Schlagwort-Archive: Monozyten

Abb. 235: eQTL-Analysen

Viele genetische Varianten sorgen nicht für einen anderen Aufbau und damit eine veränderte Wirkung eines Proteins. Stattdessen verändern sie nur die Menge, die zu einem bestimmten Zeitpunkt in einem Zelltyp hergestellt wird. Solche Genvarianten bezeichnet man als expression quantitative trait loci oder eQTL, also als Genorte (loci), deren Merkmal (trait) eine variable Expressionsmenge (expression quantitative) ist.

Früher hat man untersucht, wie sich kleine genetische Varianten, die statistisch mit Autoimmunerkrankungen korrelieren, auf die Ablesestärke von Immunsystem-Genen in einem Gemisch weißer Blutkörperchen (Monozyten, T-Zellen, B-Zellen usw.) auswirken. Das ist ungefähr so witzlos wie ein Elektroenzephalogramm von einer ganzen Gruppe von Leuten.

Dann hat man einzelne Immunzelltypen aus den Blutproben von gesunden Probanden isoliert und beispielsweise die Ablesung bestimmter Immunsystem-Gene in den Monozyten von Europäern mit der Ablesung derselben Gene in den Monozyten von Asiaten verglichen. Bei vielen Genen, die man im Verdacht hat, das Risiko für Autoimmunerkrankungen in bestimmten Bevölkerungsgruppen zu beeinflussen, sah man allerdings keine großen Unterschiede. Das ist kein Wunder, denn die Immunzellen wurden im nicht angeregten Grundzustand untersucht.

Immunreaktionen werden durch Alarmsignale ausgelöst, zum Beispiel durch Moleküle, die für
Bakterien typisch sind. Also hat man im nächsten Schritt bestimmte Zelltypen aus dem Blut
unterschiedlicher Probandengruppen durch Gefahrensignale aktiviert. Und siehe da: Bestimmte Immunsystem-Gene werden nach der Aktivierung eines Immunzelltyps (hier Monozyten) besonders stark abgelesen, wenn die DNA der Probanden an anderer Stelle eine Risiko-Genvariante enthält.

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Abb. 145: Interleukin-10

IL-10 besteht aus zwei Hälften mit je 160 Aminosäuren. Mit seinen schraubigen Strukturen (sogenannten Alpha-Helices) passt es genau in den extrazellulären Teil des Rezeptors IL10R-A, ein Transmembranprotein aus 587 Aminosäuren.

IL-10 wird unter anderem von Monozyten produziert. Es regt die Bildung regulatorischer T-Zellen (Treg) an und hemmt die Reifung weiterer Monozyten, die Aktivität anderer Immunzellen
und die Entzündungsreaktion im umliegenden Gewebe.

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Abb. 105: Der hämatopoetische Stammbaum

Der hämatopoetische Stammbaum zeigt, wie die Blutzellen miteinander verwandt sind. Alle gehen aus hämatopoetischen Stammzellen (HSC) hervor. Hier ist der myeloische Ast dargestellt. Die Entstehung der Lymphozyten und ihrer Verwandten aus dem multilineage progenitor (*) folgt in Abb. 120. Die fertigen Blutzellen sind unten in den Zeilen »Blut« und »Gewebe« aufgereiht. Rechts in der Blut-Reihe stehen die roten Blutkörperchen und die winzigen Blutplättchen, die beide nicht zu den Immunzellen zählen. Dendritische Zellen und Mastzellen findet man im Blut kaum, weil sie nach ihrer Entstehung gleich ins Gewebe einwandern. Makrophagen entstehen ohnehin erst im Gewebe, und zwar aus eingewanderten Monozyten.
Die neutrophilen Granulozyten (NG) sind offenbar nicht näher mit den eosinophilen Granulozyten (EoG) und den basophilen Granulozyten (BG) verwandt. Außerdem stehen die basophilen Granulozyten den Mastzellen (MC) näher als den eosinophilen Granulozyten. Die klassische Einteilung anhand des mikroskopischen Erscheinungsbilds (zahlreiche Vesikel oder »Körnchen« = granula in allen Granulozyten) führt also in die Irre.

