Schlagwort-Archive: Würmer

Auswertung Wissenschafts-Newsletter, Teil 2

Weitere Meldungen der letzten Monate, zunächst wieder zum Mikrobiom:

Manipuliert uns unsere Darmflora? Artikel über eine im August veröffentlichte Studie, der zufolge Darmbakterien die Stimmung ihrer Wirte so beeinflussen, dass diese Nahrung zu sich nehmen, die den Bakterien zugute kommt. Keimfrei aufgezogene Mäuse haben z. B. veränderte Geschmacksrezeptoren, und Darmbakterien wie Escherichia coli produzieren Dopamin. Die Anwesenheit bestimmter Bakterien beeinflusst über solche Signalstoffe die Nerven des Verdauungstrakts, dessen Signale über den Vagusnerv ans Gehirn weitergeleitet werden. Der Vagusnerv beeinflusst unser Essverhalten und Körpergewicht.

Dick durch Jetlag und Schichtarbeit? Eine im Oktober in Cell veröffentlichte Studie deutet darauf hin, dass Jetlag und Schichtarbeit uns dick macht, indem sie nicht nur unsere innere Uhr, sondern auch die inneren Uhren unserer Darmflora verstellen. Mäuse, die unregelmäßigen Hell-Dunkel- sowie Fütterungsrhythmen ausgesetzt sind und kalorienreiche Kost erhalten, haben eine anders zusammengesetzte Darmflora und werden dicker als solche, die einen normalen Rhythmus beibehalten können. Auch bei zwei Menschen mit Jetlag nach einer Fernreise veränderte sich die Zusammensetzung der Darmflora: Begünstigt wurden Bakterien, die mit Übergewicht und Diabetes in Zusammenhang gebracht werden.

The Rise of Celiac Disease Still Stumps Scientists: Bericht über zwei im Oktober im New England Journal of Medicine veröffentlichte Studien zu Zöliakie, deren Ergebnisse zwei beliebten Hypothesen widersprechen. Erstens scheint die Wahrscheinlichkeit, an Zöliakie zu erkranken, nicht zu sinken, wenn man bei Kleinkindern die Einführung von glutenhaltiger Nahrung hinauszögert. Bestenfalls bricht die Zöliakie etwas später aus. Zweitens lässt sich die Erkrankungswahrscheinlichkeit bei Kindern mit einer entsprechenden genetischen Prädisposition auch durch „Desensibilisierung“, also durch kleine Glutenbeimischungen zur Muttermilch, nicht senken.    Weiterlesen

Linksammlung eines Tabmessies

Zum Teil schon seit über einem Monat sind in meinem Broswer alle möglichen Tabs zu Wissenschaftsnachrichten oder Abstracts offen, die ich „irgendwann“ abarbeiten wollte. Da ich das im Moment nicht schaffe, trage ich sie hier zusammen, um die Tabs schließen zu können.

„Überwinterung“ in Beringia: http://www.pasthorizonspr.com/index.php/archives/02/2014/beringia-standstill-hypothesis-gains-support – http://www.sciencedaily.com/releases/2014/02/140227141854.htm# – https://www.sciencemag.org/content/343/6174/979.figures-only

Viren in mittelalterlichem Stuhl: http://aem.asm.org/content/early/2014/02/05/AEM.03242-13.abstract – http://news.sciencemag.org/biology/2014/02/700-year-old-poop-tracks-history-human-gut-microbes

Geografische Variation der Zusammensetzung der Darmflora / des Mikrobioms: http://rsbl.royalsocietypublishing.org/content/10/2/20131037.abstract?cpetoc – http://newscenter.berkeley.edu/2014/02/14/geographic-variation-of-human-gut-microbes-tied-to-obesity/

Geschichte der Pandemien: http://contagions.wordpress.com/2010/12/31/pandemic-influenza-1510-2010/ – europepmc.org/abstract/MED/1724803 – http://rspb.royalsocietypublishing.org/content/281/1780/20133159.abstract?etoc

Protein M: http://www.spiegel.de/wissenschaft/medizin/bakterien-parasiten-protein-ueberlistet-immunsystem-a-952059.html – http://www.sciencemag.org/content/343/6171/656

