Schlagwort-Archive: T-Zellen

Austausch eines einzigen Gens versetzt Mäuse-Thymus um 500 Millionen Jahre zurück

So zumindest der plakative Teaser einer Meldung, die vor gut einem Jahr bei „Science Daily“ erschien. Ein Forscherteam um J. B. Swann an der Uni Freiburg hatte transgene Mäuse hergestellt, in deren Zellen das Gen Foxn1, das einen Regulator der Thymusentwicklung codiert, durch das verwandte, aber evolutionär ältere Wirbeltier-Gen Foxn4 ersetzt ist. Während ein normaler Mäuse-Thymus nur wenige B-Zellen enthält, entsteht bei einer Produktion des Regulators FOXN4 ein Lymphorgan, das sowohl T- als auch B-Zellen heranreifen lässt und an den daher als „bipotent“ bezeichneten Thymus-Vorläufer bei Fischen erinnert. Die Arbeit ist frei verfügbar:

Jeremy B. Swann et al.: Conversion of the Thymus into a Bipotent Lymphoid Organ by Replacement of Foxn1 with Its Paralog, Foxn4. Cell Reports, 2014; DOI: 10.1016/j.celrep.2014.07.017 (PDF)

Der Transkriptionsfaktor FOXN1 ist in Säugetieren unabdingbar für die Differenzierung von TEC-Vorläuferzellen in reife TECs. Er ist vermutlich in einem Wirbeltier-Urahn durch Duplikation des älteren Gens Foxn4 entstanden und hat eine sehr ähnliche, aber im Detail andere DNA-Bindungs-Domäne.

Die Vorfahren der Wirbeltiere waren sogenannte Schädellose. Von diesem Unterstamm der Chordatiere leben nur noch die Lanzettfischchen. Im Embryo des Lanzettfischchens Branchiostoma floridae, das kein Foxn1-Gen hat, wird im Rachen-Endoderm Foxn4 exprimiert. Das brachte die Forscher auf den Gedanken, dass in dieser Region des Embryos, aus der bei Wirbeltieren ja die Thymusanlage entsteht, vor der Entstehung von Foxn1 der ältere Transkriptionsfaktor FOXN4 für die Ausbildung eines Thymus-ähnlichen Lymphorgans gesorgt hat. In den TECs im Thymus stammesgeschichtlich „mittelalter“ Wirbeltiere wie der Katzenhaie, Zebrafische und Reisfische werden sowohl Foxn1 als auch Foxn4 exprimiert, in Säugetier-TECs normalerweise nur noch Foxn1.

Wenn man aber in transgenen Mäusen die Foxn1-Expression ausschaltet und zugleich die FOXN4-Produktion erhöht, kann dieses Protein FOXN1 bei der Thymusentwicklung zumindest teilweise ersetzen. Es entstehen normal funktionierende cTECs und mTECs. Allerdings ist ihre Keratin-Expression abnorm: Die meisten TECs exprimieren nun sowohl den Cortex-Marker Keratin 8 als auch das Mark-typische Keratin 5. Außerdem kommen im Thymus der FOXN4-produzierenden Mäuse zahlreiche unreife B-Zellen vor, die sich dort auch teilen. Sie halten sich vor allem rings um die Blutgefäße auf, die den Thymus durchziehen – vermutlich, weil die Fibroblasten dort FLT3-Ligand exprimieren, ein Schlüsselelement der B-Zell-Entwicklung, die sich normalerweise im Knochenmark abspielt. Das FOXN4-produzierende Thymus-Epithel ist also nicht nur zur T-Zell-Entwicklung imstande, sondern bietet auch B-Zellen ein entwicklungsfreundliches Umfeld. Bei Fischen, die von Natur aus sowohl Foxn1 als auch Foxn4 exprimieren, ist die Anwesenheit von B-Zellen im Thymus dann auch normal. Unklar bleibt, ob die im Thymus der transgenen Mäuse entstehenden B-Zellen und T-Zellen vom selben Vorläufer-Zelltyp abstammen, der sich erst im Thymus für einen Entwicklungsweg entscheidet, oder von zwei unterschiedlichen Vorläufern, die bereits „vorbestimmt“ aus dem Knochenmark in den Thymus einwandern.

