Archiv der Kategorie: Aus der Fachliteratur

Jahreszeitliche Schwankungen der Schilddrüsenhormonwerte

Was für ein Zufall: Vorgestern habe ich beim Hausarzt endlich den TSH-Wert erfragt, der im Januar erhoben worden war. Ich hatte das bisher nicht getan, da ich mich im Winter und auch seither gut eingestellt fühlte. Das ist nur in einem recht schmalen TSH-Werte-Korridor der Fall – viel schmaler jedenfalls als das Spektrum normaler Werte bei Gesunden, das bei „meinem“ Labor von 0,55 bis 4,80 mIU/L reicht.

Als Faustregel habe ich mir gemerkt, dass der Wert bei mir nicht unter 0,8, aber auch nicht über 1,5 mIU/L liegen sollte. Darunter werde ich extrem hibbelig und fahrig, darüber werde ich nicht richtig wach. Daher wunderte es mich, dass die TSH-Konzentration in meinem Serum im Januar bei 1,68 mIU/L lag, obwohl ich nicht total schlapp, verfröstelt und langsam war.

Zack: Gestern gab es bei DocCheck eine mögliche Erklärung. Die mittleren Konzentrationen des Thyroxins (insbesondere FT3) und des Thyreoidea-stimulierenden Hormons schwanken einer neuen japanischen Studie zufolge bei Gesunden im Jahresverlauf erheblich. Während der mediane TSH-Wert der 7000 Probandinnen und Probanden im Mai nur 1,16 betrug, waren es im Januar 1,61 – also fast genauso viel wie bei mir.

Zwar lassen sich die jahreszeitlichen Schwankungen bei Gesunden nicht eins zu eins auf Menschen mit Hashimoto-Thyreoiditis übertragen, die – wie ich – rund ums Jahr dieselbe Thyroxin-Menge einnehmen. Aber ich kann mir gut vorstellen, dass der Thyroxin-Bedarf des Körpers auch bei mir im Jahresverlauf ein wenig schwankt, was wiederum systematische Änderungen des TSH-Werts nach sich zieht, der ja den aktuellen Thyroxin-Bedarf des Körpers signalisiert. Zum Beispiel wiege ich im Winter meist etwas mehr; es muss also schlicht mehr Gewebe versorgt werden; außerdem greift gerade Fettgewebe in die Hormonkreisläufe ein. Auch muss der Körper im Winter mehr heizen, und die Körpertemepratur wird ebenfalls über Thyroxin reguliert.

Der Mehrbedarf war aber offenbar nicht groß genug, um sich auf mein Wohlbefinden auszuwirken. Daher bleibe ich bis auf weiteres bei dem übers Jahr konstanten Einnahmeschema. Ich verstehe aber jetzt besser, warum manche Menschen mit Hashimoto-Thyreoiditis berichten, dass sie im Urlaub weniger Thyroxin brauchen und daher die Einnahmemenge reduzieren – vorausgesetzt, sie reden vom Sommerurlaub!

Cartoon eines Mitochondriums als Fabrik, die vor allem Energieträger erzeugt

Die Rolle der Mitochondrien in systemischen Autoimmunerkrankungen

Mein Text über T-Zellen mit Stoffwechselproblemen ist gut sieben Jahre alt. Höchste Zeit für ein Update: Welche Rolle spielt der Zellstoffwechsel bei der Entstehung und der Bekämpfung von systemischen Autoimmunerkrankungen wie Rheuma oder Lupus (SLE)? Was geschieht mit den Zellen und Regelkreisläufen des Immunsystems, wenn unsere Mitochodrien nicht so funktionieren, wie sie es sollten? Der aktuellen Kenntnisstand dazu ist in einem Review nachzulesen (Open Access):

Blanco LP, Kaplan MJ (2023): Metabolic alterations of the immune system in the pathogenesis of autoimmune diseases. PLoS Biol 21(4): e3002084. https://doi.org/10.1371/journal.pbio.3002084

Der Artikel enthält ein Glossar mit den wichtigsten Grundbegriffen und einige mittelprächtige Abbildungen. Viele Aussagen sind – wie so oft in narrativen Reviews – recht vage, nach dem Schema: X könnte Y bewirken. Und man verliert sich leicht in den zahlreichen Details der dargestellten Signalketten und Stoffwechselwege, die ich im Folgenden weglasse.

Bevor ich die Arbeit zusammenfasse: ein Wort zur sogenannten Mitochondrien-Medizin. Ich reagiere etwas allergisch auf den Ausdruck, da mir dieser alternativmedizinische Ansatz arg esoterisch erscheint, wie ein Glaubenssystem, dessen Anhänger ab und zu auch mich zu bekehren versucht haben oder in mir eine Verbündete zu sehen meinten. Insofern passt es, dass dieser Text nach dem über die Just-so-Stories erscheint: Die Hypothese, auf der Mitochondrien-Medizin fußt, klingt furchtbar einleuchtend, aber das Ganze ist nicht gerade evidenzbasiert. Dysfunktionale Mitochondrien sind tatsächlich an (zumindest einigen) Autoimmunerkrankungen beteiligt. Aber die Zusammenhänge sind komplex und vermutlich nicht bei allen Autoimmunerkrankungen gleich, und die entsprechenden Therapieansätze sind so unausgereift, dass gegenüber schlichten Ernährungsregeln oder anderen Formen der Selbsttherapie zur Mitochondrien-„Heilung“ vorerst gehörige Skepsis angebracht ist. Jetzt aber zu Blanco und Kaplan:

Weiterlesen

Eine Impfung gegen Rheuma?

Eine kurze Literaturnotiz, die zudem nur auf dem Abstract eines Fachartikels beruht, da ich an den Volltext nicht herankomme:

Vilma Urbonaviciute et al. (2023): Therapy targeting antigen-specific T cells by a peptide-based tolerizing vaccine against autoimmune arthritis. In: PNAS, 12. Juni 2023, 120 (25) e2218668120

Bisherige Therapien bei Autoimmunerkrankungen bekämpfen meist recht unspezifisch die Entzündungen oder einzelne Symptome wie Schmerzen, oder man versucht das Immunsystem komplett „zurückzusetzen“, also z. B. alle B-Zellen (und damit auch die autoreaktiven B-Zell-Klone) zu eliminieren. All das geht mit erheblichen Nebenwirkungen einher.

Nun hat ein Forschungsteam an Mäusen einen spezifischeren und zudem vorbeugenden Ansatz erprobt: Ein MHC-Klasse-II-Protein (also ein „Antigen-Präsentationsteller“, wie man ihn normalerweise auf Makrophagen, Monozyten, dendritischen Zellen oder B-Zellen findet) wurde mit einem galatolysierten Kollagen-Typ-II-Peptid (kurz COL2) beladen. Diese Makromolekül-Kombination wurde Mäusen eines Zuchtstamms injiziert, der zu einer Autoimmun-Arthritis neigt, also einem Tiermodell einer rheumatoiden Arthritis.