FAQ Humanes Mikrobiom: http://blogs.plos.org/onscienceblogs/2014/01/17/human-microbiome-vitamin-e-alzheimers-tweets-1000-genome/

Histokompatibilitätslocus der Seescheide Botryllus schlosseri: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0065980#pone-0065980-g004

Herkunft der V(D)J-Rekombinations-aktivierenden (RAG) Gene, Nesseltiere: http://www.sciencedirect.com/science/article/pii/S1044532309001195 – http://www.sciencedirect.com/science/article/pii/S1471490607002062

Phagozytose bei Dictyostelium: http://onlinelibrary.wiley.com/doi/10.1111/j.1550-7408.1996.tb02474.x/abstract

Vitamin-A-Mangel schützt gegen Würmer: http://www.the-scientist.com/?articles.view/articleNo/38977/title/Vitamin-Deficit-Can-Boost-Innate-Immunity/

Immunreaktion, die Salmonellen-Infektion fördert: http://www.the-scientist.com//?articles.view/articleNo/39096/title/Immune-Response-Promotes-Infection/

Neandertaler-Erbe in unserem Immunsystem

Sapiens-Neandertaler-Paar_650Schnelle Notizen zu 14 kürzlich gelesenen Artikeln – nicht allgemein verständlich aufbereitet, nicht korrekturgelesen und in dieser Form wahrscheinlich nur für mich selbst nützlich. 🙂 Das Ganze wird im letzten Teil des Buches verwurstet, in dem ich die Evolution unseres Immunsytems chronologisch abhandle.

Gibbons A. (2014): Neandertals and moderns made imperfect mates. Science 343, 31.01.2014 (News zu den Arbeiten von Sankararaman et al. 2014, s. u., sowie Vernot & Akey 2014)

Vernot & Akey haben nur moderne Humangenome aus dem 1000 Genomes Project verglichen und daraus Rückschlüsse auf Neandertaler-Einkreuzungen gezogen; Sankararaman et al. haben auch Neandertaler-Genomsequenz einbezogen. Neandertaler haben Spuren in Haut, Nägeln und Haaren (Keratin) hinterlassen; Nachfahren der Hybriden waren weniger fruchtbar als „reine“ moderne Menschen.

In über 60% von 1004 ostasiatischen und europäischen Genomen Neandertaler-Version des Keratinfunktion-Gens. Keratin macht Haut wasserdicht, blockiert Pathogene, macht Haut wärme- und kälteempfindlich -> Anpassung an kältere Habitate?

Neandertaler-Allele, die Risiko für Krankheiten wie Lupus, Morbus Crohn usw. erhöhen, haben Neandertalern vermutlich nicht geschadet, passten aber schlecht zum neuen Kontext im modernen Menschen.

Weitere Neandertaler-Allele -> Hautfarbe.

In allen untersuchten modernen Humangenomen zusammen 20 bzw. 30% des Neandertaler-Genoms wiedergefunden; in einem Individuum stammen 1-3% des Genoms vom Neandertaler. Einkreuzung vor etwa 60.000 Jahren.

Etwa 20 Regionen des Humangenoms enthalten keine Neandertaler-DNA -> negative Selektion wegen Fortpflanzungsnachteilen der Hybriden. Frauen bleiben wegen doppeltem X-Chromosom eher fruchtbar -> Jetzt wird untersucht, ob wir mehr DNA von weiblichen als von männlichen Neandertalern übernommen haben. (Gemeint ist wahrscheinlich das Geschlecht der gemischten Kinder, nicht des reinen Neandertaler-Elternteils – da macht es keinen Unterschied, solange männliche Hybriden mit Neandertaler-X und modernem Y ebenso (un)fruchtbar sind wie männliche Hybriden mit modernem X und Neandertaler-Y.)

Sankararaman S. et al. (2014): The genomic landscape of Neanderthal ancestry in present-day humans. nature, doi:10.1038/nature12961

Vergleich zwischen Neandertaler-Genomen und 1004 modernen Genomen (darunter 176 Yoruba, mutmaßlich Neandertaler-frei) -> Neandertaler-Haplotypen abgeleitet. Regionen mit vielen Neandertaler-Allelen enthalten viele Gene, die Keratinfilamente beeinflussen -> Haut und Haar -> Anpassung moderner Menschen an außerafrikanische Umwelt erleichtert? Große Neandertaler-Allel-freie „Wüsten“ im Humangenom, z. B. auf X-Chromosom, das viele Gene für männliche Fruchtbarkeit enthält; nur teilweise durch geringe Populationsgröße kurz nach Einkreuzung zu erklären  -> negative Selektion, evlt. weil Neandertaler-Allele im Genom-Kontext des modernen Menschen Fruchtbarkeit minderten.