Die T-Zell-Reifung im Säugetier-Thymus hängt von vier FOXN1-abhängigen Faktoren ab: CCL25, CXCL12, KITL und DLL4. DLL4 steht dabei an der Spitze der Hierarchie. Die B-Zell-Entwicklung im Thymus der genetisch veränderten, Foxn4 exprimierenden Mäuse ist zusätzlich vom allgemeinen Lymphopoese-Faktor IL-7 abhängig. Das Verhältnis von DLL4 zu IL-7 entscheidet darüber, ob der Thymus viele oder wenige unreife B-Zellen hervorbringt. DLL4 ist membrangebunden, das Zytokin IL-7 diffundiert.

Evolution: Man vermutet heute, dass es separate B- und T-Zell-ähnliche Zelltypen bereits in den Urahnen aller Wirbeltiere gab und die immense, durch somatische Rekombination entstehende B- und T-Zell-Rezeptorvielfalt erst später hinzukam. Die ersten Thymus-ähnlichen Lymphorgane entstanden wohl mit Hilfe des Transkriptionsfaktors FOXN4. Nach dessen Duplikation wurden FOXN4 und FOXN1 wohl gemeinsam exprimiert. Auf dem Weg zu den Säugetieren übernahm dann FOXN1 allein die Aufgabe; das Expressionsniveau von Dll4 in den TECs stieg an, und der Thymus war fortan nicht mehr bipotent, sondern nur noch für die T-Zell-Reifung zuständig.

Ich stecke im Thymus fest

Zeit für einen kurzen Werkstattbericht: Selbst abgesehen von „Ablenkungen“ wie Flüchtlingshilfe geht es wieder einmal zäh voran. Da hilft auch die Ermahnung nicht, die seit etwa zwei Jahren – vom Webcam-Paranoia-Maulwurf bewacht – auf meinem Monitor klebt:

P1300485_keine_Doktorarbeit

Ich beschäftige mich zum wiederholten Male mit einem eigentümlichen Organ: dem Thymus, der vieles kann, was andere Organe nicht können. Zum Beispiel stellen seine Zellen alle möglichen Autoantigene her, praktisch jedes Protein, das in irgendeinem Organ oder Gewebe des Körpers seine Arbeit tut, und präsentieren diese Autoantigene den angehenden T-Zellen, die im Thymus gewissermaßen ihre Ausbildung durchlaufen. Und spezielle Zellen dort – die thymic nurse cells – können offenbar junge T-Zellen verschlingen, dann in ihrem Inneren intensiv mit ihnen kommunizieren und sie nach einer Weile lebendig wieder freisetzen, was man lange für unmöglich hielt.

Oft weisen solche extremen Sonderbegabungen von Säugetierzellen auf Schlüsselereignisse in der Evolution des Immunsystems hin. Das gilt etwa für die Fähigkeit eines bestimmten Zelltyps in der Plazenta, mit den Nachbarzellen zu verschmelzen und so eine durchgängige, lückenlose Trennschicht zu bilden. Diese Kunst verdanken die Plazentazellen einem stammesgeschichtlich sehr weit zurückliegenden Befall mit Retroviren, die sich dann zum beiderseitigen Vorteil fest in das Genom der Säugetierzellen integriert haben. So etwas muss ich wirklich verstehen, um es im Buch zwar stark vereinfacht, aber doch korrekt darzustellen.

Mindestens ebenso oft stellt sich aber nach der Lektüre von Dutzenden Facharbeiten heraus, dass ich mich auf ein Seitengleis verirrt habe, das für das Buch irrelevant ist – oder dass die Wissenschaft einfach noch kein stimmiges, allgemein akzeptiertes Modell für die Entstehungs- und Funktionsweise bestimmter Zellen oder Organe entwickelt hat. So, wie ich gestrickt bin, kann ich mir diese Umwege nicht ersparen: Wenn mir etwas merkwürdig vorkommt – wie im Augenblick etwa die thymic nurse cells -, brauche ich schon mal eine Woche oder auch zwei, um dem auf den Grund zu gehen.