Das Konstrukt ist positiv geladen und kann so direkt mit dem passenden antigenspezifischen T-Zell-Rezeptor interagieren, was zur Vermehrung eines bestimmten, sonst seltenen Typs von regulatorischen T-Zellen (Tregs) führt. Diese Tregs unterdrücken spezifisch die Autoimmunreaktionen auf den Collagen-Schnipsel, und zwar so stark, dass die Tiere trotz ihrer Veranlagung keine Arthritis bekommen. Überträgt man die Tregs auf andere Mäuse, so bekommen auch diese keine Autoimmun-Arthritis; damit ist der Beweis erbracht, dass wirklich diese regulatorischen T-Zellen die Toleranz des Immunsystems gegenüber dem körpereigenen Kollagen wiederherstellen.

Die Autor*innen hoffen, dass diese Form der Toleranz-Induktion durch Impfung auch beim Menschen funktioniert und bei Individuen mit entsprechender genetischer Prädisposition den Ausbruch von Rheuma und womöglich auch anderen Autoimmunerkrankungen verhindern kann. Bis dahin ist es aber noch ein langer Weg – wenn es überhaupt klappt und sich als sicher erweist.

Fische sind cool: Eine Just-so-Story über die Konsequenzen der Warmblütigkeit

Vor gut 120 Jahren, im Jahr 1902, veröffentlichte der britische Autor Rudyard Kipling eine Geschichtensammlung mit dem Titel „Just So Stories for Little Children“: logisch klingende, aber frei erfundene Erklärungen dafür, wie Tiere zu ihren auffälligsten Merkmalen gekommen sind, etwa das Kamel zu seinem Höcker oder der Elefant zu seinem Rüssel. Ihren Titel verdankt die Sammlung der Forderung seiner jungen Tochter, dass er die Geschichten „genau so“ erzählen oder vorlesen müsse, jeden Abend exakt gleich. In Anlehnung an Kipling bezeichnen Evolutionsbiologen schwer überprüfbare (oder zumindest noch nicht überprüfte), aber verführerisch einleuchtend klingende Erklärungen für die evolutionäre Herausbildung von tierischen Merkmalen oder menschlichen Eigenschaften als Just-so-Stories.

Die roten Blutkörperchen oder Erythrozyten der Säugetiere sind scheibenförmig und in der Mitte dünner als am Rand, denn sie enthalten keinen Zellkern und keine Organellen, dafür aber viel Hämoglobin, um Sauerstoff aus den Lungen über die Blutbahn in die Organe zu transportieren:

In Fischen, Amphibien und Reptilien haben die Erythrozyten dagegen einen Kern, und sie übernehmen wichtige Aufgaben im Immunsystem. So helfen sie bei der Bekämpfung von Viren-, Bakterien- und Pilz-Infektionen, etwa durch die Ausschüttung von Botenstoffen und reaktiven Sauerstoffspezies oder durch die Bindung, Aufnahme, Verarbeitung und Präsentation von Antigenen. Zwar enthalten sie auch Hämoglobin und dienen dem Sauerstofftransport, aber daneben sind sie vollwertige, wehrhafte Immunzellen:

Dass die roten Blutkörperchen der Säugetiere ihre Kerne kurz nach der Entstehung im Knochenmark abstoßen, klingt zunächst nach einem Rückschritt. Denn da sie ohne Kerne und Organelle keine Proteine mehr produzieren können, spielen sie im Immunsystem der Säuger eine so untergeordnete Rolle, dass sie in Listen der Zelltypen des Immunsystems meist gar nicht aufgeführt werden. Stattdessen konzentrieren sich die abgeflachten Zellen ganz auf den Sauerstofftransport; das Hämoglobin macht 90 Prozent ihres Trockengewichts aus.

Über den Grund für den Verlust des Zellkerns der Säugetier-Erythrozyten kursiert eine Just-so-Story: Fische, Amphibien und Reptilien sind wechselwarme (poikilotherme oder ektotherme) Tiere, deren Körpertemperatur von der Umgebungstemperatur abhängt. Säugetiere sind dagegen gleichwarme (homoiotherme oder endotherme) Tiere, umgangssprachlich auch Warmblüter genannt. In dem meisten Lebenslagen müssen sie viel Energie aufwenden, um ihren Körper aufzuheizen. Dadurch sind sie weniger abhängig vom Wetter, können beispielsweise ihre Jungen im Leib austragen und vielfach auch im Winter aktiv bleiben. Um die Wärme zu generieren, braucht ihr Gewebe viel Energie, und um Energieträgermoleküle wie ATP aufzubauen, braucht es sehr viel Sauerstoff. Den schaffen die roten Blutkörperchen herbei. Also weg mit deren Zellkernen, her mit Unmengen an Hämoglobin, um den Körper mit Sauerstoff zu versorgen!

Klingt logisch – zumal Säugetiere ja zumeist an Land leben und nicht ständig in einer Bakterien- und Virensuppe herumschwimmen, während Fische und auch Amphibienlarven das Wasser sogar durch ihre Kiemen filtern, also ständig sehr eng mit vielen Krankheitserregern in Berührung kommen.

Aber … Moment mal! Was ist denn mit den Vögeln? Auch sie sind gleichwarm, brauchen also meistens viel Energie, um sich gegenüber der Umgebung aufzuheizen. Und ihre roten Blutkörperchen?

Tja: Die haben trotzdem Zellkerne. Damit fällt die einleuchtende Erklärung für den Kernverlust der Säugetier-Erythrozyten in sich zusammen wie ein Kartenhaus.

Nicht immer sind Just-so-Stories so leicht zu erkennen. Wir Menschen haben das Bedürfnis, Dinge zu begreifen, und verspüren oft eine tiefe Befriedigung, wenn wir auf eine nachvollziehbare Erklärung für ein Phänomen stoßen. Im Autoimmunbuch und im Friendly-Fire-Blog bin ich besonders anfällig für Just-so-Stories, denn ich schreibe dies alles ja in erster Linie, um mir selbst und anderen Interessierten unser Immunsystem und die Entstehung von Autoimmunerkrankungen begreiflich zu machen. Denn je besser ich die unheimlichen Entgleisungen meines Immunsystems verstehe, desto weniger ängstigen sie mich. Auch wenn ich skeptisch und wachsam zu bleiben versuche, wird bestimmt die eine oder andere evolutionsbiologische oder ökologische Herleitung im Buch und im Blog schlecht altern. Aber das nehme ich in Kauf.

Asthma ist mit rheumatoider Arthritis assoziiert

Vor elf Jahren habe ich hier drei Texte zum Verhältnis zwischen Allergien bzw. Asthma und Autoimmunerkrankungen veröffentlicht:

Schließen Autoimmunerkrankungen und Allergien einander aus? Teil 1

Schließen Autoimmunerkrankungen und Allergien einander aus? Teil 2

Schließen Autoimmunerkrankungen und Allergien einander aus? Teil 3

Das durchwachsene Fazit: Einige Autoimmunerkrankungen könnten bei Menschen mit (bestimmten Formen von) Asthma seltener auftreten als bei Menschen ohne Asthma. Andere Studien fanden keine positive oder negative Assoziationen zwischen Asthma oder Allergien auf der einen und verschiedenen Autoimmunerkrankungen auf der anderen Seite.