Haplotyp-Längen -> Kreuzung vor etwa 2000 Generationen, also 37.000-86.000 Jahren. Neandertaler-Anteil in individuellen Genomen: heute durchschnittlich 1,15% in Europa, 1,38% in Ostasien; kurz nach Einkreuzung über 3% (abgeleitet aus Anteil in „Nicht-Wüsten-Regionen“). Größerer Anteil in Ostasiaten evtl. wegen über lange Zeit kleinerer Populationen als in Europa -> negative Selektion weniger effektiv. Mutmaßlichem Neandertaler-Anteil an einzelnen Genorten: bis zu 62% in ostasiatischen, bis zu 64% in europäischen Populationen. In einigen dieser Regionen Anzeichen für positive Selektion, an an deren negative Selektion.

Aus Neandertalern stammende Allele beeinflussen Risiko für SLE/Lupus, primär biliäre Zirrhose (beides: Transportin-3), Morbus Crohn (Chromosom 10: Zinkfinger-Protein 365, Chromosom 12: Gen unbekannt?), IL-18-Level (Regulator der angeborenen und erworbenen Immunität) , Typ-2-Diabetes, Rauchen und Größe des Blinden Flecks.

Obwohl bei der Einkreuzung nur etwa fünfmal mehr Zeit seit der Aufspaltung zwischen Neandertalern und Vorfahren der modernen Menschen vergangen war als heute seit der Aufspaltung zwischen Europäern und Westafrikanern, war die Fruchtbarkeit der Hybriden wohl wegen Schneeball-Effekten (Dobzhansky-Müller-Inkompatibilitäten) stark reduziert.

Prüfer K. et al. (2014): The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505, doi:10.1038/nature12886

Hochwertige Genomsequenz einer Neandertaler-Frau aus der Denisova-Höhle in Altai-Gebirge, Sibirien – gewonnen aus einem Zehenknochen aus einer etwa 50.000 Jahre alten Schicht. In derselben Höhle, aber in einer etwas jüngeren Schicht wurde auch der Fingerknochen gefunden, aus dem die vorläufige Genomsequenz des Denisova-Menschen ermittelt wurde. Vergleich mehrerer Neandertaler-Genome (auch aus dem Kaukasus und Kroatien, s. Karte Abb. 1), des Denisova-Menschen-Genoms und 25 moderner Humangenome -> Modell der Einkreuzungsereignisse zwischen modernem Menschen, Denisova, Neandertaler und einem unbekannten Hominiden (Abb. 8).  Weiterlesen

Entwurmung kann andere Mäuse-Parasiten stärken und die Überlebensrate senken

In den letzten Tagen habe ich zwei Artikel gelesen, in denen aufgrund von Versuchen an wilden Nagetieren mit vermeintlichen Gewissheiten aufgeräumt wird. Hier eine kurze Zusammenfassung der ersten Arbeit von Pedersen und Antonovics, Anthelmintic treatment alters the parasite community in a wild mouse host (2013):

Die Autoren haben in einem Eichenwaldgebiet in Virginia Weißfuß- und Hirschmäuse gefangen und sie randomisiert zwei Gruppen zugeordnet. Die erste Gruppe erhielt eine einmalige Injektion des Anti-Nematoden-Mittels Ivermectin und die zweite stattdessen eine Wasserinjektion. Außer Nematoden hatten die Mäuse auch Kokzidien (parasitische Protisten) und Bandwürmer. Erwartet wurde eine höhere Überlebensrate und damit Wiederfangquote in der Gruppe, die mit Ivermectin behandelt worden war: Dass Wurmbefall den Organismus belastet und die Eliminierung der Würmer die Tiere stärkt, ist schließlich die Grundannahme hinter allen Wurmbehandlungen. Tatsächlich wurden aber von den nicht behandelten Tieren ein etwas höherer Anteil wieder gefangen; unter ihnen hatten offenbar mehr Tiere überlebt.