Erschwerend kommt hinzu, dass fast alle naheliegenden Illustrationsideen zum Thema Thymus unmöglich umzusetzen sind. Im Thymus werden über 95 Prozent aller jungen T-Zellen ausgemerzt, in Vorgängen, die „positive Selektion“ und „negative Selektion“ heißen. Blöd, wenn man sich vor Jahren entschieden hat, die Zellen des Immunsystems als niedliche froschähnliche Wesen darzustellen. Nurse cells klingt ja nett, aber diese „Krankenschwestern“ und die übrigen Thymuszellen sorgen dafür, dass nicht einmal jede zwanzigste T-Zelle ihren Aufenthalt im Thymus überlebt.

Auch die bildliche Darstellung von Kontrollposten (checkpoints) und geschlossenen Grenzen im Thymus geht zur Zeit nicht gerade leicht von der Hand. Kommt Zeit, kommt Rat.

Trogozytose: Kleider machen Leute

Die Funktion einer Immunzelle wird während ihrer Entwicklung von der Stammzelle im Knochenmark zur reifen Effektorzelle immer weiter festgelegt. Aber es gibt Ausnahmen. So bringt die sogenannte Trogozytose (vom griechischen trogo = nagen, knabbern) Flexibilität ins Spiel: Zellen können Oberflächenmarker an andere Zellen – insbesondere Immunzellen – übergeben. Die Empfängerzelle übernimmt dann trotz eines unveränderten Genexpressionsprofils neue Aufgaben, etwa Antigenpräsentation oder Toleranzinduzierung. In der Fachliteratur wird dieser Mechanismus auch als „cross-dressing“ bezeichnet.

T-Zelle, als B-Zelle verkleidet

T-Zelle, als B-Zelle verkleidet

So können etwa Monozyten oder Makrophagen Immunkomplexe aus Antigenen und Antikörpern des Typs IgG von B-Zellen übernehmen. Spender und Empfänger bilden dazu eine Synapse, eine innige Verbindung, bei der Fcγ-Rezeptoren an der Oberfläche der Empfänger an die freien konstanten Ende der Antikörper binden, die wiederum mit ihrer antigenspezifischen Seite an die Antigene gebunden sind, die die B-Zellen auf ihrer Oberfläche tragen. Wenn sich die Zellen wieder voneinander lösen, bleibt ein Teil der Membran des Spenders mitsamt Antikörpern und Antigenen an der Empfängerzelle haften. Die Spenderzelle schnürt diesen Membranteil ab, ohne dabei Schaden zu nehmen. Der Empfänger baut die geklauten Proteine ab oder präsentiert sie auf seiner Oberfläche, wo sie von anderen Zellen erkannt werden können.

Nach diesem Schema verläuft auch die Übernahme von Antigen-beladenen MHC-Komplexen durch T-Zellen:   Weiterlesen

Ärger mit dem Passwort

Normalerweise wird an der Grenze von Lymphstrukturen sehr genau geprüft, welche Zellen hineindürfen. Autoreaktive B-Zellen werden abgewiesen, sodass sie eingehen, weil sie keine Überlebensnischen finden. Zytotoxische T-Zellen (CD8+-Zellen) werden eingelassen, um im Inneren aufzuräumen – zum Beispiel von Viren befallene B-Zellen abzutöten, bevor sie sich vermehren.

P1240322_Einlasskontrolle_tertiäre_Lymphstruktur_650

In den tertiären Lymphstrukturen vieler Menschen mit Autoimmunerkrankungen scheint diese Einlasskontrolle nicht zu funktionieren: Die nützlichen zytotoxischen T-Zellen werden abgewiesen, autoreaktive B-Zellen aber eingelassen.