Die Vorstellung, dass Asthma oder Allergien vor Autoimmunerkrankungen „schützen“, wurde durch das schon damals veraltete Konzept einer einseitigen Dominanz Th1- oder des Th2-Wegs im Immunsystem gefördert, dem zufolge entweder die zelluläre Abwehr (über)aktiv wird oder aber die humorale Abwehr, also die Antikörperproduktuion. Asthma und Allergien wurden mehrheitlich dem Th2-Arm zugeordnet, Autoimmunerkrankungen dem Th1-Arm. Schon 2012 war aber klar, dass Th17-Zellen und regulatorische T-Zellen bei vielen Erkrankungen ebenfalls wichtig sind und dass der Th1- und Th2-Arm einander keineswegs vollständig hemmen: Bei vielen Autoimmunstörungen, die primär durch überaktive T-Effektorzellen (also durch den Th1-Arm) geprägt sind, lassen sich auch hohe Konzentrationen von Autoantikörpern (Th2-Arm) nachweisen – nur ist oft nicht klar, ob sie zum Erkrankungsmechanismus beitragen oder ein reines Epiphänomen darstellen.

Zeit für ein Update! Der Anlass ist eine neue koreanische Studie, in der das Verhältnis von rheumatoider Arthritis (RA), einer von Th1- und Th17-Zellen geprägten Autoimmunerkrankung, zu Asthma bronchiale und anderen chronischen entzündlichen Atemwegserkrankungen untersucht wurde, bei denen Th2-Zellen dominieren:

Kim et al. (2023): Association of rheumatoid arthritis with bronchial asthma and asthma-related comorbidities: A population-based national surveillance study

An der Studie beteiligten sich gut 14.000 Personen über 40 Jahren. Bei ihnen war RA signifikant mit Asthma, allergischer Rhinitis und Sinusitis assoziiert. Die Korrelation war also nicht negativ im Sinne einer Schutzwirkung, sondern positiv: Menschen mit Asthma hatten z. B. mit einer gut doppelt so hohen Wahrscheinlichkeit auch RA wie Menschen ohne Asthma. Das Studiendesign erlaubte zwar keine Aussagen über die Richtung des Zusammenhangs, aber da Asthma und Allergien oft bereits in jungen Jahren auftreten, Rheuma aber erst spät im Leben, liegt es nahe, dass Asthma und Allergien Risikofaktoren für Rheuma sind und nicht umgekehrt. Es gibt auch Längsschnittstudien, die darauf hindeuten.

Neu gegenüber den Untersuchungen, die ich 2012 vorgestellt habe, ist der vorgeschlagene Mechanismus hinter diesem Zusammenhang: Schleimhautentzündungen in den Atemwegen erhöhen die sogenannte Citrullinierung. Bei dieser enzymatischen Reaktion wird die Aminosäure Arginin, die in unseren Proteinen vorkommt, in die ähnliche Aminosäure Citrullin umgewandelt, die der menschliche Körper normalerweise nicht herstellt. Diese kleine Modifikation kann dazu führen, dass ein Protein eine etwas andere Faltungskonfiguration einnimmt und daher dem Immunsystem fremd vorkommt. So kann eine Autoimmunreaktion ausgelöst werden, die sich gegen ein körpereigenes Protein richtet. Das scheint bei seropositivem Rheuma der Fall zu sein – siehe Abbildung 111 und Abbildung 231 aus Band 1 des Autoimmunbuchs sowie meine Zusammenfassungen der Arbeiten von Wegner et al. und Routsias et al. Auch Asthma verstärkt die Citrullinierung, und Asthma-Patient*innen haben mehr Antikörper gegen citrullinierte Proteine im Blut als Menchen ohne Asthma.

Wo ich schon dabei war, habe ich auch noch die Abstracts zweier weiterer Veröffentlichungen ausgewertet:

Charoenngam et al. (2020): Patients with asthma have a higher risk of rheumatoid arthritis: A systematic review and meta-analysis

Eine Metaanalyse von Kohortenstudien zeigt, dass Patient*innen mit Asthma ein etwa um den Faktor 1,4 (signifikant) erhöhtes Risiko haben, an RA zu erkranken. Auch eine Metaanalyse von Fall-Kontroll-Studien zeigt ein etwa um den Faktor 1,3 erhöhtes Risiko.

Williams et al. (2023): The uni-directional association of atopic dermatitis and rheumatoid arthritis: a systematic review and meta-analysis

Atopische Dermatitis oder Neurodermitis ist ein gutes Beispiel für die Unzulänglichkeit des alten Th1-versus-Th2-Paradigmas: Die Erkrankung beginnt mit einer Dominanz von Th2-Helferzellen, die die IgE-Antikörper-Produktion fördern, und geht dann zu einer Th1-Dominanz über.

In dieser Studie ist die Richtung klar: Patient*innen mit Rheuma haben kein signifikant erhöhtes Risiko, auch atopische Dermatitis zu bekommen. Umgekehrt geht eine atopische Dermatitis aber wohl mit einem höheren Risik einher, auch an Rheuma zu erkranken. Bei anderen Formen von Arthritis zeigten sich keine klaren Zusammenhänge.

Da die atopische Dermatitis durch häufige Entzündungen der Haut geprägt ist, könnte auch hier die Citrullinierung eines Proteins in der Haut das Bindeglied zum Rheuma sein. Das ist aber Spekulation meinerseits; es geht nicht aus dem Abstract hervor.

Multiple Sklerose und das Epstein-Barr-Virus: MS wegimpfen?

Kürzlich tauchte auf der tagesschau-Website eine Meldung auf: „Epstein-Barr-Virus: Impfung bald möglich?“ Berichtet wurde über die Forschung von Professor Wolfgang Hammerschmidt vom Helmholtz Zentrum in München: Dieser habe „gemeinsam mit anderen Forschenden einen Impfstoff gegen das Virus entwickelt, um das Pfeiffersche Drüsenfieber zu verhindern, das wissenschaftlich infektiöse Mononukleose genannt wird. Der Impfstoff, der bereits von einem Pharmaunternehmen produziert wird, soll nächstes Jahr in eine klinische Prüfung gehen, also am Menschen getestet werden.“

Und weiter: „Auch Professor Nicholas Schwab von der Uniklinik in Münster hält eine Impfung gegen das Epstein-Barr-Virus für ausgesprochen wünschenswert. Denn mit seinen jüngsten Forschungen konnte er bestätigen, was andere Wissenschaftlerinnen und Wissenschaftler vermutet hatten: Dass EBV eine entscheidende Rolle spielen kann bei der Autoimmunerkrankung Multiple Sklerose, kurz MS.“

Da fiel mir wieder ein, dass ich im Frühjahr kurz überlegt hatte, zu zwei viel diskutierten neuen Forschungsarbeiten über Multiple Sklerose und Epstein-Barr-Viren zu bloggen. Ich hatte mich dann dagegen entschieden, weil mir die zum Teil überzogenen Erwartungen, die Vielzahl der vorgeschlagenen Wirkmechanismen bei der Entstehung von MS und die Überhöhung von Indizien zu Beweisen oder von Korrelationen zu kausalen Zusammenhängen bei diesem Thema seit Jahren auf den Zeiger gehen.

Schon vor 10 Jahren schrieb ich hier im Blog: „Ehrlich gesagt habe ich es aufgegeben, bei Multipler Sklerose den Überblick über die Fachliteratur und die Diskussionen zu ihren Ursachen und Mechanismen zu behalten: Nach meinem Eindruck wird alle paar Wochen eine neue Sau durchs Dorf getrieben, und oft wird mir nicht klar, welche Studienergebnisse nun mit welchen Theorien zusammenpassen und was sich gegenseitig ausschließt.“ Daran hat sich nichts geändert.

