Archiv der Kategorie: Neues vom Buch

Bystander Activation und Epitope Spreading

Bystander activation (Aktivierung Unbeteiligter) und epitope spreading (Epitop-Ausweitung) sind zwei der vier meistdiskutierten Mechanismen, über die sich akute Infektionen zu chronischen Autimmunerkrankungen auswachsen können.

P1230946_Bystander_activation_650

Bei einer bystander activation liefert die Bekämpfung einer akuten Infektion (rechts) Signale, die zufällig in der Nähe befindliche autoreaktive T-Zellen (links) aktivieren – etwa Interferon-α bei einer Vireninfektion oder Kostimulationssignale auf antigenpräsentierenden Zellen.

P1230942_Epitope_spreading_Schlange_650

Epitope spreading sorgt dafür, dass die Abwehr, die zunächst nur ein Epitop (einen kurzen Abschnitt) eines Antigens erkennt, nach und nach auch andere Epitope dieses Antigens und evtl. auch anderer, mit ihm gemeinsam auftretender Antigene erkennt. Im Fall eines tatsächlich gefährlichen Antigens (Schlange) macht das die Abwehr schlagkräftiger. Aber wenn das System fälschlicherweise auf ein harmloses Autoantigen (Blindschleiche) anspringt, kann derselbe Mechanismus auch die Autoimmunreaktion ausweiten.

Die anderen beiden Hauptmechanismen sind die molekulare Mimikry (siehe z. B. Punkt 5 im Artikel über Immunneuropathien) und die Aktivierung von T-Zellen durch Superantigene (siehe z. B. unterste Abbildung im Artikel über MHC-Moleküle und Superantigene). Die vier Mechanismen schließen einander nicht aus, sondern ergänzen sich. So kann das ursprüngliche „Missverständnis“ beim epitope spreading (gepunkteter Pfeil) durch molekulare Mimikry zustande kommen.

Die NK-Zell-Uhr

Neben der zentralen biologischen Uhr im Hypothalamus (siehe voriger Beitrag) schwingen auch im restlichen Körper viele Vorgänge im 24-Stunden-Takt. Dank dieser lokalen Uhren, die regelmäßig durch Impulse aus dem SCN synchronisiert werden, können sich die Zellen auf regelmäßig wiederkehrende Situationen einstellen. Natürliche Killerzellen (NK-Zellen) dienen z. B. der Bekämpfung von Pathogenen, die zumeist tagsüber während unserer aktiven Phase in den Körper eindringen.

P1200141_Stundenbuch_NK-Zelle_650

Die Halbkreise geben die Tageszeit (morgens, mittags, abends, nachts) an. Die obere Hälfte der vier Rechtecke stellt jeweils den Zellkern dar, die untere Hälfte das Zytoplasma, also den Zellbereich außerhalb des Kerns. Die Vorgänge sind extrem vereinfacht dargestellt; tatsächlich gibt es z. B. noch mehr Uhrgene, die der Stabilisierung des Rhythmus dienen.

Morgens werden die Uhrgene per, cry und ror abgelesen: Das Protein BMAL/CLOCK (die Uhr) hat an Sequenzen in deren Promotorbereichen angedockt und fördert so ihre Transkription. Außerdem fördert es die Ablesung zahlreicher anderer Gene, der sogenannten clock-controlled genes oder CCGs – in NK-Zellen zum Beispiel Gene, die für die Pathogenbekämpfung nötig sind. Die Transkriptionsprodukte (sogenannte Messenger-RNA oder mRNA) wandern aus dem Zellkern ins Zytoplasma und werden dort von den Ribosomen in Empfang genommen – den Proteinfabriken, die anhand der Bauanleitung in der mRNA Aminosäuren zu neuen Proteinen zusammensetzen.