Epstein-Barr-Viren kapern und überdauern in B-Zellen

P1230954_EBV-Schläfer_in_B-Zelle_650

Etliche Bakterien und Viren entziehen sich der Abwehr, indem sie sich ausgerechnet im Inneren von Immunzellen einnisten. Eines der bekanntesten Beispiele ist das Humane Immundefizienz-Virus (HIV), das in T-Zellen überdauert. Viel häufiger und zum Glück weniger gefährlich ist das Epstein-Barr-Virus (EBV), das zu den Herpes-Viren gehört und sich in unseren B-Zellen versteckt. Einmal infiziert, trägt man es so ein Leben lang mit sich herum, und meistens bemerkt man davon nichts.

Bis zum 35. Lebensjahr haben sich über 95 Prozent aller Menschen das Virus zugezogen. Während sich in den Entwicklungsländern – wie früher auch bei uns – die meisten bereits als Kleinkinder symptomfrei anstecken, infizieren sich etliche Menschen in hoch entwickelten Ländern mit guter Hygiene erst als Jugendliche oder junge Erwachsene und entwickeln dann das Pfeiffer-Drüsenfieber. Nach einer akuten Infektionsphase in den Mandeln startet das Virus ein Latenzprogramm: Es nistet sich in langlebigen B-Gedächtniszellen ein, in denen es nicht weiter stört, aber die Funktion der B-Zellen subtil beeinflussen kann. Die B-Gedächtniszellen wandern über die Blutbahn in andere Organe.

Schon lange steht das Virus im Verdacht, bei Menschen mit entsprechender genetischer Veranlagung den Ausbruch von Autoimmunerkrankungen zu fördern, etwa Lupus, Multiple Sklerose, rheumatoide Arthritis, Hashimoto-Thyreoiditis, Sjögren-Syndrom, Typ-1-Diabetes, systemische Sklerose oder chronisch-entzündliche Darmerkrankungen. Gegen welches Organ oder Gewebe sich die Autoimmunreaktionen richten, scheint von ererbten Risikoallelen abzuhängen, insbesondere von bestimmten MHC-Klasse-II-Genvarianten und einer Veranlagung zu einem Mangel an regulatorischen T-Zellen (Tregs). Aber wie tragen die Viren zum Ausbruch der Autoimmunerkrankung bei? Alle möglichen Mechanismen werden in der Literatur diskutiert: molekulare Mimikry zwischen EBV-Proteinen wie EBNA-1 und menschlichen Proteinen wie dem Lupus-Autoantigen Ro, Bystander Activation autoreaktiver T-Zellen durch Entzündungssignale aus den infizierten B-Zellen, Epitope Spreading über das anfangs dominante EBV-Antigen hinaus oder polyklonale Antikörperbildung im Zuge der Vermehrung und Aktivierung der befallenen B-Zellen.

Außerdem wurde spekuliert, die Viren könnten naive autoreaktive B-Zellen so umprogrammieren, dass sie sich auch ohne Aktivierung durch Autoantigen-Kontakt in sehr langlebige Gedächtnis-B-Zellen umwandeln, die dann später Autoimmunreaktionen auslösen. Die Viren könnten auch endogene Retroviren wie HERV-K18 oder HERV-W aktivieren, die normalerweise untätig in unserem Genom schlummern, nach ihrer Erweckung durch EBV aber Superantigene herstellen, die zahlreiche T-Zellen polyklonal aktivieren könnten. Bewiesen ist aber nichts.

Dass im Blut von Patienten mit Autoimmunerkrankungen manchmal deutlich mehr Anti-EBV-Antikörper oder EBV-DNA-Moleküle nachzuweisen sind als bei Gesunden, belegt noch keine Verursachung der Erkrankung durch EBV: Vielleicht stört umgekehrt die Autoimmunerkrankung das Gleichgewicht in den infizierten B-Zellen, sodass die Viren aus ihrem Latenzzustand erwachen und sich vermehren. Da die üblichen Tiermodelle für Autoimmunerkrankungen, insbesondere Mäuse- und Rattenstämme, sich nicht mit EBV infizieren lassen, können auch Tierversuche keine rasche Klärung bringen.