V. o. n. u. und v. l. n. r.: HSC = hämatopoetische Stammzelle, MPP = multipotent progenitor, LMPP = lymphoid-primed multipotent progenitor, EMP = erythro-myeloid progenitor, MLP = multilineage progenitor, GMP = granulocyte/monocyte progenitor, EoBP = eosinophil/basophil progenitor, MEP = myeloid-erythroid progenitor, DP = dendritic cell progenitor, MoP = monocyte progenitor, NP = neutrophil progenitor, EoP = eosinophil progenitor, BMCP = basophil/mast cell progenitor, EP = erythrocyte progenitor, MP = megakaryocyte progenitor, BP = basophil progenitor, MCP = mast cell progenitor; DC = dendritische Zelle, Mo = Monozyt, NG = neutrophiler Granulozyt, EoG = eosinophiler Granulozyt, BG = basophiler Granulozyt, MC = Mastzelle, MΦ = Makrophage. Progenitor heißt Vorläufer.

Sie dürfen diese Zeichnung gerne in Folien etc. übernehmen, sofern Sie die Quelle angeben: Dr. Andrea Kamphuis, https://autoimmunbuch.de

Das Immunsystem in der Embryonalentwicklung: zwei Überraschungen

Nach langer Pause zwei schnörkel- und skizzenlose Anmerkungen zur Entwicklung des Immunsystems während der Embryogenese, die ich in Teil 4 des Buches behandle:

1. Aliens aus dem Dottersack

Bis vor wenigen Jahren dachte man, all unsere Immunzellen seien Nachfahren der Stammzellen im Knochenmark – und somit „Blätter“ am hämatopoetischen Stammbaum, den ich hier vor einer Weile in zwei Artikeln vorgestellt habe. Dann entdeckte man, dass das auf die Mikrogliazellen (makrophagenähnliche Zellen in unserem Gehirn) nicht zutrifft: Diese gehen vielmehr auf Vorläuferzellen zurück, die während der frühen Embryonalentwicklung noch vor der Schließung der Blut-Hirn-Schranke aus dem Dottersack (!) ins spätere Gehirn einwandern. Diese Ur-Mikrogliazellen sind also extraembryonale Aliens; sie gehören zu keinem der drei Keimblätter, aus denen ansonsten all unsere Gewebe und Organe entstehen: Endoderm, Mesoderm und Exoderm. Dass wir bis an unser Lebensende auf Zellen angewiesen sind, die nicht aus einem Keimblatt hervorgegangen sind, hätte man vor wenigen Jahren noch für völlig unmöglich erklärt.

Inzwischen hat sich herausgestellt, dass das auch auf viele andere Gewebsmakrophagen zutrifft – zum Beispiel die Makrophagen, die im Herzmuskelgewebe Patrouille laufen und die Homöostase aufrecht erhalten. Diese Zellen, die teils direkt auf Vorläufer im Dottersack, teils auf Dottersackzellen-Nachfahren aus der fetalen Leber zurückgehen, sind offenbar ebenfalls imstande, sich ein Leben lang durch Teilung selbst zu erhalten. Erst bei einer Entzündung wandern zusätzlich aus Knochenmark-Stammzellen entstandene Monozyten in das Gewebe ein, die dort zu Makrophagen heranreifen.

Diese „Notfall-Makrophagen“ siedeln sich aber in vielen Geweben nicht dauerhaft an, sondern werden nach erfolgreicher Bekämpfung der Entzündung von den örtlichen Gewebsmakrophagen abgetötet und beseitigt. In einjährigen Mäusen etwa stammen die meisten Makrophagen in der Leber, im Gehirn und in der Haut (also Kupffer-, Mikroglia- und Langerhans-Zellen) größtenteils noch von den Dottersack- und Leber-Vorfahren ab, während sich das Verhältnis in den Lungen mit zunehmendem Alter zugunsten der Monozyten-Makrophagen verschiebt.