Mittags haben die NK-Zellen große Mengen der Proteine hergestellt. Einen Teil davon scheiden die Zellen aus, um Viren, Bakterien und Krebszellen auszuschalten – zum Beispiel Giftstoffe aus ihren Granula (Membranbläschen) oder Botenstoffe wie den Tumornekrosefaktor (TNF). Die Proteine PER und CRY lagern sich dagegen zusammen, werden aktiviert und wandern – genau wie das Protein ROR – in den Zellkern ein. Diese Proteine sind Transkriptionsfaktoren; sie beeinflussen also die Ablesung von Genen – genau wie BMAL/CLOCK.

Abends werden die morgens fleißig transkribierten Gene nicht mehr abgelesen, da das Protein PER/CRY (Ampel) die Aktivierung durch BMAL/CLOCK (Uhr) unterbindet. Der Transkriptionsfaktor ROR hat dagegen an eine Sequenz im Promotor des Gens bmal gebunden und so dessen Ablesung eingeschaltet. Er zieht gewissermaßen die Zelluhr auf; daher der Schlüssel. Die bmal-mRNA wandert ins Zytoplasma und wird dort von Ribosomen in Empfang genommen.

Nachts haben die NK-Zellen so viel BMAL hergestellt, dass es sich mit seinem Gegenpart CLOCK zusammenlagern kann. Das Protein tritt in den Zellkern über und ersetzt dort alte, nicht mehr funktionstüchtige BMAL/CLOCK-Einheiten. PER/CRY hat ausgedient und wird von Enzymkomplexen, sogenannten Proteasomen, abgebaut (Hammer).

Damit schließt sich der Kreis. So werden die gefährlichen Wirkstoffe, deren Herstellung zudem viel Energie verbraucht, jeden Tag „just in time“ produziert: dann, wenn Pathogene in unseren Körper eindringen.

(Abbildung inspiriert durch Logan RW & Sarkar DK, „Circadian nature of immune function“, Molecular and Cellular Endocrinology 349 (2012) 82-90, und Gibbs JE & Ray DW, „The role of the corcadian clock in rheumatoid arthritis“, Arthritis Research & Therapy 2013, 15:205)

Wie erfährt Immunsystem, wie spät es ist?

Auf drei Wegen: über das Hormon Melatonin aus der Zirbeldrüse, über das Hormon Cortisol aus der Hypothalamus-Hypophysen-Nebennierenrinden-Achse und über das autonome Nervensystem, das Signale an die endokrinen Drüsen und an Lymphorgane wie Milz und Leber übermittelt:

P1200146_SCN_Nerven_Hormone_IS_schwarz_650

Alle drei Instanzen beziehen die zentrale Uhrzeit vom suprachiasmatischen Nucleus (SCN), einem Teil des Hypothalamus. Der circadiane Rhythmus im SCN wird regelmäßig durch Tageslicht nachjustiert, damit die zentrale Uhr nicht vor- oder nachgeht.

Auch das Immunsystem kann die zentrale Uhr verstellen, zum Beispiel, wenn der Körper bei einer Infektion Ruhe braucht. Dann senden die Immunzellen Zytokine aus, Botenstoffe, die im SCN die Ablesung der Uhr-Gene beeinflussen.

(Abbildungsvorlage aus Mavroudis PD et al., Systems biology of circadian-immune interactions. J Innate Immun 2013; 5:153-162)

Schichtarbeit: Der Tag-Nacht-Rhythmus von Immunreaktionen

Neulich las ich, dass selbst schwaches Nachtlicht eine Brustkrebstherapie u. U. wirkungslos machen kann, weil das Licht die nächtliche Melatoninproduktion stört, was wiederum die Tumorzellen stärkt. Beim Nachrecherchieren führte eins zum anderen, und zack: Schon muss das Autoimmunbuch um ein Kapitel erweitert werden. Wie die sogenannte circadiane Rhythmik – das Schwingen aller möglicher Abläufe in unserem Körper mit einer Periode von etwa 24 Stunden – und der nächtliche Schlaf unser Immunsystem regeln, ist nämlich hochspannend und auch für Autoimmunerkrankungen relevant.