eQTLs: Wie Autoimmun-Risikoallele die Immunreaktion verändern

Schon länger ist bekannt, dass die meisten genetischen Varianten, die das Risiko für Autoimmunerkrankungen erhöhen, gar nicht im abgelesenen Bereich irgendeines Gens liegen, sondern in nicht codierenden, rein regulatorischen DNA-Sequenzen, die das Ausmaß beeinflussen, in dem andere Sequenzen abgelesen werden. Durch sogenannte genome-wide association studies (GWAS) kennen wir Aberhunderte solcher Einzelnukleotid-Polymorphismen (single nucleotide polymorphisms oder SNPs), also Stellen in unserem Genom, an denen bei einem Teil der Menschen eine Nukleobase (A, T, C oder G) durch eine andere ersetzt ist.

Diese winzigen Varianten verändern die Feinstruktur der DNA-Doppelhelix und der Nukleosomen, also der kabelrollenartigen Proteinkomplexe, um die die Doppelhelix gewickelt ist. Dadurch können zum Beispiel andere Proteinkomplexe, die für die Ablesung von Genen, also die Produktion von Messenger-RNA-Strängen verantwortlich sind, besser oder schlechter an die DNA andocken und sich von dort aus an ihren Einsatzort weiterhangeln. Oder die DNA bildet Schleifen, durch die eine aktivierende Sequenz mit einer aktivierbaren Sequenz in Kontakt kommt, usw. Die meisten dieser Regulierungsmechanismen sind noch nicht richtig aufgeklärt.

Bis vor kurzem konnte man auch nicht sagen, welches Gen nun durch einen SNP stärker oder schwächer abgelesen wird als sonst. Es kann das nächste oder übernächste Gen in die eine oder in die andere DNA-Strang-Richtung sein (cis-Regulierung) oder irgendein Gen in großer Entfernung, sogar auf einem anderen Chromosom (trans-Regulierung). Das lässt sich neuerdings durch aufwändige Analysen der sogenannten expression quantitative trait loci – kurz: eQTLs – aufklären. Das sind DNA-Sequenzen, die die Ablesung eines Gens nicht einfach ein- oder ausgeschalten, sondern hoch- oder herunterregulieren – und genau das ist bei vielen Genen des Immunsystems der Fall. (Das quantitative Merkmal ist hier also nicht, wie bei klassischen QTLs, ein kontinuierlich variierendes äußerliches Merkmal wie etwa die Körpergröße, sondern die mRNA-Menge, die bei der Transkription des Zielgens entsteht.)

Die eQTL-Analysen unserer Immunsystem-Gene sind in den letzten Monaten immer genauer geworden: Anfangs hat man untersucht, wie sich SNPs, die statistisch mit Autoimmunerkrankungen in Verbindung gebracht wurden, auf die Ablesestärke von Immunsystem-Genen in einem Gemisch aller möglicher weißer Blutkörperchen (Monozyten, T-Zellen, B-Zellen usw.) auswirken. Das ist ungefähr so, als würde man ein Elektroenzephalogramm von einer ganzen Gruppe von Leuten machen und dann aus dem Gewirr von Signalen darauf rückschließen wollen, welche Prozesse in ihren Gehirnen ablaufen (Yao et al. 2014):

eQTL_1_gemischte_Blutzellen_650Als Nächstes hat man einzelne Immunzelltypen aus den Blutproben von gesunden Probanden isoliert und dann beispielsweise die Ablesung bestimmter Immunsystem-Gene in den Monozyten von Europäern mit der Ablesung derselben Gene in den Monozyten von Asiaten verglichen (Raj et al. 2014):

eQTL_2_Monozyten_nicht_angeregt_650

Bei vielen Genen, die man im Verdacht hat, das Risiko für Autoimmunerkrankungen zu beeinflussen, konnte man so allerdings keine großen Unterschiede zwischen den Gruppen entdecken. Das ist kein Wunder, denn die Immunzellen wurden im nicht angeregten Grundzustand untersucht. Immunreaktionen werden aber durch Alarmsignale ausgelöst, zum Beispiel durch die Konfrontation mit Krankheitserregern oder mit Molekülen, die für diese Pathogene typisch sind – etwa Lipopolysaccharide aus Bakterien-Zellwänden.