Nun schreibe ich doch über das verhasste Thema, denn die Impfungen, die hier in Aussicht gestellt werden, möchte ich ein wenig einordnen. Viele Details lasse ich weg; wer mag, kann sie in den unten verlinkten Artikeln nachlesen.

Weiterlesen

Bedeutungsschwangerer Vergleich: Das Liebesleben der Seenadeln

Cartoon: links ein trächtiges Seepferdchen-Männchen, rechts ein verliebtes Weibchen, das an seinem Bauch lauscht

#NaNoWriMo22, Tag 7 (an Tag 6 habe ich Vorarbeiten für diesen Artikel erledigt)

Tiefseeanglerfische und Seenadeln – also die langgestreckten Grasnadeln, die gekrümmten Seepferdchen und ihre Verwandtschaft – haben auf den ersten Blick nicht viel gemeinsam, einmal abgesehen davon, dass sie Fische sind: Die Tiefseeangler (Ceratioidei) leben allesamt in der finsteren Tiefsee und gelten aufgrund ihres ungewöhnlichen Körperbaus mit den riesigen Mäulern, den vorgeschobenen Unterkiefern und den spitzen Zähnen als hässlich, ja monströs – was allerdings auch daran liegt, dass die meisten Exemplare, die wir hier oben zu Gesicht bekommen, durch die Dekompression regelrecht zermatscht sind. Die Seenadeln (Syngnathidae) bevorzugen lichtdurchflutete Seegraswiesen im Flachwasser, haben winzige Mundöffnungen und wirken auf uns grazil und einnehmend.

Auch ihr Liebesleben ist auf den ersten Blick grundverschieden: Seenadelmännchen sind nicht winzig klein und wachsen nicht an einem Weibchen fest. Dafür werden sie trächtig! Das Spektrum reicht von einem einfachen Festkleben der Eier, die ihnen die Partnerin übergibt, am Bauch oder unter dem Schwanz, bis zum Austragen in einer komplett geschlossenen Bruttasche, einem veritablen Schwangerschaftsbauch wie in meinem Cartoon. Der männliche Organismus behütet und nährt den Nachwuchs, der zu diesem Zweck in ein schwamm- oder placentaartiges Gebilde eingebettet wird. Und der Vater stattet die Kleinen auch mit einem immunologischen Starter-Kit aus, sodass sie die vielen Bakterien und anderen potenziellen Krankheitserreger sofort bekämpfen können, wenn sie bei der Geburt aus dem schützenden Bauch ins weite Meer entlassen werden.

Und da taucht sie dann auf, die Parallele zu den Tiefseeanglern: Wie kommt es, dass das Immunsystem männlicher Seenadeln die Eier bzw. Embryonen nicht abstößt? Sie sind für den väterlichen Organismus doch hemiallograft, bestehen also zur Hälfte aus fremdem Gewebe, nämlich solchem mütterlichem Ursprungs. Normalerweise müssten sie – wie Transplantate – als „Nicht-Selbst“ bekämpft werden. Bei uns Säugetieren geschieht das nur deshalb nicht, weil zwischen der mütterlichen Gebärmutter und dem embryonalen Gewebe eine lückenlose Schutzschicht eingezogen ist, die keine MHC-Komplexe auf der Oberflächen trägt, sodass die mütterlichen Immunzellen gewissermaßen blind sind für das fremde Gewebe, das sich hinter diesem Wall verbirgt. (Das ist jetzt arg verkürzt dargestellt, soll hier aber reichen.)

Ein Forschungsteam um Olivia Roth am GEOMAR Helmholtz Centre for Ocean Research in Kiel untersucht die Schwangerschaften der Seenadeln seit über zehn Jahren, um unter anderem dieses Rätsel zu lösen. Dank des schon erwähnten breiten Spektrums (vom äußerlichen Festkleben der Eier am Bauch über offene Bruttaschen oder -rinnen bis zu geschlossenen Taschen, deren kleine Öffnung das Männchen erst zur Übernahme der Eier und später zur Geburt des ausgetragenen Nachwuchses kontrolliert öffnen kann) lässt sich hier einiges über die Evolution der Trächtigkeit lernen, das dem bloßen Studium der Säugetiere nicht zu entnehmen wäre. Denn bei den Säugetieren laufen alle Schwangerschaften im Grunde ähnlich ab; sie sind gewissermaßen alle vollkommen; „ein bisschen schwanger“ gibt es hier nicht!

Anders bei den Seenadeln. Hier zeigt sich: Je inniger der Kontakt zwischen väterlichem Organismus und Nachwuchs, desto stärker ist die Art „immundefizient“. Wie bei den Tiefseeanglern fehlen den Seepferdchen der Gattung Hippocampus und den Grasnadeln der Gattung Synghathus diejenigen Teile der erworbenen Abwehr, die eine Abstoßungsreaktion auslösen könnten. Die Gene im Haupthistokompatibilitätskomplex der Klasse II (MHC II) sind bei Syngnathus typhle abhanden gekommen oder defekt. Auch T-Zellen des Typs CD4+ scheinen bei dieser Art zu fehlen; sie hat also keine T-Helferzellen.

Andere Komponenten des Immunsystems sind zwar vorhanden und im Prinzip funktionstüchtig, werden aber bei Männchen während der Schwangerschaft herunterreguliert, um ihre immunologische Toleranz gegenüber den Halb-Fremdlingen in der Bruttasche zu erhöhen. Das gilt zum Beispiel für den Haupthistokompatibilitätskomplex der Klasse I (MHC I).

Eine Untersuchung der Entzündungsparameter bei Syngnathus typhle ergab deutliche Parallelen zu Säugetieren wie uns Menschen: Ganz zu Beginn einer Schwangerschaft, bei der Einnistung, tritt bei Grasnadeln wie Säugern eine lokale Entzündung auf, ohne die das zur Einbettung des befruchteten Eies nötige Gewebe gar nicht entstehen kann. Entzündungen fördern ja unter anderem die Bildung von Blutgefäßen. Dann folgt eine längere entzündungsfreie Phase, in der das elterliche Immunsystem maximale Toleranz übt. Schließlich steigen die Entzündungsparameter wieder an, denn die Geburt ist im Grunde nichts anderes als eine verspätete Abstoßung, ja ein Ausstoßen der nunmehr auch außerhalb des elterlichen Körpers lebensfähigen Kinder. Auch viele andere Gene, die bei uns Säugern in der Schwangerschaft je nach Phase stärker oder schwächer abgelesen werden als sonst, durchlaufen bei den Grasnadeln dieselbe Dynamik.

So, und warum interessiert mich das, warum gehört es ins Autoimmunbuch? Die meisten Autoimmunerkrankungen sind bei Frauen häufiger als bei Männern, teilweise extrem viel häufiger. Dafür werden in der Wissenschaft mehrere mögliche Ursachen diskutiert. Es könnte etwa an den weiblichen und männlichen Hormonen liegen, an den unterschiedlichen Genen auf dem X- und dem Y-Chromosom – oder am sogenannten X-Dosis-Effekt, also daran, dass Frauen zwei X-Chromosomen haben, Männer aber nur eines. Hinzu kommen Umweltfaktoren, etwa eine unterschiedliche Ernährung, unterschiedliche Berufe, unterschiedliche Kosmetika usw. Diese möglichen Ursachen schließen einander nicht aus, sondern könnten auch in Kombination miteinander das Erkrankungsrisiko herauf- oder herabsetzen.

