere binden kann, muss das Shelterin herunterreguliert und abgebaut werden, das die Telomere normalerweise stabilisiert und vor DNA-Reparaturmechanismen beschützt. Die Vesikel enthalten auch Rad51, einen homologen Rekombinationsfaktor, der an der Telomer-Verlängerung beteiligt ist und für den Anbau der gestifteten Telomere in den T-Zellen nötig ist. In Mäusen wandern die T-Zellen mit den APC-verlängerten Telomeren rasch in Langzeit-Überlebensnischen wie Milz und Lymphknoten; im Blut sind sie kaum zu finden.
Influenza-Impf-Experiment: Mäusen wurden antigenspezifische, geprimete T-Zellen mit APC-verlängerten oder mit nicht verlängerten Telomeren injiziert; die Kontrollgruppe erhielt keine solchen T-Zellen. Entweder 18 Stunden oder 15 Tage nach der Injektion wurden die Tiere mit Influenza infiziert. Ungeimpfte Mäuse starben alle rasch; mit unveränderten Telomer-T-Zellen wurde die frühe Infektion gut abgewehrt (alle Tiere überlebten), die späte Infektion aber nicht (alle Tiere starben im Lauf einige Tage), weil kein Gedächtnis ausgebildet wurde. Mäuse mit T-Zellen mit APC-verlängerten Telomeren überlebten sowohl eine frühe als auch eine späte Infektion; das immunologische Gedächtnis reichte aus.

Diskussion: Es gibt auch andere Pfade zu Gedächtnis-T-Zellen, teils von naiven T-Zellen ausgehend, teils nach Effektor-Tätigkeit durch Umschalten von Glykolyse auf oxidative Phosphorylierung. Vermutung: Die Antigenstärke könnte die Menge der übertragenen Telomere und damit die Zahl der möglichen nachfolgenden Zellteilungen beeinflussen. Aber auch bei identischen Antigenen hat ein Großteil der T-Zellen keine Telomere aufgenommen; sie blieben kurzlebige Effektorzellen. T-Zellen sollen nach wiederholter Antigenstimulation seneszent werden; stark ausdifferenzierte Effektor-T-Zellen können ihre Telomerase nicht weiter aktivieren; ihre Proliferation lässt nach -> lineare Seneszenz. Alternatives Modell: Die Unfähigkeit, während der Antigenstimulation APC-Telomere zu empfangen, besiegelt schon das Schicksal der T-Zellen -> Seneszenz. Nach Auflösung der Synapse startet die massive Proliferation; jetzt kommt die Telomerase hinzu, die an alle Chromosomen pro Teilung ca. 100-200 bp anhängt. Ein Telomer-Transfer verlängert dagegen bestimmte, vermutlich sehr kurze, Telomere um ca. 3000 bp noch vor den Zellteilungen. Vermutlich ist der Telomer-Transfer das schon länger postulierte Signal, von dem die terminale Differenzierung der T-Zellen abhängt. Unklar bleibt, wonach sich entscheidet, ob eine T-Zelle die Telomere einbauen kann. – Darüber hinaus kann es weitere Wege zur Bildung von Gedächtniszellen geben, etwa eine Dedifferenzierung von Effektorzellen, sodass sie ebenso Stammzell-ähnlich werden wie die Gedächtniszellen mit den APC-Telomeren.

Abb. 8: Versuchsdesign mit Absterben der grippeinfizierten Mäuse ohne injizierte T-Zellen mit verlängerten Telomeren während der Gedächtnis-Phase; in der Effektorphase haben die Tiere eine Infektion noch überlebt. Mäuse mit injizierten T-Zellen mit verlängerten Telomeren überleben auch eine späte Infektion während der Gedächtnis-Phase, weil die T-Zellen so lange leben. Außerdem Illustration der Synapse mit Vesikeltransfer und Telomerfusion.