Von dem Dutzend Arbeiten, die ich zum Thema gelesen habe, empfehle ich vor allem die Übersicht „T Cell and Antigen Presenting Cell Activity During Sleep“ von Tanja Lange und Jan Born (2011), auf der die meisten der folgenden Abbildungen basieren.

Wie stellt das Immunsystem sicher, dass sich entzündungsfördernde und entzündungshemmende Signale, die angeborene und die erworbene Abwehr sowie der Th1- und der Th2-Arm der erworbenen Abwehr nicht ins Gehege kommen? Durch räumliche und zeitliche Trennung: Der Tag gehört den entzündungshemmenden Signalen, der angeborenen Abwehr und denjenigen Zellen der erworbenen Abwehr, die Pathogene unmittelbar bekämpfen: den zytotoxischen T-Zellen. Und in der Nacht – vor allem, wenn man schläft und nicht durchwacht – dominieren Entzündungsreaktionen, die uns tags bei lebensnotwendigen Aktivitäten stören würden. Außerdem wird nachts durch die Kontakte zwischen antigenpräsentierenden Zellen und T-Helferzellen das immunologische Gedächtnis angelegt.

Hormone aus der Zirbeldrüse und der Hypophyse im Gehirn sowie aus der Nebennierenrinde, deren Ausschüttung von der zentralen inneren Uhr im Hypothalamus gesteuert wird, sorgen dafür, dass die richtigen Zellpopulationen zu jeder Zeit am richtigen Ort sind – also im Blut, im Lymphsystem, im peripheren Gewebe oder im Knochenmark. Die zentrale innere Uhr basiert auf einer Handvoll Gene, deren Ableseprodukte (die Proteine PER, CRY, REV-ERB, ROR, CLOCK und BMAL) wechselseitig ihre eigene Ablesung ein- und ausschalten. Ohne äußere Impulse oszilliert diese Rückkopplung mit einer Periode von etwas mehr als 24 Stunden. Durch Tageslichtsignale – von Nervenzellen in der Netzhaut an den Hypothalamus übermittelt – wird sie auf genau 24 Stunden eingestellt.

Die zentrale Uhrzeit wird vor allem durch das Zirbeldrüsen-Hormon Melatonin an die Zellen im gesamten Körper übermittelt. Die Melatoninkonzentration ist mitten in der Nacht am höchsten, fällt noch in der Nacht steil ab und bleibt tags sehr niedrig, bis sie abends wieder anzusteigen beginnt:

TagNacht_Melatonin_beschriftet_Quelle_Netz_650In dieser und den folgenden Abbildungen ist die Konzentration im Blut während etwas mehr als 24 Stunden dargestellt, beginnend mit dem Abend eines Tages bis zum Abend des nächsten Tages.  Die beiden senkrechten Linien markieren die Nacht, in der man idealerweise zwischen 23 und 7 Uhr schläft. In der ersten Nachthälfte gerät man in den Tiefschlaf, hier wegen der englischen Bezeichnung slow-wave sleep als SWS bezeichnet. Diese Schlafphase ist für die Regelung des Immunsystems entscheidend.

Weiterlesen

Bildergalerie

Da ich im Moment nicht zum ausführlichen Bloggen komme, stelle ich hier einfach die neuesten Abbildungen fürs Buch vor: unkommentiert – und damit wohl auch unverständlich. Aber das eine oder andere Element spricht vielleicht doch für sich selbst:

P1200120_IFN_und_AIE_1000

P1200095_U-Form_1_Grundtonus_nach_Casadevall_650

P1200100_U-From_2_entzündungshemmend_nach_Casadevall_650

P1200105_U-Form_3_entzündungsfördernd_nach_Casadevall_650

P1190917_Wahren-Herlenius_Autoimmunität_Risiken_650

Wahren-Herlenius_Rückkopplung_angeb_erw_Abwehr_AIE_650

  Primär_Sekundärantwort_IgM_IgG_650

Zeitverlauf_klonale_Expansion_Kontraktion_CD4_CD8_650n

Und jetzt weiter im Text – oder vielmehr im Bild: Die nächste Zeichnung dreht sich um die circadiane Rhythmik des Immunsystems, also die Schwankungen von Zell- und Stoffkonzentrationen sowie -funktionen im Tagesverlauf.