Beim Menschen lassen sich diese Faktoren aber oftmals nicht sauber voneinander trennen: Das Geschlecht mit den beiden X-Chromosomen ist zugleich dasjenige, das Eizellen hervorbringt, die relativ groß sind und zum Beispiel Mitochondrien und Moleküle des Immunsystems enthalten. Und wer die Eizellen hervorbringt, trägt auch die Kinder aus – von Leihmutterschaften usw. einmal abgesehen. Aber auch Studien, die relativ einfach und ethisch unbedenklich wären, fehlen ärgerlicherweise. So wird seit Jahrzehnten spekuliert, ob eine Mutterschaft das Risiko für Hashimoto-Thyreoiditis erhöht, weil eine schlummernde Veranlagung während des immunologischen und hormonellen „Ausnahmezustands Schwangerschaft“ zum Ausbruch kommen könnte. Aber gute Statistiken dazu, also etwa Hashimoto-Prävalenzen bei 50-jährigen Frauen mit 0, 1, 2 oder 3 Kindern, habe ich noch nie gesehen!

Die Seenadeln bieten hier eine einmalige Chance: Es gibt ein männliches Geschlecht, das wie üblich zahlreiche winzige Spermien hervorbringt, und ein weibliches, das relativ wenige große, ressourcenreiche Eizellen produziert. Aber danach sind die Rollen vertauscht. Wie unterscheidet sich das Immunsystem der Männchen von dem der Weibchen – generell und insbesondere in den verschiedenen Phasen der männlichen Trächtigkeit? Geschlechtsspezifische Auswertungen habe ich in der Literatur noch nicht entdeckt, aber das kommt sicher noch.

Auch hier im Blog bleiben wir in den nächsten Tagen und Wochen noch beim Thema Fortpflanzung. Denn in der riesigen, bunten Klasse der Knochenfische (und auch bei ihren Cousins, den Knorpelfischen) gibt es offenbar fast nichts, was es nicht gibt. Freuen wir uns also auf die Reisfische, bei denen die Weibchen ihre Jungen im Geschlechtstrakt herumtragen, ohne im engeren Sinne schwanger zu sein. Und auf die Maulbrüter, bei denen teils beide Geschlechter, teils aber nur die Weibchen den Nachwuchs im Maul behüten, was sich wiederum deutlich in ihrem Immunsystem niederschlägt.

 

Literatur:

GEOMAR (2012): Der Beitrag der Väter. Wie männliche Fische das Immunsystem ihrer Nachkommen aktivieren können. Pressemitteilung.

Roth et al. (2020): Evolution of male pregnancy associated with remodeling of canonical vertebrate immunity in seahorses and pipefishes. Forschungsarbeit, Open Access.

Parker et al. (2021): Immunological tolerance in the evolution of male pregnancy. Forschungsarbeit, Open Access.

Das seltsame Immunsystem der Tiefsee-Anglerfische

#NaNoWriMo22, Tag 5

Die Tiefsee – unendliche Weiten. Wir befinden uns in einer fernen Vergangenheit. Dies sind die Abenteuer eines Tiefseeangler-Weibchens, das viele Meilen von der Wasseroberfläche entfernt unterwegs ist, um fremde Männchen zu entdecken …

Im Ernst: Wie findet man da unten in der finsteren, kalten, erdrückenden Leere Partner? Die Tiefseeanglerfische (Ceratioidei) mussten sich nicht nur an den enormen Druck der auf ihnen lastenden Wassersäule anpassen, der normale Proteine in kürzester Zeit mit Wassermolekülen durchsetzen, verformen und funktionsuntüchtig machen würde, an die völlige Dunkelheit ihres Lebensraums und an den Mangel an Nahrung, sondern auch Mittel und Wege finden, um die Wahrscheinlichkeit von Begegnungen mit Artgenossen des anderen Geschlechts zu erhöhen.

Die Weibchen tragen am Ende eines angelförmigen Auswuchses an der Stirn Laternen, in denen symbiotische Leuchtbakterien etwas Licht für sie produzieren. Damit locken sie nicht nur Krebse und Fische an, die sie dann mit ihren riesigen Mäulern verschlingen, sondern senden auch den Männchen ein Zeichen. Das klappt aber nur, wenn diese schon in der Nähe sind.

Die Männchen sind winzig klein und haben, solange sie Junggesellen sind, große Augen und einen sehr empfindlichen Geruchssinn: Sie können noch kleinste Mengen der Sexuallockstoffe erschnuppern, die die Weibchen absondern, und stöbern ihre künftige Partnerin so auf. Den letzten Meter bewältigen sie dann mithilfe ihrer Augen und des Laternen-Leuchtfeuers. Bei vielen Tiefseeanglerfisch-Arten docken sie dann mit dem Mund an das Weibchen an, um es nicht wieder zu verlieren: manche nur vorübergehend, andere permanent; sie verwachsen regelrecht mit ihren und werden von da an über den Blutkreislauf des Weibchens mit Nährstoffen versorgt – bis dass der Tod sie scheidet. Ihre eigenen Organe verkümmern, bis auf die Hoden. Es gibt sogar einige Arten, bei denen mehrere Männchen mit einem Weibchen verwachsen; bis zu acht hat man schon entdeckt. So steht immer Sperma zur Verfügung, wenn das Weibchen ablaicht.

Aber wieso stößt sich das Gewebe des Weibchens und der Männchen nicht ab? Schließlich sind die Tiefseeangler Knochenfische, und diese haben – genau wie wir – neben der angeborenen eigentlich eine erworbene Abwehr. MHC-Klasse-I- und -II-Komplexe, auf denen Antigene präsentiert werden. Zytotoxische T-Zellen, die Eindringlinge töten. T-Helferzellen, die Zytokine ausscheiden. B-Zellen und von ihnen produzierte Antikörper verschiedener Klassen, die fremde Zellen und Fremdkörper markieren und bekämpfen. All diese Komponenten der erworbenen Abwehr sind bei uns Menschen an Abstoßungsreaktionen beteiligt, etwa nach Organtransplantationen.

Ein Forschungsteam um Thomas Boehm hat dieses Rätsel 2020 ansatzweise gelöst. Es hat das Genom von 13 Ceratioidei-Arten analysiert: 3 Arten, bei denen die Männchen nicht mit den Weibchen verwachsen (die Kontrollgruppe), 4 Arten, bei denen die Männchen vorübergehend an ihnen festmachen, 3 Arten, bei denen jeweils ein einzelnes Zwergmännchen permanent mit einem Weibchen verwächst, und schließlich 3 Arten, bei denen sich mehrere permanent festgewachsene Zwergmännchen ein Weibchen teilen.

To make a long story short: Das Immunsystem der Arten, bei denen die Geschlechter eigenständige Orgainsmen bleiben, verfügt über zytotoxische T-Zellen, T-Helferzellen und B-Zellen, die Antikörper herstellen und eine Affinitätsreifung durchlaufen, also bei der Bekämpfung ihrer spezifischen Feindbilder immer effizienter werden. Alles ganz normal für Wirbeltiere, die so Krankheitserreger, Tumorzellen usw. bekämpfen.