Also hat man im nächsten Schritt im Rahmen des ImmVar-Projekts bestimmte Zelltypen aus dem Blut unterschiedlicher Probandengruppen isoliert und sie dann mit solchen Gefahrensignalen konfrontiert, um sie zu aktivieren und anschließend ihre Reaktionen zu erfassen (Fairfax et al. 2014, Lee et al. 2014Ye et al. 2014):

eQTL_3_Monozyten_angeregt_650

Und siehe da: Bestimmte Gene werden nach der Aktivierung des entsprechenden Immunzelltyps (hier Monozyten) besonders stark abgelesen, wenn die DNA der Probanden an anderer Stelle einen bestimmten Risiko-Genort enthält.

Dabei gab es bereits einige Überraschungen. Beispielsweise wird die Ablesung von Genen, die die Zellvermehrung von Gedächtnis-T-Zellen steuern, durch die bekannten Risiko-Genorte für wichtige Autoimmunerkrankungen wie Typ-1-Diabetes oder rheumatoide Arthritis kaum gesteigert (Hu et al. 2014). Dabei dachte man bisher, diesem Zelltyp käme bei Autoimmunerkrankungen durch seine übermäßige Vermehrung und Aktivierung eine Schlüsselrolle zu.

Schichtarbeit: Der Tag-Nacht-Rhythmus von Immunreaktionen

Neulich las ich, dass selbst schwaches Nachtlicht eine Brustkrebstherapie u. U. wirkungslos machen kann, weil das Licht die nächtliche Melatoninproduktion stört, was wiederum die Tumorzellen stärkt. Beim Nachrecherchieren führte eins zum anderen, und zack: Schon muss das Autoimmunbuch um ein Kapitel erweitert werden. Wie die sogenannte circadiane Rhythmik – das Schwingen aller möglicher Abläufe in unserem Körper mit einer Periode von etwa 24 Stunden – und der nächtliche Schlaf unser Immunsystem regeln, ist nämlich hochspannend und auch für Autoimmunerkrankungen relevant.

Von dem Dutzend Arbeiten, die ich zum Thema gelesen habe, empfehle ich vor allem die Übersicht „T Cell and Antigen Presenting Cell Activity During Sleep“ von Tanja Lange und Jan Born (2011), auf der die meisten der folgenden Abbildungen basieren.

Wie stellt das Immunsystem sicher, dass sich entzündungsfördernde und entzündungshemmende Signale, die angeborene und die erworbene Abwehr sowie der Th1- und der Th2-Arm der erworbenen Abwehr nicht ins Gehege kommen? Durch räumliche und zeitliche Trennung: Der Tag gehört den entzündungshemmenden Signalen, der angeborenen Abwehr und denjenigen Zellen der erworbenen Abwehr, die Pathogene unmittelbar bekämpfen: den zytotoxischen T-Zellen. Und in der Nacht – vor allem, wenn man schläft und nicht durchwacht – dominieren Entzündungsreaktionen, die uns tags bei lebensnotwendigen Aktivitäten stören würden. Außerdem wird nachts durch die Kontakte zwischen antigenpräsentierenden Zellen und T-Helferzellen das immunologische Gedächtnis angelegt.

Hormone aus der Zirbeldrüse und der Hypophyse im Gehirn sowie aus der Nebennierenrinde, deren Ausschüttung von der zentralen inneren Uhr im Hypothalamus gesteuert wird, sorgen dafür, dass die richtigen Zellpopulationen zu jeder Zeit am richtigen Ort sind – also im Blut, im Lymphsystem, im peripheren Gewebe oder im Knochenmark. Die zentrale innere Uhr basiert auf einer Handvoll Gene, deren Ableseprodukte (die Proteine PER, CRY, REV-ERB, ROR, CLOCK und BMAL) wechselseitig ihre eigene Ablesung ein- und ausschalten. Ohne äußere Impulse oszilliert diese Rückkopplung mit einer Periode von etwas mehr als 24 Stunden. Durch Tageslichtsignale – von Nervenzellen in der Netzhaut an den Hypothalamus übermittelt – wird sie auf genau 24 Stunden eingestellt.