Fas/FasL: Wer zieht schneller?

Fas ist ein Rezeptor in der Membran etlicher Zelltypen im menschlichen Körper. FasL ist sein Ligand; auch er ist in der Zellmembran angesiedelt. Bindet FasL (hier: Pfeil und Bogen) an Fas (hier: Zielscheibe), so löst Fas in seiner Zelle eine Apoptose aus, einen kontrollierten Zelltod. Dieser Regulierungsmechanismus kommt in unserem Körper in mehreren Situationen zum Einsatz:

P1190827_Immunzelle_Nervenzelle_Fas_FasL_korr_650

P1190831_2_Immunzellen_Fas_Fasl_650

Oben: Zytotoxische T-Zellen (links) bringen so infizierte oder beschädigte Körperzellen (hier eine Nervenzelle, rechts) zum Absterben.

Mitte: In den sogenannten immunologisch privilegierten Orten, beispielsweise im Gehirn, läuft es umgekehrt: Die Zellen dort exprimieren selbst so viel FasL, dass eindringende T-Zellen (deren Membranen sowohl Fas als auch FasL enthalten) sterben, bevor sie eine Abwehrmaßnahme durchführen können.

Unten: Gegen Ende einer Immunreaktion muss die Zahl der Immunzellen im Körper stark reduziert werden (sog. Kontraktion des Immunsystems). Dazu begehen die Immunzellen Brudermord: Da sie sowohl Fas als auch FasL exprimieren, können sie sich gegenseitig ausschalten.

Versagt dieser Kontrollmechanismus, kann es zu Autoimmunerkrankungen kommen.

Blätter

Manuskript_ZwischenstandIrgendwo in Teil 3 von geplanten 5 Teilen meines Buchs habe ich (mal wieder) die Übersicht verloren: Habe ich Thema X bereits behandelt, und wenn ja: wo? Sollte ich Thema Y vielleicht besser hierhin verschieben – aber wo steckt es? Habe ich Abbildung Z eigentlich schon verwurstet, und wo finde ich die jetzt?

Bei aller Liebe zu Scrivener: Jetzt hilft nur noch ein Komplett-Ausdruck aller bereits verfassten Kapitel und aller bereits ausgeführten Zeichnungen. Ich muss blättern und kritzeln, um mich in meinem eigenen Buchkosmos wieder zurechtzufinden.

Im Augenblick sind es 377 Seiten und über 200 Zeichnungen, von denen gut 140 zu den bereits geschriebenen Kapiteln gehören.

Unsympathische sympathische Ophthalmie

Die erste neue Buchskizze seit einer halben Ewigkeit: Ich schreibe gerade das Kapitel über die immunologisch privilegierten Orte. Das sind Organe und Gewebe in unserem Körper, die teilweise vom Immunsystem isoliert sind, sodass zum Beispiel Implantate in ihnen nicht abgestoßen werden. Solche Immunprivilegien dienen wohl dazu, Organe funktionsfähig zu halten, in denen eine Abwehrreaktion größeren Schaden anrichten würde als ihr Auslöser.