Die Arten, bei denen sich die Zwergmännchen phasenweise an die Weibchen anflanschen, haben ebenfalls beide T-Zell-Typen und Antikörper-produzierende B-Zellen; bei ihnen fällt aber die Affinitätsreifung aus, weil die dafür erforderlichen Enzyme mutiert sind. Vermutlich würde diese Optimierung die Antikörper so schlagkräftig machen, dass schon eine vorübergehendes Verwachsen zu Abstoßungsreaktionen führen könnte.

Arten, die permanente Gespanne aus einem Weibchen und einem Männchen bilden, haben ebenfalls keine Affinitätsreifung – und darüber hinaus keine zytotoxischen T-Zellen. Die polyandrischen („vielmännigen“) Tiefseeanglerfisch-Arten schließlich müssen auch ohne T-Helferzellen und ohne jeden Antikörper auskommen: Alle entsprechenden Gene sind durch Mutationen ausgefallen.

Weder in der Forschungsarbeit von 2020 noch in mehreren Kommentaren dazu oder einem Review von 2022 habe ich eine gute Erklärung dafür gefunden, dass T-Helferzellen und Antikörper offenbar beim Verschmelzen eines Weibchens mit einem einzigen Männchen nicht zu einer Abstoßungsreaktion führen, obwohl alle Zellen des Männchens für das Weibchen allograft, also fremdes Gewebe sind – und umgekehrt.

Womöglich sind sich die Männchen der polyandrischen Arten untereinander noch fremder, weil sie miteinander um die Befruchtung der Eier des Weibchens konkurrieren? Das Problem wäre dann gar nicht die drohende Abstoßung durch das Immunsystem des Weibchens, sondern die Abstoßung des einen Männchens durch das Immunsystem des anderen. Aber hier spekuliere ich; hoffentlich löst in den kommenden Jahren jemand dieses Rätsel.

Ebenso rätselhaft ist, wie die Ceratioidei trotz des Verlusts eines großen Teils oder sogar ihrer gesamten erworbenen Abwehr überleben: Wie bekämpfen sie Krankheitserreger, wie handeln sie ohne regulatorische T-Zellen und deren friedlich stimmende Botenstoffe die Symbiose mit den Leuchtbakterien aus? Womöglich haben Teile der angeborenen Abwehr diese Aufgaben übernommen. Aber im Unterschied zu anderen Knochenfischfamilien, denen ebenfalls Teile des erworbenen Immunsystems abhanden gekommen sind, hat man im Genom der polyandrischen Tiefseeangler keine Kompensationsmaßnahmen entdeckt, etwa eine massive Ausweitung der MHC-Klasse-I-Gene. Im Gegenteil: Diese scheinen auch recht spärlich vertreten zu sein.

Offen ist auch die Reihenfolge der Ereignisse: Haben die Fische zuerst durch eine Art genetischen Großunfall Teile ihres Immunsystems eingebüßt – und dann in den folgenden Jahrhunderttausenden das Beste daraus gemacht, nämlich ihr Partnersuche-Problem durch Verschmelzen von Weibchen und Männchen gelöst? Oder war das ein schleichender Prozess der Annäherung der Geschlechter, bei dem immer nur diejenigen Paare überlebten, deren Immunsysteme auf das Gewebe der Partner so schwach wie irgend möglich reagierten? Ein echtes Henne-Ei-Problem, mit dem ich euch nun in die finstere, kalte Tiefseenacht entlasse.

Literatur:

J. B. Swann, S. J. Holland, M. Petersen, T. W. Pietsch, T. W., T. Boehm. The immunogenetics of sexual parasitism. Science. 10.1126/science.aaz9445 (2020)

Bordon, Y. Loss of immunity lets a sexual parasite hold on tight. Nat Rev Immunol 20, 590–591 (2020). https://doi.org/10.1038/s41577-020-00435-5

E. Gering. Anglerfish are not sexual parasites (Leserbrief zu Swann et al.)

N. Isakov. Histocompatibility and Reproduction: Lessons from the Anglerfish. Life 2022, 12(1), 113; https://doi.org/10.3390/life12010113

Selektion durch Pest-Epidemien hat Autoimmun-Risikoallele gefördert

Schwarzweißzeichnung eines Pestarztes #NaNoWriMo22, Tag 4

Der Zusammenhang an sich ist nicht neu, ich habe bereits 2014 etwas darüber geschrieben. Aber damals waren die Indizien für die Hypothese, dass einige Risikogenvarianten für Autoimmunerkrankungen heute relativ weit verbreitet sind, weil sie in der Vergangenheit einen gewissen Schutz vor verheerenden Epidemien boten, überwiegend noch sehr indirekt. Die Datenbasis ist inzwischen viel besser. Frisch erschienen ist eine Arbeit, in der DNA aus zahlreichen Skeletten aus London und aus Dänemark analysiert wurde, die aus der Zeit kurz vor, während oder nach der großen  europäischen Pestepidemie im 14. Jahrhundert stammen.

Das Team hat vier Genvarianten identifiziert, die mit hoher Wahrscheinlichkeit durch die Pest positiv selektiert wurden: Bei den damals gestorbenen 30-50 Prozent der Bevölkerung waren diese Varianten offenbar unterrepräsentiert, bei den Überlebenden und ihren Nachfahren dagegen viel häufiger. Keine der Varianten hat die Aminosäuresequenz eines Proteins verändert; alle dürften sich stattdessen auf die Stärke der Expression der Gene in bestimmten Zelltypen ausgewirkt haben – vor allem in Makrophagen, die bei einer Infektion Bakterien wie den Pest-Erreger Yersinia pestis „auffressen“ (Phagozytose), um dann den T-Zellen Bakterien-Bruchstücke zu präsentieren und so die spezifische Abwehr zu starten.

Am stärksten war die Pest-Selektions-Signatur beim Gen ERAP2, das die Fähigkeit der Makrophagen beeinflusst, die Vermehrung von Pestbakterien zu unterdrücken. Zugleich dämpft die positiv selektierte Genvariante die Ausschüttung von entzündungsfördernden Zytokinen, sodass das Gewebe rings um die Makrophagen im Falle einer Infektion nicht so stark geschädigt wird.

Die andere Seite der Medaille: Diese während Pestwellen nützliche, ja lebenswichtige Genvariante erhöht das Risiko, an Morbus Crohn zu erkranken. Eine weitere Pestschutz-Immungenvariante an einem anderen Ort in unserem Genom geht mit einem erhöhten Risiko einher, Rheuma oder Lupus zu bekommen. Salopp gesagt: Der Nachteil, mit einer gewissen Wahrscheinlichkeit eine schleichend voranschreitende Autoimmunerkrankung zu bekommen, ist an einen massiven Vorteil gekoppelt, die Pest zu überleben. Wir zahlen den Preis dafür, dass unserer Vorfahren nicht auf einem jener Pestfriedhöfe liegen, auf denen das Forschungsteam einen Teil seiner DNA-Proben gesucht hat.

(Einen kurzen Bericht über die Fachpublikation findet ihr bei The Scientist.)