Die zentrale Uhrzeit wird vor allem durch das Zirbeldrüsen-Hormon Melatonin an die Zellen im gesamten Körper übermittelt. Die Melatoninkonzentration ist mitten in der Nacht am höchsten, fällt noch in der Nacht steil ab und bleibt tags sehr niedrig, bis sie abends wieder anzusteigen beginnt:

TagNacht_Melatonin_beschriftet_Quelle_Netz_650In dieser und den folgenden Abbildungen ist die Konzentration im Blut während etwas mehr als 24 Stunden dargestellt, beginnend mit dem Abend eines Tages bis zum Abend des nächsten Tages.  Die beiden senkrechten Linien markieren die Nacht, in der man idealerweise zwischen 23 und 7 Uhr schläft. In der ersten Nachthälfte gerät man in den Tiefschlaf, hier wegen der englischen Bezeichnung slow-wave sleep als SWS bezeichnet. Diese Schlafphase ist für die Regelung des Immunsystems entscheidend.

Weiterlesen

Bildergalerie

Da ich im Moment nicht zum ausführlichen Bloggen komme, stelle ich hier einfach die neuesten Abbildungen fürs Buch vor: unkommentiert – und damit wohl auch unverständlich. Aber das eine oder andere Element spricht vielleicht doch für sich selbst:

P1200120_IFN_und_AIE_1000

P1200095_U-Form_1_Grundtonus_nach_Casadevall_650

P1200100_U-From_2_entzündungshemmend_nach_Casadevall_650

P1200105_U-Form_3_entzündungsfördernd_nach_Casadevall_650

P1190917_Wahren-Herlenius_Autoimmunität_Risiken_650

Wahren-Herlenius_Rückkopplung_angeb_erw_Abwehr_AIE_650

  Primär_Sekundärantwort_IgM_IgG_650

Zeitverlauf_klonale_Expansion_Kontraktion_CD4_CD8_650n

Und jetzt weiter im Text – oder vielmehr im Bild: Die nächste Zeichnung dreht sich um die circadiane Rhythmik des Immunsystems, also die Schwankungen von Zell- und Stoffkonzentrationen sowie -funktionen im Tagesverlauf.

Fas/FasL: Wer zieht schneller?

Fas ist ein Rezeptor in der Membran etlicher Zelltypen im menschlichen Körper. FasL ist sein Ligand; auch er ist in der Zellmembran angesiedelt. Bindet FasL (hier: Pfeil und Bogen) an Fas (hier: Zielscheibe), so löst Fas in seiner Zelle eine Apoptose aus, einen kontrollierten Zelltod. Dieser Regulierungsmechanismus kommt in unserem Körper in mehreren Situationen zum Einsatz:

P1190827_Immunzelle_Nervenzelle_Fas_FasL_korr_650

P1190831_2_Immunzellen_Fas_Fasl_650

Oben: Zytotoxische T-Zellen (links) bringen so infizierte oder beschädigte Körperzellen (hier eine Nervenzelle, rechts) zum Absterben.

Mitte: In den sogenannten immunologisch privilegierten Orten, beispielsweise im Gehirn, läuft es umgekehrt: Die Zellen dort exprimieren selbst so viel FasL, dass eindringende T-Zellen (deren Membranen sowohl Fas als auch FasL enthalten) sterben, bevor sie eine Abwehrmaßnahme durchführen können.

Unten: Gegen Ende einer Immunreaktion muss die Zahl der Immunzellen im Körper stark reduziert werden (sog. Kontraktion des Immunsystems). Dazu begehen die Immunzellen Brudermord: Da sie sowohl Fas als auch FasL exprimieren, können sie sich gegenseitig ausschalten.

Versagt dieser Kontrollmechanismus, kann es zu Autoimmunerkrankungen kommen.