Die vordere Augenkammer (zwischen Hornhaut und Iris gelegen) würde sich zum Beispiel bei einer Entzündung eintrüben. Daher ist die Aktivierungsschwelle für Immunreaktionen in ihr besonders hoch. Im Normalfall gelangen Antigene aus der vorderen Augenkammer – auch Autoantigene – nicht ins Lymphsystem, sodass sie keine zu ihnen passenden T-Zellen aktivieren. Daher suchen T-Zellen diesen Ort auch nicht gezielt auf. Wie gesagt: im Normalfall. Dieses „Privileg“ ist allerdings teuer erkauft: Wenn durch eine Verletzung doch einmal Augen-Antigene in den Körper gelangen, kann das zur vollständigen Erblindung führen – durch eine Autoimmunerkrankung mit dem Namen sympathische Ophthalmie. („Sympathisch“ heißt nämlich ursprünglich „gleichzeitig betroffen“.)

Sympathische_Ophthalmie_Trennstriche_650

1. Im Normalfall sind unsere vorderen Augenkammern vom Rest des Körpers isoliert: Die Hornhaut enthält keine Blutgefäße, die umliegenden Blutgefäße sind durch tight junctions gründlich abgedichtet und es gibt keine Lymphgefäße in unmittelbarer Nähe.

2. Wird ein Auge verletzt, können aber doch Autoantigene aus dem Inneren ins Lymphsystem und dann in den nächstgelegenen Lymphknoten gelangen. Dort treffen sie u. U. auf T-Zellen, deren Rezeptoren genau diese Antigene erkennen – und die im Rahmen der zentralen oder peripheren Toleranz-Induzierung nicht ausgeschaltet wurden, da sie „ihren“ Antigenen ja normalerweise nie begegnen. Diese T-Zellen werden nun aktiviert und vermehren sich.

3. Die aktivierten T-Zellen folgen chemischen Signalen, um zu ihrem Einsatzort zu finden – also dem Ort, an dem die Antigene vorkommen, die sie bekämpfen wollen. Sie können ja nicht wissen, dass es sich nicht um Fremdstoffe handelt, sondern um normale Inhaltsstoffe des Auges. Und sie unterscheiden auch nicht zwischen den Augen, die für sie beide nach „Ziel“ riechen.

4. Die T-Zellen dringen in beide vordere Augenkammern ein und lösen eine heftige Abwehrreaktion gegen die dortigen Autoantigene aus. Dabei trüben sich die Augen so sehr ein, dass der Betroffene einige Wochen oder Monate nach der Verletzung beidseitig erblinden kann. Heilung ist – wie bei fast allen Autoimmunerkrankungen – nicht möglich. Wenn man die Gefahr rechtzeitig erkennt, kann man aber durch Entfernen des verletzten Auges wenigstens das andere Auge retten.

Lebensweg einer Darmepithelzelle

Wie die Darmschleimhaut aufgebaut ist, habe ich hier und hier schon mal gezeigt. Was in den alten Skizzen noch fehlte, ist die Dynamik des Epithels, durch die ständig Schäden in der Barriere repariert und alte, verbrauche Zellen ersetzt werden:

P1180516_Darmepithelzellen-Lebenszyklus_beschriftet_650

Tief in den Krypten, den engen Schluchten der Darmschleimhaut, liegen Stammzellen (*), aus denen alle Darmepithelzellen durch Teilung hervorgehen. (Den Talgrund nehmen überwiegend die Paneth-Zellen ein, hier mit J gekennzeichnet, die antimikrobielle Substanzen ausschütten.)

Die jungen Epithelzellen wandern zunächst an den Wänden der Krypten und dann an den Darmzotten oder Villi entlang. An den Spitzen der Zotten (Kreuz) schilfern die ältesten Zellen ab und werden vom Darminhalt mitgerissen. Reißt eine Infektion oder eine mechanische Verletzung irgendwo eine Lücke in das Epithel, wird diese durch nachrückende Zellen geschlossen (schwarzer Pfeil), damit keine Bakterien oder Fremdstoffe in die Lamina propria – das Bindegewebe der Darmschleimhaut – eindringen.