Unter den wiedergefangenen Ivermectin-behandelten Mäusen war die Nematoden-Prävalenz um 28% zurückgegangen, in der Kontrollgruppe dagegen nur um 8% (signifikanter Unterschied). Bei den Ivermectin-behandelten Mäusen war die Kokzidien- und Bandwürmer-Prävalenz gegenüber dem Erstfang signifikant angestiegen, während sie in der Kontrollgruppe gesunken bzw. gleich geblieben war. Im Unterschied zur Prävalenz wurde die Intensität des Wurmbefalls durch die Behandlung nicht beeinflusst, was darauf hindeutet, dass das Mittel nicht die Vermehrung, sondern die Etablierung der Parasiten im Wirt stört.

Offenbar bilden die unterschiedlichen Darmparasiten der wilden Mäuse ein Ökosystem, in dem die einzelnen Arten miteinander um Raum und Ressourcen konkurrieren und einander womöglich auch durch die Auslösung von Immunreaktionen bekämpfen. Durch die Bekämpfung der Nematoden verbessern sich die Lebensbedingungen für die Kokzidien, die mit Gewichtsabnahme und geringeren Winter-Überlebensraten assoziiert werden. Solche unintendierten Auswirkungen sollten bei Eingriffen stets mit bedacht und überprüft werden.

Für mich in Zusammenhang mit der Hygiene-Hypothese vor allem interessant: ein weiterer Hinweis auf die Beeinflussung des Immunsystems durch Würmer, die anderen Krankheitserregern das Leben schwer machen. So werden die Saumzellen des Dünndarmepithels bei einem Wurmbefall schneller erneuert, wodurch zum Beispiel Kokzidien, die in solchen Zellen leben, Ressourcen entzogen werden.

Karelien

Eine Skizze fürs Buch:

Karelien_650Was darin noch fehlt, sind die Zahlen: Untersucht wurden Schulkinder in der finnischen Region Karelien (linkes Wappen) und in der russischen Republik Karelien (rechtes Wappen), Durchschnittsalter 11 Jahre.

Sie gehören überwiegend zur selben ethnischen Gruppe, sodass Risiko-Genorte für die Erkrankungen ungefähr gleich stark vertreten sind. Die Vitamin-D-Konzentrationen in ihrem Blut und im Blut ihrer Mütter sind nahezu gleich, und sie nehmen etwa gleich viele glutenhaltige Getreideprodukte zu sich – in Russland sogar etwas mehr und evtl. auch früher. Die finnischen Kinder werden im Durchschnitt erheblich länger gestillt als die russischen.

Im finnischen Teil Kareliens ist bei ihnen

  • die Prävalenz von Typ-1-Diabetes 6-mal so groß wie im russischen Teil,
  • die Prävalenz von Zöliakie 4,6-mal so groß wie im russischen Teil,
  • der Anteil mit Antikörpern gegen Schilddrüsen-Autoantigene 5,5- bis 6,5-mal so groß wie im russischen Teil,
  • die Prävalenz von Allergien deutlich höher als im russischen Teil.

Im russischen Teil Kareliens sind

  • Wurminfektionen, z. B. Spulwurminfektionen, erheblich häufiger als im finnischen Teil,
  • 73% der Kinder mit Helicobacter pylori infiziert, während es im finnischen Teil 5% sind,
  • Infektionen mit Hepatitis A, Toxoplasma gondii und Enteroviren erheblich häufiger als im finnischen Teil, und
  • prozentual erheblich mehr Kinder ohne Diabetes oder Allergien Hepatitis-A-seropositiv als Kinder, die an Diabetes und/oder Allergien leiden.

Das Bruttosozialprodukt beträgt in Finnland gut 40.000 US-$, in der russischen Republik Karelien 5780 US-$ pro Kopf. Alles in allem stützen diese Zahlen die Hygiene- oder Alte-Freunde-Hypothese.

Die Prävalenz von Typ-1-Diabetes ist in Finnland höher als in jedem anderen Land der Welt; 2006 hat sie 63 pro 100.000 erreicht.