Lit.: A. Dey, J. Allen, P. A. Hankey-Giblin (2015): Ontogeny and polarization of macrophages in inflammation: blood monocytes versus tissue macrophagesE. Gomez Perdiguero et al. (2015): Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors

2. Neonatales Immunsystem voll entwickelt und aktiv unterdrückt

Lange glaubte man, Neugeborene seien so anfällig für Infektionen, weil ihr Immunsystem noch sehr unreif sei. Wie sich Ende 2013 herausstellte, ist es tatsächlich bereits voll entwickelt: Das Knochenmark, aus dem die Zellen der angeborenen Abwehr und die B-Zellen hervorgehen, ist schon lange vor der Geburt aktiv, und auch der Thymus, in dem die positive und negative Selektion der T-Zellen stattfindet, hat seine Arbeit schon aufgenommen.

Das Immunsystem wird aber in den ersten Lebenswochen aktiv unterdrückt, um eine Besiedlung des Darms mit lebensnotwendigen Bakterien und anderen Mikroorganismen zu ermöglichen. Dafür sind spezielle rote Blutkörperchen oder Erythrozyten zuständig, die den Oberflächenmarker CD71 tragen und vor allem in wenigen Wochen vor und nach der Geburt hergestellt werden. Sie produzieren das Enzym Arginase-2, das zu einem Mangel an der Aminosäure Arginin führt. Dieser Mangel wiederum hemmt die Herstellung von Zytokinen in den Zellen der angeborenen Abwehr.

Zwar können sich Neugeborene wegen dieses Mangels an Abwehrstoffen leicht mit Erregern wie Escherichia coli oder Listeria monocytogenes anstecken. Aber dafür reagieren sie auf die Besiedlung mit unserem Mikrobiom-Starterkit nicht mit einer heftigen Immunreaktion, die noch weitaus gefährlicher wäre.

Lit.: S. Elahi et al. (2013): Immunosuppressive CD71+ erythroid cells compromise neonatal host defence against infection

Auswertung Wissenschafts-Newsletter, Teil 1

Nach langer Pause wegen Überstunden und Krankheit stürze ich mich wieder in die Arbeit am Buch. Ich bin immer noch mit der Beschreibung der wichtigsten Mechanismen beschäftigt, über die Infektionen mutmaßlich Autoimmunerkrankungen auslösen: molekulare Mimikry, Bystander Activation, Epitope Spreading und polyklonale Aktivierung, z. B. durch Superantigene.

Nebenbei wühle ich mich durch die Wissenschafts-Newsletter der letzten Monate. Evtl. fürs Buch relevante Meldungen verlinke ich hier. Den Anfang macht The Scientist, vor allem mit Meldungen zum Mikrobiom.

Microbes Fight Chronic Infection: Eine am 23.10.2014 in Nature veröffentlichte Studie zeigt, dass Clostridium scindens und in geringerem Umfang 10 weitere Bakterien-Taxa aus dem Darm-Mikrobiom Antibiotika-behandelte (und daher dysbiotische) Mäuse vor Infektionen mit Clostridium difficile schützen können. Evtl. lässt sich daraus eine Therapie für dysbiotische Menschen entwickeln, die weniger riskant ist als die Stuhltransplantationen, die derzeit in, äh, aller Munde sind.

Gut Microbes Trigger Malaria-Fighting Antibodies: Eine am 04.12.2014 in Cell veröffentlichte Studie zeigt, dass E. coli im Darm von Mäusen die Bildung von Antikörpern gegen den Kohlenwasserstoff Galα1-3Galb1-4GlcNAc-R (kurz: α-gal) auslöst, der sowohl an der Oberfläche der Bakterien als auch auf Malaria-Erregern (bei Mäusen Plasmodium berghei, bei Menschen Plasmodium falciparum) zu finden ist. Diese Antikörper sind auch im Blut gesunder Menschen in großen Mengen anzutreffen. Dank einer Dreifach-Mutation in den gemeinsamen Vorfahren der Menschen und der Menschenaffen stellen unsere Zellen kein α-gal mehr her, sodass die Antikörper nicht den eigenen Körper angreifen. Mit P. berghei infizierte Mäuse mit den durch das Bakterium induzierten Antikörpern im Blut erkrankten nur halb so häufig an Malaria wie Mäuse ohne die Antikörper.    Weiterlesen

eQTLs: Wie Autoimmun-Risikoallele die Immunreaktion verändern

Schon länger ist bekannt, dass die meisten genetischen Varianten, die das Risiko für Autoimmunerkrankungen erhöhen, gar nicht im abgelesenen Bereich irgendeines Gens liegen, sondern in nicht codierenden, rein regulatorischen DNA-Sequenzen, die das Ausmaß beeinflussen, in dem andere Sequenzen abgelesen werden. Durch sogenannte genome-wide association studies (GWAS) kennen wir Aberhunderte solcher Einzelnukleotid-Polymorphismen (single nucleotide polymorphisms oder SNPs), also Stellen in unserem Genom, an denen bei einem Teil der Menschen eine Nukleobase (A, T, C oder G) durch eine andere ersetzt ist.