Selbst-Erkenntnis auf dem Schneckenhaus

#NaNoWriMo22, Tag 3

Im Oktober berichtete Sophie Fessl in The Scientist von einer neu erschienenen Forschungsarbeit aus dem Team um Matthew L. Nicotra. Dem Bericht zufolge sind Immunglobuline wohl viel früher entstanden sind, als man bisher glaubte. Was  heißt das genau, warum interessiert mich das, und was ist daran wirklich neu?

Was sind Immunglobuline?

Immunglobuline im engeren Sinne sind Antikörper und B-Zell-Rezeptoren, die wiederum nichts anderes sind als Antikörper mit einem etwas längeren „Stiel“, der sie in der Zellmembran verankert. Diese Proteine dienen der hochspezifischen Erkennung von Antigenen (daher „Anti“), und sie sind kompakt, fast kugelig gebaut (daher „Globulin“, man denke an Globus). Sie enthalten mehrere Immunglobulin-Domänen: Aminosäuresequenzen oder Proteinstrangabschnitte, die sich zu zwei sandwichartig angeordneten blattartigen Strukturen zusammenlagern. Es gibt sogenannte konstante und variable Immunglobulin-Domänen. Die konstanten Domänen bilden zum Beispiel die Stiele der Antikörper, die variablen dagegen die Antigen-Erkennungsstellen (hier mit Pfeilen markiert).

Was ist die Immunglobulin-Superfamilie?

Die Immunglobuline haben eine weitläufige Verwandtschaft: Proteine, die ebenfalls Immunglobulin-Domänen enthalten und allesamt der Oberflächen-Erkennung dienen. Viele von ihnen sind in der Zellmembran verankert und suchen gewissermaßen das direkte Umfeld der Zelle nach passenden Bindungspartnern ab. Zu dieser Großfamilie, der sogenannten Immunglobulin-Superfamilie, zählen zum Beispiel die T-Zell-Rezeptoren, die Haupthistokompatibilitätskomplexe (MHC Klasse I und MHC Klasse II) und etliche Co-Rezeptoren wie CD-8, also viele Proteine, die Funktionen im Immunsystem haben.

Kein Wunder, geht es bei der Abwehr doch oft darum, ganz spezifisch an eine andere Zelle oder ein großes Molekül zu binden, um dieses im nächsten Schritt auszuschalten. Es gibt aber auch andere Gründe, hochspezifisch zwischen eigenen und fremden Zellen zu unterscheiden – eine Fähigkeit, die man Allorecognition, also Fremd-Erkennung nennt. Zum Beispiel kann ein Tier oder Pilz so geeignete Paarungspartner identifizieren, und Blütenpflanzen können eine Selbstbefruchtung, also eine Fusion einer Eizelle mit einer Samenzelle derselben Pflanze verhindern. In diesem Fall ist also – anders als bei der Immunabwehr – das Fremde das Gute und das Identische das Schlechte, denn die sexuelle Fortpflanzung dient ja gerade der genetischen Durchmischung.

Wie lebt das Nesseltier Hydractinia?

Das Forschungsteam um Nicotra untersucht seit längerem ein unscheinbares Nesseltier namens Hydractinia symbiolongicarpus, Die Nesseltiere, zu denen beispielsweise die Quallen und Korallen gehören, haben einen radiärsymmetrischen, z. B. glocken- oder schlauchförmigen Körperbau und nur zwei sogenannte Keimblätter, aus denen sich während der Embryonalentwicklung die Organe und Schichten des Organismus aufbauen. Sie unterscheiden sich also ganz grundlegend von den sogenannten Bilateria oder Zweiseitentieren, die aus drei Keimblättern aufgebaut sind und eine Rücken- und eine Bauchseite haben. Zu diesen zählen beispielsweise wir Säugetiere, aber auch Fische, Mollusken oder Manteltiere. Der letzte gemeinsame Vorfahr der Nessel- und der Zweiseitentiere lebte vor mindestens 600, vielleicht aber auch vor weit über 700 Millionen Jahren – und hatte vermutlich nur zwei Keimblätter.

Hydractinia symbiolongicarpus lebt im Meer und besteht aus einem Geflecht von Röhren, die auf dem Untergrund festgewachsen sind und eine Matte bilden, aus der einzelne sogenannte Hydranthen oder Polypen herausragen, die ein bisschen wie Mini-Seeanemonen aussehen oder wie die Süßwasserpolypen, die wir als Kinder aus Tümpeln gefischt und unter der Lupe beobachtet haben. (Kein Wunder: Beides sind ebenfalls Nesseltiere.) Wie auch bei den Korallen oder Anemonen hat Hydractinia frei schwimmende Larven, die sich in eine festsitzende, mattenbildende Form umwandeln, sobald sie einen passenden Untergrund gefunden haben.

Der Untergrund, auf dem die Matten wachsen, ist typischerweise ein Schneckenhaus – und zwar eines, in dem ein Einsiedlerkrebs lebt. Lebende Schnecken würden eine solche Besiedlung ihrer Gehäuse nicht dulden; den Krebsen ist das egal: Der Bewuchs wiegt nicht viel. Die Nesseltier-Kolonien lassen sich also von den Krebsen herumtragen, filtern mit ihren Tentakeln Nahrung aus dem Meerwasser und wachsen, indem sie am Rand der Matte weitere Röhrchen und Polypen aufbauen.

Dabei kann es passieren, dass ein Rand einem anderen begegnet – entweder, weil eine Matte einmal um das Schneckenhaus herumgewachsen ist (Skizze oben), oder weil sich zwei Organismen auf  demselben Schneckenhaus angesiedelt haben (Skizze unten).

Im ersten Fall verschmelzen die beiden Ränder, im zweiten Fall kommt es nach kurzem „Beschnuppern“ zu einer heftigen Abstoßungsreaktion, die einen der Ränder – wenn nicht gar den ganzen unterlegenen Organismus – zum Absterben bringt.

Wozu braucht es einen Gewebeverträglichkeits-Check?

Hier noch einmal die Abfolge der Ereignisse, bei denen Proteine mit Immunglobulin-Domänen eine Schlüsselrolle spielen, indem sie dem Organismus verraten, ob er da gerade sich selbst oder einem genetisch unterschiedlichen Artgenossen begegnet ist.

Zunächst die Begegnung auf einem noch nicht bewachsenen Teil des Schneckenhauses:

Dann die Reaktion: entweder Angriff …

… oder weitere Annäherung und Verschmelzung mit dem anderen Rand desselben Organismus:

Warum aber ist es den Hydractinien so wichtig, andere Organismen zu bekämpfen? Kann man sich nicht einfach das Schneckenhaus teilen und eine Grenze aushandeln, wie gute Nachbarn? Die Antwort heißt Stamm- oder Keimzellenparasitismus: Wenn sich die Gelegenheit bietet, schmarotzt einer der verschmelzenden Organismen auf den Beiträgen des anderen zum Stoffwechsel und zum Struktur-Aufbau. Er steckt seine Energie ganz in die Produktion von Keimzellen, um seine Gene in der nächsten Generation durchzusetzen – auf Kosten des anderen Organismus, der schuftet, aber kaum Nachwuchs hervorbringen kann. Nur wenn beide Ränder zur selben Kolonie gehören und ihre Zellen dieselben Gene in sich tragen, ist eine Fusion risikolos – ja vorteilhaft, um den begrenzten Platz auf dem Schneckenhaus voll auszuschöpfen.