Nachgetragen sei auch noch eine Skizze zum Cordon sanitaire vor der Darmschleimhaut. Nähere Erläuterungen folgen im Buch:

P1180509_Cordon_Ausfall_gesamt_650

Von Dirigenten, Schlusssteinen und ungeladenen Gästen

Einen Mangel an Metaphern und Analogien kann man der Mikrobiom-Fachliteratur wahrlich nicht vorwerfen.

P1180498_Mikrobiom_Schlussstein_650

George Hajishengallis (2013) diskutiert zum Beispiel die Frage, ob das Bakterium Porphyromonas gingivalis bei Parodontitis den entzündlichen Knochenverlust wirklich verursacht oder eher dirigiert („orchestrates“). Ein anderes Bild für denselben Sachverhalt: So, wie erst der Schlussstein („keystone“) einen Trockenbau-Mauerbogen zusammenhält, ist dieses Bakterium ein zentraler Bestandteil der entzündlichen Mundflora, aber nicht die alleinige Ursache der Erkrankung.

Im Netzwerk der gegenseitigen Abhängigkeiten im Ökosystem eines dysbiotischen Mikrobioms sitzen solche „keystone species“ wie die Spinnen im Netz (schraffierter Kreis): Sie erleichtern vielen anderen Arten, die zur Krankheit beitragen, das Überleben und profitieren ihrerseits von vielen weiteren Organismen. Nur wenige Arten im System sind gar nicht auf andere Organismen angewiesen. Im Netzwerk rechts sind sie mit Sternchen markiert, im Torbogen links ruhen sie direkt auf dem Erdreich.

Kultivieren – und damit durch Standardtests eindeutig nachweisen – lassen sich bisher oft nur diejenigen Arten eines Mikrobioms, die nicht auf die anderen Organismen angewiesen und insofern für das Gesamtgefüge eher untypisch sind: eben die untersten Steine des Bogens.

Genau wie in einem dysbiotischen Mikrobiom (zum Beispiel dem Biofilm bei einer Parodontitis oder der Darmflora bei einer chronisch-entzündlichen Darmerkrankung) stabilisieren sich auch die Arten in einem homöostatischen Mikrobiom (zum Beispiel einer gesunden Mund- oder Darmflora) gegenseitig: Die Ausscheidungen der einen Art dienen der nächsten als Rohstoffe. Die Arten nutzen alle Ressourcen so gründlich, dass ein Eindringling schlechte Karten hat, weil es für ihn keine Nische gibt.

In einem stabilen Mikrobiom beeinflussen die Teilnehmer außerdem ihre Umwelt so, dass die Bedingungen für ihr eigenes Gedeihen und das Gedeihen ähnlicher Organismen ideal sind (pH-Wert, Nährstoffe, Sauerstoffgehalt usw. – siehe Gleich und gleich gesellt sich gern). Ein Eindringling, der andere Bedürfnisse hat (hier: Pathogen = Biertrinker), hat so lange schlechte Karten, wie die übrige Gemeinschaft (hier: Kommensalen = Weintrinker) stabil bleibt.

P1180503_Party_Homöostase_Wein_500

Wird die etablierte Gemeinschaft aber destabilisiert, beispielsweise durch Antibiotika, durch Attacken des Immunsystems oder durch eine hartnäckige Diarrhö, können sich Eindringlinge ausbreiten und ein neues Beziehungsgeflecht aufbauen – sozusagen eine Biertrinker-Kultur. Jessica Ferreyra et al. (2014) sprechen von „Party Crashers“, also ungeladenen Gästen. Auf einmal sind die alten Kommensalen in der Minderheit, und sie kommen mit den neuen Umweltbedingungen nicht zurecht, sodass sie die Hegemonie nicht einfach zurückerobern können.

P1180503_Party_Dysbiose_Bier_500

Jetzt befindet sich das System im rechten tiefen Tal in der untersten Abbildung im Artikel über die Resilienz, und es bedürfte einer erneuten „Kulturrevolution“, um es wieder in den homöostatischen Zustand zurückzubewegen – sofern das überhaupt möglich ist.