Diese winzigen Varianten verändern die Feinstruktur der DNA-Doppelhelix und der Nukleosomen, also der kabelrollenartigen Proteinkomplexe, um die die Doppelhelix gewickelt ist. Dadurch können zum Beispiel andere Proteinkomplexe, die für die Ablesung von Genen, also die Produktion von Messenger-RNA-Strängen verantwortlich sind, besser oder schlechter an die DNA andocken und sich von dort aus an ihren Einsatzort weiterhangeln. Oder die DNA bildet Schleifen, durch die eine aktivierende Sequenz mit einer aktivierbaren Sequenz in Kontakt kommt, usw. Die meisten dieser Regulierungsmechanismen sind noch nicht richtig aufgeklärt.

Bis vor kurzem konnte man auch nicht sagen, welches Gen nun durch einen SNP stärker oder schwächer abgelesen wird als sonst. Es kann das nächste oder übernächste Gen in die eine oder in die andere DNA-Strang-Richtung sein (cis-Regulierung) oder irgendein Gen in großer Entfernung, sogar auf einem anderen Chromosom (trans-Regulierung). Das lässt sich neuerdings durch aufwändige Analysen der sogenannten expression quantitative trait loci – kurz: eQTLs – aufklären. Das sind DNA-Sequenzen, die die Ablesung eines Gens nicht einfach ein- oder ausgeschalten, sondern hoch- oder herunterregulieren – und genau das ist bei vielen Genen des Immunsystems der Fall. (Das quantitative Merkmal ist hier also nicht, wie bei klassischen QTLs, ein kontinuierlich variierendes äußerliches Merkmal wie etwa die Körpergröße, sondern die mRNA-Menge, die bei der Transkription des Zielgens entsteht.)

Die eQTL-Analysen unserer Immunsystem-Gene sind in den letzten Monaten immer genauer geworden: Anfangs hat man untersucht, wie sich SNPs, die statistisch mit Autoimmunerkrankungen in Verbindung gebracht wurden, auf die Ablesestärke von Immunsystem-Genen in einem Gemisch aller möglicher weißer Blutkörperchen (Monozyten, T-Zellen, B-Zellen usw.) auswirken. Das ist ungefähr so, als würde man ein Elektroenzephalogramm von einer ganzen Gruppe von Leuten machen und dann aus dem Gewirr von Signalen darauf rückschließen wollen, welche Prozesse in ihren Gehirnen ablaufen (Yao et al. 2014):

eQTL_1_gemischte_Blutzellen_650Als Nächstes hat man einzelne Immunzelltypen aus den Blutproben von gesunden Probanden isoliert und dann beispielsweise die Ablesung bestimmter Immunsystem-Gene in den Monozyten von Europäern mit der Ablesung derselben Gene in den Monozyten von Asiaten verglichen (Raj et al. 2014):

eQTL_2_Monozyten_nicht_angeregt_650

Bei vielen Genen, die man im Verdacht hat, das Risiko für Autoimmunerkrankungen zu beeinflussen, konnte man so allerdings keine großen Unterschiede zwischen den Gruppen entdecken. Das ist kein Wunder, denn die Immunzellen wurden im nicht angeregten Grundzustand untersucht. Immunreaktionen werden aber durch Alarmsignale ausgelöst, zum Beispiel durch die Konfrontation mit Krankheitserregern oder mit Molekülen, die für diese Pathogene typisch sind – etwa Lipopolysaccharide aus Bakterien-Zellwänden.