Geoepidemiologie der Autoimmunerkrankungen

Eine schnelle Skizze für das Epidemiologie-Kapitel des Buches. Jetzt hätte ich gerne zwei Wochen frei, um in einem Rutsch weiterzuschreiben …

P1110939_Geoepidemiologie_Weltkugel_650

Überblick: Typ-1-Diabetes

Langerhans-Insel, Foto: Wikipedia-User Polarlys

Langerhans-Insel, Foto: Wikipedia-User Polarlys

Diese Review-Sammlung der Zeitschrift Cold Spring Harbor Perspectives in Medicine umfasst 18 frei zugängliche Artikel aus dem Jahr 2012, von denen ich bisher fünf gelesen habe. Notizen zum Einführungsartikel:

Mark A. Atkinson, Pathogenese und Naturgeschichte von T1D: sehr guter Überblick, auch über ungeklärte Fragen.

Anteil T1D-Fälle, die erst bei Erwachsenen diagnostiziert werden: 35-50%. Etwa 5-15% der Erwachsenen mit T2D-Diagnose dürften tatsächlich T1D haben. 2 Gipfel: erster bei Kindern von 5-7 Jahren, zweiter nahe Pubertät. M und F etwa gleich oft betroffen, leichter Männerüberschuss. T1D-Diagosen im Herbst und Winter häufiger als im Frühjahr/Sommer -> evtl. Umweltfaktor an Symptomausbruch beteiligt. Studie SEARCH: Etwa 0,26% aller unter 20-Jährigen haben Diabetes (T1D oder T2D); bei unter 10-Jährigen 19,7/100.000 neue Fälle/Jahr, bei über 10-Jährigen 18,6/100.000; Ethnien: bei weißen Nicht-Latinos unter 10 Jahren höchste Inzidenz (24,8/100.000).

Bandbreite der Inzidenzen zwischen Ländern, aus denen Daten vorliegen: über 350-fach! I. A. positiv korreliert mit Breitengrad. Selten in Indien, China, Venezuela; sehr häufig in Finnland (> 60/100.000/Jahr) und Sardinien (etwa 40/100.000/Jahr); > 20/100.000/Jahr in Schweden, Norwegen, Portugal, GB, Kanada, Neuseeland. Estland: weniger als 75 Meilen von Finnland entfernt, aber T1D-Rate weniger als 1/3 der finnischen. Puerto Rico: selbe Rate wie Festland-USA, benachbartes Kuba dagegen weniger als 3/100.000/Jahr. Inzidenzen steigen weltweit seit Jahrzehnten, besonders stark bei den unter 5-Jährigen. In Schweden scheint Plateau erreicht zu sein. Anstieg viel zu schnell für Verschiebung der genetischen Empfänglichkeit. Anteil Betroffener mit Risikoallelen (v. a. im MHC-II-Komplex) scheint vielmehr gesunken zu sein.   Weiterlesen

Entwurmungen in Entwicklungsländern: weniger erfolgreich als bisher angenommen?

Vor dem Hintergrund des Schutzes vor Autoimmunerkrankungen und Asthma, den verschiedene parasitische Würmer vor allem bei Infektionen während der Kindheit zu vermitteln scheinen, fand ich das ernüchternde Ergebnis dieses Cochrane-Reviews interessant:

David C. Taylor-Robinson et al.: Deworming drugs for soil-transmitted intestinal worms in children: effects on nutritional indicators, haemoglobin and school performance. The Cochrane Library, 11. Juli 2012, DOI: 10.1002/14651858.CD000371.pub4

(Berichte/Kommentare dazu hier und hier)

Übersetzung der allgemeinverständlichen Zusammenfassung:

„Die wichtigsten über Böden übertragenen Würmer sind Fadenwürmer, Hakenwürmer und Peitschenwürmer. In den Tropen und Subtropen sind sie vor allem in Kindern aus armen Gegenden mit schlechter/fehlender Kanalisation, hoher Bevölkerungsdichte, schlechter Bildung und schlechtem Zugang zum Gesundheitswesen weit verbreitet. Die Infektionen verursachen bei Kindern manchmal Unterernährung, Wachstumsstörungen und Anämie, und einige Experten glauben, sie würden auch die schulische Leistung beeinträchtigen. Neben Verbesserungen der Kanalisation und der Hygiene werden auch Medikamente gegen Würmer eingesetzt.