Haben unsere Gen-Datenbanken blinde Flecken?

Das Forschungsteam hat nun das Genom von Hydractinia symbiolongicarpus komplett sequenziert. Über zwei schon länger bekannte Vertreter der Immunglobulin-Superfamilie hinaus, die banalerweise Allorecognition 1 und Allorecognition 2 heißen, haben sie dabei zahlreiche weitere, ähnliche Gene gefunden. Zusammen bilden sie einen Allorekognitionskomplex (ARC), der an den Haupthistokompatibilitätskomplex (MHC) der Wirbeltiere erinnert. Und wie im MHC sind zumindest einige dieser Gene extrem polymorph; sie unterscheiden sich also von Individuum zu Individuum ein wenig. Zusammen bilden die Immunglobulin-Genvarianten eines Individuums so etwas wie eine eindeutige Personenkennung. Und so, wie diese unterschiedlichen Signaturen bei uns Menschen zu Abstoßungsreaktionen nach einer Organtransplantation führen, lösen sie bei den Hydractinien eine Abstoßung zwischen zwei Organismen aus, die sich auf einem Schneckenhaus begegnen.

Die Forscher*innen waren aber zunächst unsicher, ob die von ihnen entdeckten Proteine wirklich Immunglobulin-Domänen enthalten. Denn die DNA-Sequenzen im Genom und folglich auch die in ihnen codierten Aminosäuresequenzen hatten nur wenig mit den Immunglobulin-Domänen anderer Tiere in den großen Genomdatenbanken gemeinsam.

Erst als das Team von dem Google-Programm AlphaFold die Sequenzen in dreidimensionale Proteinknubbel umrechnen ließ, wurde klar: Ja, das sind wirklich Immunglobulin-Domänen. Wenn wir uns die Proteine als Schlüssel vorstellen, so sind die Datenbanken voll mit Schlüsseln nach dem oberen der beiden folgenden Baupläne:

Sieht man sich nur die jeweils vier Bestandteile der Schlüssel an, so erkennt man kaum eine Gemeinsamkeit. Erst wenn man die Teile richtig zusammensetzt (so, wie AlphaFold das mit den Nesseltier-Proteinen gemacht hat), erkennt man, dass beide Gebilde dieselbe Funktion haben: Beide haben vorne einen Bart, der in dasselbe Schloss passt.

Die Autor*innen  warnen daher davor, den Gen-Datenbanken blind zu vertrauen, wenn man nach entfernten Verwandten oder Vorformen bestimmter Gene und Proteine sucht: In den Daten sind Organismen, die uns selbst ähneln, stark überrepräsentiert. Spuckt ein Datenbank-Abgleich neu sequenzierter Gene aus nur sehr entfernten verwandten Lebensformen wie den Nesseltieren keinen Match aus, kann man daraus nicht ableiten, dass die Gene nicht auf eine gemeinsame Urform zurückgehen oder die Proteine nicht dieselbe Funktion haben.

Was heißt das für die Evolution des Immunsystems – und der Autoimmunstörungen?

Diese Wirbeltierlastigkeit der Datenbanken macht es schwer, das früheste Auftreten von Neuerungen im Immunsystem zu rekonstruieren. Hinzu kommt, dass Immunglobulin-Domänen unterschiedliche Funktionen übernehmen können, auch solche außerhalb des Immunsystems. Und vielleicht gibt es wirklich keinen gemeinsamen Urahn der Nesseltier- und Wirbeltier-Immunglobulin-Domänen, sondern diese wurden unabhängig voneinander zweimal „erfunden“, weil ihre Gestalt für die Aufgabe der raschen und genauen Unterscheidung zwischen eigenen und fremden Zellen oder Zellprodukten unschlagbar gut geeignet ist.

Die meisten Vertreter der Immunglobulin-Superfamilie in unserem Körper übernehmen Aufgaben in der erworbenen oder adaptiven Abwehr, die erst mit den Fischen vor etwa 500 Millionen Jahren aufgekommen ist. Einige sind aber auch der stammesgeschichtlich älteren angeborenen Abwehr zuzurechnen, etwa Zytokin-Rezeptoren oder Rezeptoren der natürlichen Killerzellen. Insofern ist es nicht unplausibel, dass die Immunglobulin-Domäne schon vor der Aufspaltung zwischen den Nesseltieren und den Zweiseitentieren entstanden ist.

Mich hätte interessiert, ob den Nesseltieren bei der Allorekognition auch Fehler unterlaufen: Kommt es vor, dass eine Hydractnie sich selbst attackiert, weil ihre Immunglobulin-Domänen zum Beispiel falsch gefaltet sind und daher eigenes Gewebe irrtümlich für fremdes halten? Dazu habe ich keine Informationen gefunden. Allorekognitionssysteme sind bei Nicht-Wirbeltieren recht weit verbreitet, aber wie präzise sie arbeiten und ob es bei ihnen Störungen gibt, die unseren Autoimmunerkrankungen ähneln, ist wohl offen. Es kann schon sein, dass solche Pannen vorkommen, denn Nicotra und sein Team haben Indizien dafür gefunden, dass eine Abstoßung nach einer Begegnung zweier Kolonieränder gewissermaßen das Standardprogramm ist, das nur dann abgebrochen wird, wenn die Zellen einander als Teile desselben Organismus erkennen.

Wie tief reichen die Wurzeln?

Als ich mich gestern daran machte, diesen Blogartikel zu schreiben, hat mich eine Information aufgehalten, die die ganze Argumentation im eingangs erwähnten Bericht in The Scientist infrage zu stellen droht: Offenbar haben sogar Hefen, also wirklich nur ganz, ganz entfernt mit uns verwandte Lebewesen, die zu den Pilzen zählen, Erkennungsproteine mit Immunglobulin-Domänen – oder zumindest Domänen, die diesen sehr ähnlich sind. Die Proteine heißen Agglutinine und spielen eine Rolle beim Hefe-Sex, bei dem sich zwei unterschiedliche Fortpflanzungszellen finden müssen: solche, die a-Agglutinin an ihrer Oberfläche tragen, und solche, die α-Agglutinin exprimieren.

Gestern habe ich aufgegeben. Heute scheint mir, dass die Verwirrung nicht nur bei mir herrscht, sondern auch in der Wissenschaft: Was ist ein Immunglobulin im engeren Sinne? Was macht ein vollwertiges Mitglied der Immunglobulin-Superfamilie aus? Und was ist diesen Proteinen bzw. Proteindomänen nur homolog, also ähnlich, aber lediglich entfernt mit ihnen verwandt? Die Grenzen scheinen mir noch nicht endgültig ausgehandelt zu sein.

Und so bleibt bis auf Weiteres offen, ob die stammesgeschichtlichen Wurzeln der Immunglobuline, die sowohl an unserer intakten Abwehr als auch an unseren Autoimmunstörungen maßgeblich beteiligt sind, nun bei den frühen Wirbeltieren, bei den noch früheren ersten Chordatieren, bei den noch früheren ersten Zweiseitentieren, bei den uralten gemeinsamen Vorfahren der Nessel- und der Zweiseitentiere oder sogar ganz am Grunde des gesamten Eukaryoten-Stammbaums liegen.