Also hat man im nächsten Schritt im Rahmen des ImmVar-Projekts bestimmte Zelltypen aus dem Blut unterschiedlicher Probandengruppen isoliert und sie dann mit solchen Gefahrensignalen konfrontiert, um sie zu aktivieren und anschließend ihre Reaktionen zu erfassen (Fairfax et al. 2014, Lee et al. 2014Ye et al. 2014):

eQTL_3_Monozyten_angeregt_650

Und siehe da: Bestimmte Gene werden nach der Aktivierung des entsprechenden Immunzelltyps (hier Monozyten) besonders stark abgelesen, wenn die DNA der Probanden an anderer Stelle einen bestimmten Risiko-Genort enthält.

Dabei gab es bereits einige Überraschungen. Beispielsweise wird die Ablesung von Genen, die die Zellvermehrung von Gedächtnis-T-Zellen steuern, durch die bekannten Risiko-Genorte für wichtige Autoimmunerkrankungen wie Typ-1-Diabetes oder rheumatoide Arthritis kaum gesteigert (Hu et al. 2014). Dabei dachte man bisher, diesem Zelltyp käme bei Autoimmunerkrankungen durch seine übermäßige Vermehrung und Aktivierung eine Schlüsselrolle zu.

Schichtarbeit: Der Tag-Nacht-Rhythmus von Immunreaktionen

Neulich las ich, dass selbst schwaches Nachtlicht eine Brustkrebstherapie u. U. wirkungslos machen kann, weil das Licht die nächtliche Melatoninproduktion stört, was wiederum die Tumorzellen stärkt. Beim Nachrecherchieren führte eins zum anderen, und zack: Schon muss das Autoimmunbuch um ein Kapitel erweitert werden. Wie die sogenannte circadiane Rhythmik – das Schwingen aller möglicher Abläufe in unserem Körper mit einer Periode von etwa 24 Stunden – und der nächtliche Schlaf unser Immunsystem regeln, ist nämlich hochspannend und auch für Autoimmunerkrankungen relevant.

Von dem Dutzend Arbeiten, die ich zum Thema gelesen habe, empfehle ich vor allem die Übersicht „T Cell and Antigen Presenting Cell Activity During Sleep“ von Tanja Lange und Jan Born (2011), auf der die meisten der folgenden Abbildungen basieren.

Wie stellt das Immunsystem sicher, dass sich entzündungsfördernde und entzündungshemmende Signale, die angeborene und die erworbene Abwehr sowie der Th1- und der Th2-Arm der erworbenen Abwehr nicht ins Gehege kommen? Durch räumliche und zeitliche Trennung: Der Tag gehört den entzündungshemmenden Signalen, der angeborenen Abwehr und denjenigen Zellen der erworbenen Abwehr, die Pathogene unmittelbar bekämpfen: den zytotoxischen T-Zellen. Und in der Nacht – vor allem, wenn man schläft und nicht durchwacht – dominieren Entzündungsreaktionen, die uns tags bei lebensnotwendigen Aktivitäten stören würden. Außerdem wird nachts durch die Kontakte zwischen antigenpräsentierenden Zellen und T-Helferzellen das immunologische Gedächtnis angelegt.

Hormone aus der Zirbeldrüse und der Hypophyse im Gehirn sowie aus der Nebennierenrinde, deren Ausschüttung von der zentralen inneren Uhr im Hypothalamus gesteuert wird, sorgen dafür, dass die richtigen Zellpopulationen zu jeder Zeit am richtigen Ort sind – also im Blut, im Lymphsystem, im peripheren Gewebe oder im Knochenmark. Die zentrale innere Uhr basiert auf einer Handvoll Gene, deren Ableseprodukte (die Proteine PER, CRY, REV-ERB, ROR, CLOCK und BMAL) wechselseitig ihre eigene Ablesung ein- und ausschalten. Ohne äußere Impulse oszilliert diese Rückkopplung mit einer Periode von etwas mehr als 24 Stunden. Durch Tageslichtsignale – von Nervenzellen in der Netzhaut an den Hypothalamus übermittelt – wird sie auf genau 24 Stunden eingestellt.