Ein Ansatz besteht darin, nur diejenigen Individuen zu behandeln, die sich bei Massentests als infiziert erwiesen haben. Indizien deuten darauf hin, dass dies das Gewicht und evtl. auch die Hämoglobinwerte verbessert, aber die Belegbasis ist klein. Bei einem anderen, derzeit von der WHO empfohlenen und viel besser untersuchten Ansatz werden alle Schulkinder mit Wurmmitteln behandelt.

Nach Untersuchungen nach einer einzelnen Wurmmittelgabe oder nach mehreren Dosen bleibt ungewiss, ob solche Programme Ernährungsindikatoren wie Gewicht oder Körpergröße, die kognitiven Fähigkeiten, die Unterrichtsteilnahme oder die schulischen Leistungen positiv beeinflussen. Es sieht so aus, als hätten sie keine Auswirkung auf den Hämoglobingehalt des Blutes. Einer Untersuchung an einer Million Schulkindern, bei der Todesfälle untersucht wurden, wurde bereits 2005 abgeschlossen, aber die Forscher haben ihre Ergebnisse noch nicht veröffentlicht.“

Würmer im Darm regen IL-10-Ausschüttung an und verhindern so bei Mäusen Typ-1-Diabetes

P. K. Mishra et al.: Prevention of type 1 diabetes through infection with an intestinal nematode parasite requires IL-10 in the absence of a Th2-type response. Mucosal Immunology, 18. Juli 2012, doi: 10.1038/mi.2012.7

Notizen noch nicht allgemeinverständlich zusammengefasst

Abstract: Wurminfektionen können Typ-1-Diabetes verhindert; Mechanismen noch unklar. Hier wurden NOD-Mäuse (Tiermodell für Typ-1-Diabetes), die kein Interleukin 4 produzieren können (IL-4-/-), im Alter von 5-7 Wochen mit dem Darmparasiten Heligmosomoides polygyrus infiziert und anschließend entwurmt. Im Unterschied zu den nicht infizierten Tieren entwickelten die meisten von ihnen bis zur 40. Lebenswoche keinerlei Anzeichen für Typ-1-Diabetes oder eine Schädigung der Betazellen in der Bauchspeicheldrüse. Die CD4+-STAT6-Phosphorylierung (also der IL-4/IL-13-Signalweg) war unterbunden, die CD4+-STAT1-Phosphorylierung (also die IFN-γ-Produktion) nicht. In FoxP3-CD4+-T-Zellen war die IL-10-Produktion stark erhöht.

Blockierte man die IL-10-Signalgebung in den NOD-IL-4-/--Mäusen, so wurden die Betazellen zerstört, und die Tiere bekamen Typ-1-Diabetes. NOD-Mäuse, die IL-4 herstellen konnten, blieben dagegen auch bei einer IL-10-Signalblockade gesund. Ein Transfer jener CD4+-T-Zellen aus infizierten NOD-IL-4-/--Mäusen, die offenbar primär für die erhöhte IL-10-Produktion verantwortlich sind, in nicht infizierte NOD-IL-4-/--Mäuse verhinderte deren Erkrankung. Diese Zellen sind keine klassischen regulatorischen T-Zellen oder Tregs (kaum FoxP3).  Weiterlesen

IgA, IgE und IgM

Neben dem zähen Schleim, den in ihn eingebetteten antibakteriellen Peptiden und der mechanischen Barriere des Darmepithels mit seinen Tight Junctions sorgen auch in die Schleimschicht abgeschiedene Immunglobuline (Antikörper) für einen Schutz vor Pathogenen und vor allzu aufdringlichen Kommensalen. Es gibt mehrere Typen von Immunglobulinen, die sich in ihrem Aufbau, ihrer Funktion und ihren Einsatzorten unterscheiden. Im Darm finden wir vor allem IgA (links), und zwar zumeist als Dimer: Zwei Antikörper sind an ihrem konstanten Ende (am „Stamm“ des Y) miteinander verbunden und mit einer Peptipkette umwickelt. IgA bindet vor allem an Bakterien.   Weiterlesen