Die zentrale Uhrzeit wird vor allem durch das Zirbeldrüsen-Hormon Melatonin an die Zellen im gesamten Körper übermittelt. Die Melatoninkonzentration ist mitten in der Nacht am höchsten, fällt noch in der Nacht steil ab und bleibt tags sehr niedrig, bis sie abends wieder anzusteigen beginnt:

TagNacht_Melatonin_beschriftet_Quelle_Netz_650In dieser und den folgenden Abbildungen ist die Konzentration im Blut während etwas mehr als 24 Stunden dargestellt, beginnend mit dem Abend eines Tages bis zum Abend des nächsten Tages.  Die beiden senkrechten Linien markieren die Nacht, in der man idealerweise zwischen 23 und 7 Uhr schläft. In der ersten Nachthälfte gerät man in den Tiefschlaf, hier wegen der englischen Bezeichnung slow-wave sleep als SWS bezeichnet. Diese Schlafphase ist für die Regelung des Immunsystems entscheidend.

Weiterlesen

Bildergalerie

Da ich im Moment nicht zum ausführlichen Bloggen komme, stelle ich hier einfach die neuesten Abbildungen fürs Buch vor: unkommentiert – und damit wohl auch unverständlich. Aber das eine oder andere Element spricht vielleicht doch für sich selbst:

P1200120_IFN_und_AIE_1000

P1200095_U-Form_1_Grundtonus_nach_Casadevall_650

P1200100_U-From_2_entzündungshemmend_nach_Casadevall_650

P1200105_U-Form_3_entzündungsfördernd_nach_Casadevall_650

P1190917_Wahren-Herlenius_Autoimmunität_Risiken_650

Wahren-Herlenius_Rückkopplung_angeb_erw_Abwehr_AIE_650

  Primär_Sekundärantwort_IgM_IgG_650

Zeitverlauf_klonale_Expansion_Kontraktion_CD4_CD8_650n

Und jetzt weiter im Text – oder vielmehr im Bild: Die nächste Zeichnung dreht sich um die circadiane Rhythmik des Immunsystems, also die Schwankungen von Zell- und Stoffkonzentrationen sowie -funktionen im Tagesverlauf.

Wie Sialinsäuren und Siglecs Frieden stiften

Siglec_ITAM_01_650

Die Zellen von Säugetieren wie dem Menschen sind mit charakteristischen Glykoproteinen und Glykolipiden überzogen, also Kettenmolekülen mit Zuckeranteil sowie Protein- bzw. Lipidanteil, an deren Enden häufig Sialinsäuren sitzen. Diese Derivate der Neuraminsäure dienen den Zellen als Zugehörigkeitsausweise, sogenannte SAMPs (self-associated molecular patterns).

Immunzellen, die ein Gefahrensignal wahrgenommen haben und daher – wie im vorigen Beitrag gezeigt – eine Immunreaktion in Gang setzen, stoppen diese Reaktion, wenn sie zusätzlich ein SAMP wahrnehmen, das ihnen zeigt, dass sie es mit einer körpereigenen Zelle zu tun haben und nicht mit einem Pathogen. Zur Wahrnehmung der Sialinsäuren dienen ihnen die Siglecs (Sialic acid-binding immunoglobulin-type lectins): Rezeptoren in der Zellmembran.

Ein wichtiger B-Zell-Siglec ist CD22 = Siglec-2. Auf Monozyten, die zur angeborenen Immunität gehören, finden wir dagegen CD33 = Siglec-3. Die meisten Siglecs funktionieren ähnlich: Sobald sie ein SAMP wahrnehmen (die Friedenstaube), rekrutieren und aktivieren sie eine Phosphatase (Enzymmännchen mit schwarzer Fackel), die anderen Signalmolekülen eine Phosphatgruppe abnehmen und sie dadurch inaktivieren können. So wird die Signalkette, die eine Abwehrreaktion der Immunzelle in Gang setzen sollte, rechtzeitig gestoppt (Verkehrspolizist, der den Zugang zum Chromosom blockiert).

Siglecs müssen imstande sein, beschwichtigende SAMPs wie körpereigene Sialinsäuren von Gefahrensignalen wie den Sialinsäuren bestimmter Bakterien zu unterscheiden. Geht das schief, bleiben entweder notwendige Abwehrreaktionen aus, oder es kommt zu einer Autoimmunreaktionen. Dazu später mehr.